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Abstract

The Hannay-Berry connection[8,14,16] provides a geometric setting for the classical Hannay angles
associated to an integrable Hamiltonian which depends on a slowly varying (adiabatic) parameter.
In this paper we compute the connection one-form and curvature associated to an asymmetrical
rigid body whose inertia tensor varies slowly with time. The connection in this case is defined on
a bundle whose base is the space of inertia tensors and whose fiber is the union of those regions in
phase space which admit local action-angle charts. Each element in the base induces dynamics in
the corresponding fiber which are completely integrable. The connection is defined by averaging the
trivial connection over the T3 action induced by this local set of parameter dependent action-angle
variables. As a corollary we compute explicit formulae for the holonomy of special classes of loops
in the space of inertia tensors. For example it is proved that any loop consisting of inertia tensors
which are simultaneously diagonalizable has trivial holonomy, and hence the Hannay angles are zero.
We also compute the holonomy of certain loops for which the moments of inertia are constant, while
the principal axes undergo a rotation.
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1 Introduction

1.1 Background

In this paper we will study geometric aspects of the Euler-Poinsot system (or Free Rigid body)
where the inertia tensor is made to vary with time. In particular we will consider loops in the space
of inertia tensors and will restrict our attention to the adiabatic setting in which the moments and
axes of inertia move slowly relative to the overall rotational motion of the system.

More generally we may consider a family of integrable Hamiltonians H,,, depending on a pa-
rameter m, which lies in a smooth manifold M. In our case M is the set of inertia tensors. When
the parameter undergoes an adiabatic circuit ¢ — m(et) for € small, 0 < ¢t < 1/e, we obtain a
non-autonomous Hamiltonian system. It is known[3,8,10] that in such systems the action variables
remain (almost) adiabatically constant, while the shift in the angle variables splits into a dynamic
phase

1/e
Abyy, = / w(I(t), et)dt,
0

which depends on the parameterization; and a geometric phase
Aageom = /(dM0>a
¥

depending only on the image v C M of the circuit. Here ¢ > 0 is called the slowness parameter,
(I, ) denote parameter dependent action-angle variables, w = 0H,, /01 the frequency vector, dj the
exterior derivative with respect to the parameters, and (-) the operation of averaging over invariant
phase space tori. ABgeor, is also called the classical Hannay angles. Hannay[10] and Berry[4] explain
the geometric phase by noting that when one writes Hamilton’s equations in coordinates (I, ) there
is an extra term in the equation giving the angle rate of change, owing to the dependence on
parameters. Hannay[10] averages this equation to get, in the adiabatic limit (e — 0), the total angle
shift:

(1) A0 = ABgyn + AbBgeom-

ABgeom is the classical analog of a phase occurring in quantum mechanics discovered by Berry[3]. Si-
mon[17] gave a geometric interpretation as the holonomy of a natural connection on a Hermitian line
bundle. Montgomery|[16], Golin, Knauf, and Marmi[8], and Marsden, Montgomery, and Ratiu[14]
have given an analogous geometric interpretation for the classical Hannay angles, which extends to
Hamiltonians that are invariant under non-Abelian parameter dependent phase space symmetries.
The connection in this case is called the Hannay-Berry (HB) connection. For integrable Hamiltoni-
ans, it is defined by averaging the trivial connection on M x P (where P is the phase space) over
the T action induced by the M dependent local action angle coordinates[14].

The Hannay angles (or equivalently the holonomy of the HB connection) have been computed in
a number of simple examples such as: families of harmonic oscillators [3,16], the Foucault pendulum



[10,11,16], and the ball in the rotating hoop [11,14]. The goal of this paper is to compute curvature
and holonomy of the HB connection in an example which exhibits more complexity: the asymmetrical
free rigid body. In this case the parameter is a positive definite symmetric matrix, the inertia tensor,
determined by the mass distribution of the body. Each such matrix induces a completely integrable
system on the phase space T*SO(3) = SO(3) x R?* = {(orientations, body angular momenta)}, via
the corresponding kinetic energy function. By allowing the inertia tensor to vary with time, we
obtain the non-autonomous Hamiltonian system which is the subject of the present work.

(FIX THIS!) This system is a good approximation to the dynamics of a slowly deforming free
space structure. The equations for a slowly deforming body contain a higher order term in the
slowness parameter €, arising from the kinetic energy of the moving parts. If the masses undergo
an adiabatic cycle the new state of the system can be approximated by calculating the dynamic
and geometric phases and using (1). The dynamic phase is (typically) computed numerically and is
O(1/e), the same order as the time scale of the cycle. The geometric phase is O(1) and is intrinsic
to the physical paths of the moving parts. The reader is referred to [18] for further details of this
approximation.

1.2 Results

The main result of this paper is the calculation of the HB connection one-form coefficients for the
rigid body (Propositions 4.1 and 4.2). We find explicit formulas for all but one of the connection form
coefficients. The remaining coefficient is determined by a P.D.E. whose coefficients and Right hand
side are elliptic integrals (Equation (16)). As a corollary we obtain Theorem 4.1 giving the curvature
form, excluding the three components which involve the non-explicit connection coefficient. Since
the parameter space is six dimensional, there are fifteen terms in the curvature form. Among the
twelve known terms ten are zero, indicating the presence of many loops with trivial holonomy.

In general given an explicit connection form it is a non-trivial (often impossible) problem to find
analytic expressions for the holonomy. (We do not consider path ordered exponentials to be analytic
expressions since they are in essence defined as the solutions to the parallel transport equations.)
Analytic expressions usually are available only when the situation “Abelianizes.” In our case this
happens for certain loops lying in special submanifolds of the parameter space. With this in mind we
are able to obtain explicit formulae for the holonomy (geometric phases) for two particular classes
of loops, namely (I) those in which the principal axes undergo a rotation while the eigenvalues are
fixed; and (IT) those in which the axes are fixed while the eigenvalues vary. The holonomy of other
loops could be determined numerically using the above expressions for the connection form.

In §4.5 we prove the following results concerning parallel transport and holonomy.

Theorem 1.1 Consider a path m(t) in which the inertia tensor is rotated about a fized vector
€ € R3. The time t parallel transport map of the HB connection acts on the body angular momentum
vector zg € R® by a composition of two motions: first let zy evolve along the frozen rigid body
dynamics (i.e. m = m(0) in equation (3)) for time u(zo)t (where the function u is defined in §4.5
equation (29)); then rotate the resulting vector about & by t radians.

Corollary 1.1 Consider the loop given by rotation of the inertia tensor about & by 2w radians. The
holonomy operator acts on zy by evolving along the rigid body trajectory (corresponding to m(0)) for
time 2mu(zp).

Corollary 1.2 (Consider the loop given by rotation of the inertia tensor about & by £m radians,
where £ is parallel to one of the principal azes of m(0). If & is parallel to either of two principal azes
then the holonomy operator rotates zy by w radians about that axis. If £ is parallel to the remaining
azis, 7oy is transported for time wu(zy) along the rigid body dynamics, then rotated by m radians



about the given azis. Which principal azis yields the distinguished holonomy is determined by the
action-angle coordinate domain from which zy is selected.

We remark that Corollary 1.2 is analogous to results obtained for the harmonic oscillator[3,16].
For rotations of the quadratic form defining the harmonic oscillator the Hannay angle is a rotation
of the phase plane by 7 radians. As a consequence of Theorem 4.1 giving the curvature form, we
obtain

Theorem 1.2 For loops consisting of inertia tensors which are simultaneously diagonalizable, the
Hannay angles are zero.

This is again analogous to the harmonic oscillator in that dialations of the quadratic form yield
zero Hannay angle. Theorem 1.2 has the following physical interpretation regarding the free space
structure discussed earlier. If the adjustable masses undergo an adiabatic cycle in such a way that
the principal axes of the inertia tensor are fixed (e.g. if the masses move along the principal axes)
then the change in state of the system is given by the dynamic phase only.

The set of inertia tensors with double eigenvalues has two components in the full space of
inertia tensors; namely those where the double eigenvalue is the smaller, or the larger of the two
eigenvalues, respectively. We show in §4.6 that the HB connection can be extended to one of these
components, but not both simultaneously. The reason for this is that as two eigenvalues collide,
some of the action-angle coordinate domains disappear. When two eigenvalues are equal the system
is an axially symmetric body. The parallel transport equations are particularly simple in this case
and the phases are computed in §4.6.

The free rigid body, while completely integrable is also completely integrable in the non-Abelian
sense[7]. Equivalently, the system admits more than the required three integrals, which necessarily
then do not Poisson commute. The energy and the three components of angular momentum are
independent (but non-commuting) first integrals, and hence the generic trajectories lie on a two
dimensional submanifold of the six dimensional phase space SO(3) x R®. This submanifold is a
2-torus[1,2]. Three commuting integrals are given by: an arbitrarily chosen component of angular
momentum, the length of the angular momentum, and the energy. The freedom in choosing the
first integral implies that trajectories lie in many different invariant 3-tori, and hence on their
intersection, the invariant 2-torus mentioned above. After passing to action-angle variables this
torus is parametrized by two of the angles[18,19]. Thus T? acts in a Hamiltonian manner on the
phase space and therefore defines an HB connection via the averaging procedure. We show in §4.3
that this connection is in fact identical to the one defined by the T2 action.
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2 The Hannay-Berry Connection

We review here basic definitions and results concerning the Hannay-Berry connection which gen-
eralized the Hannay angles to non-integrable Hamiltonians. Although our interest is in the rigid
body, which is completely integrable, the results here provide a global setting for the problem as
well as facilitate the computations to follow. The proofs are omitted and can be found in [8,14,16].
Our exposition closely follows that in [16].



2.1 Families of Hamiltonian Group Actions

Let (P,w) be a symplectic manifold, G a Lie group with Lie algebra g, and M a manifold which
we call the parameter space. Let s and mp denote projections of M X P onto M and P respectively,
and suppose 2n = dim(P), and k = dim(M). Let E C M x P be a smooth submanifold for which
mum|E 1 E — M is a smooth (not necessarily trivial) subbundle, and each fiber E,, = 7,/ (m) N E
is an open submanifold of 7} (m) = {m} x P. Thus E,, is a symplectic manifold with symplectic
form mHw|Ep,.

Definition 2.1 A smooth action of G on E is called a family of Hamiltonian G actions if the
following are satisfied:

1. G preserves the fibers Ey, of mp|E.
2. The action restricted to each fiber is symplectic.
3. The action admits a parameterized momentum map I : E — g*.

We elaborate briefly on (3). Let dp and djs denote the exterior derivatives in the P and M
directions respectively. That is, for f € C*®(E)

dpf = Z (a—;idq + a—jdpo and Z a—fdmj,
i=1 ? =1

where {¢*,p;}™, and {mj}le are local coordinates on P and M respectively. The Hamiltonian
vector field of f € C*°(F) is defined as the unique vector field X; € X(F) which is vertical with
respect to my|E and satisfies
mpw(Xyg,:) =dpf.

For ¢ € g, let I¢ denote the function on E given by I¢(m,z) = (I(m,z),£), where (-,-) : g* x g = R
is the natural paring. Then condition (3) means that for each & € g,

XI§ :fEa

where £g(m,z) = dE‘ __expt{ - (m,r) is the infinitesimal generator of the G action on E corre-

sponding to &. (See [1,15] for the basic theory regarding momentum maps.)

A trivial example is given by a Hamiltonian action of G on P with momentum map J : P — g*.
Let G act trivially on M and take the diagonal action on E := M X P. In this case I(m, z) = J(z) and
there is no dependence on the “parameters” M. We will be concerned primarily with Hamiltonian
actions which depend nontrivially on a parameter.

It will be helpful to keep the following example in mind while reading §3.2 and during the cal-
culations in Section §4.

Example. Let H € C*°(M x P). Since Xy is vertical, the fibers of 757 are invariant under the flow.
We may consider Xy to be a Hamiltonian system on P =2 w;/fl (m) which depends on the parameter
m € M. We say that H defines a parameter dependent integrable system if for each m € M,
H(m,-) € C*(P) is integrable in the usual sense. This means that there are functions f1,..., f, =
H € C®°(M x P) such that for each m € M, {fi(m,-), fj(m,-)} = 0 (using the induced Poisson
structure on 7, (m)), and dp f1(m, z) A...Adp fn(m, z) # 0 for almost every z € P. By the Arnold-
Liouville Theorem|2] the regular compact connected level sets of f(m,-) = (fi(m,-),..., fn(m,-))
are diffeomorphic to T" and about such a torus there exist local action-angle coordinates (I, ©).
That is we have independent functions I = (I,...,I,) (actions) locally defined in (m,z), whose



Hamiltonian flows are 27-periodic. The angle variables are constructed by selecting a Lagrangian
submanifold transversal to the above tori and transporting it by the flow of I;. The angle coordinate
O; of a point is then the time at which the transported submanifold reaches the given point. Also
we have a local diffeomorphism ¢, on R", depending on m € M, such that f(m,z) = ¢(m,I(m,x)).
In particular H is a function of m and I.

Assume for the moment that I is globally defined. Then by transporting points along the trajec-
tories of Xy,,...,Xr, (or equivalently by advancing the angle coordinates conjugate to I,...,I,)
we have an action of T" on M x P. We see readily that this is a family of Hamiltonian T" actions.
Indeed, (1) in the definition is satisfied since X7, (1 < i < n) is vertical, and (2) holds since Hamil-
tonian flows are necessarily symplectic. By definition of the T" action we have for £ € R” = £ie(T"),

EMxp = £1X11 +--+ anIn = X§111+...+§n1n = Xpe,

showing that (3) holds.

Now suppose that the action-angle coordinates are not globally defined. The Arnold-Liouville
Theorem implies that for each parameter value m € M, there is an open submanifold P(m) C P on
which f(m,-) = (fi(m,-),..., fn(m,-)) is a proper submersion. Each level set of f(m,-) | P(m) is a
disjoint union of Liouville tori, and each connected component of P(m) is a union of action angle
chart domains. Typically P(m) is obtained from P by removing certain submanifolds of codimension
at least one, so that P(m) is dense in P. As m € M is allowed to vary, the connected components of
P(m) may move, change topology, or even disappear. Let us assume that the number of components
remains constant for all m € M; say

where the P;(m) are connected, open, and pairwise disjoint. If we follow the i*» component as m
executes a loop in M, it may be that it does not return to itself. In other words the labeling map
from P, := {components of P(m)} to {1,...,k} may be defined only locally on M. Thus we have
an action of the loop group of M (based at m) on P,,. In fact this action depends only on the
homotopy class of the loop and hence 71 (M, m) acts on P,,. When considering the rigid body we
will sometimes restrict our attention to a single orbit of this action. Now define

E={(m,z) e M xP|zeP(m)}

and consider the subbundle my|E : E — M, with fibers E,, = {m} x P(m). The previous discussion
indicates that my/|E may not be trivial. Assume that each component P;(m) admits a single action-
angle chart (which is what happens for the rigid body.) Just as before, T" acts in a Hamiltonian
manner on P;(m), 1 <i <k, and hence also on the fiber E,,, thus forming a family of Hamiltonian
T" actions on E.

2.2 Definition and Geometric Properties of the HB Connection

Let E C M x P be equipped with a family of Hamiltonian G actions, and assume G is compact
and connected. We will denote the action by ®4(m,z) for ¢ € G, (m,z) € E. Let dg denote
normalized Haar measure on G, and let o be a tensor field defined along (not necessarily on) a G
invariant submanifold of £. The average of ¢ over G is the tensor field of the same type defined
by (o) = [, ;0 dg. Observe that if o is G-invariant, which means that ®;0 = o for g € G, then
(o) = 0. Conversely (o) is itself G-invariant by the translation invariance of Haar measure, so that
(o) = o implies ®;0 = 0. Note that the map o + (o) is R linear, and in fact linear over the ring of
G-invariant functions.



Let v € T;, M and let v ® 0 denote the vector field along FE,, whose value at (m,z) is (v,0) €
Tim,a) E. (ie. v @0 is the horizontal lift of v by the trivial connection on 7p : M x P — M.)

Definition 2.2 The Hannay-Berry (HB) connection is the Ehresman connection on pyf|E : E — M
whose horizontal lift is given by

Hor (. 2)(v) = (v & 0)(m, z).

Note that if the G action is independent of m, then @ (v @ 0) = v @ 0 whence (v ® 0) = v ® 0, and
the HB connection is trivial in this case.

The motivation for this definition comes from the example of the previous section. Consider
a parameter dependent integrable system with local action angle variables (I,80). The following is
proved in [14,16].

Theorem 2.1 If (dyI) = 0, then for sufficiently small loops, the holonomy of the HB connection
is the Hannay angles.

Remark. Sufficiently small in this case means that the loop must lie in a region in M over which the
m dependent action-angle coordinates can be consistently defined. Thus the HB connection serves
to generalize the Hannay angles to non-integrable systems which admit a family of Hamiltonian G
actions.

For m € M define P(m) :={z € P | (m,z) € Ep} = 7wp(Ep)-

Definition 2.3 Let the bundle wpy: E C M X P — M be equipped with a family of Hamiltonian G
actions, with parametrized momentum map 1 : E — g*. A Hamiltonian connection for this family
is an Ehresman connection on mwp|E satisfying:

1. DI =0, where D denotes the covariant differentiation operator.

2. For each v € T, M, there is a function K-v € C*®°(P(m)) such that the horizontal lift is given
by
Hor(;, 2)(v) = v ® Xk.(7),

for z € P(m).
3. (K- v) is a constant, which can be taken to be zero.

Property (1) says that I is constant along the horizontal lift ¢(t) = (m(t), z(t)) of a curve m(t) € M.
By (2), the parallel transport equations are

' (t) = Horyyy - m'(t) = m/(t) © Xg.pm(r) (2(2)),

so that
' (t) = X (1) (2(2))-

Thus z(t) is the flow of a time dependent Hamiltonian vector field on P(m(t)). One says that
parallel transport is Hamiltonian. Regarding (3), note that by (2) (K-v)(m,z) need only be defined
up to an additive constant. Thus we may replace K -v by K - v — (K - v) which has average zero.

If Z € X(M) we can regard K - Z as a function on E which is defined up to addition of a smooth
function on M. The map Z — K - Z can clearly be taken to be linear. The operator K is thus
a one-form on M taking values in the ring C*°(E)/C*°(M), and determines the connection. K is
called the Hamiltonian one-form for the connection. The following is proved in [14,16].



Theorem 2.2 A family of Hamiltonian G actions admits a Hamiltonian connection if and only if
the adiabatic condition (dpI) = 0 holds. Furthermore, if such a connection ezists it is unique and
equals the Hannay-Berry connection. In particular the HB connection is Hamiltonian.

Let v € TmM and ¢ € g. Using (2) of the definition, we have DI¢ - v = dI¢ - Hor(v) =
dI¢ - (v® Xk.p) = dyI8 - v+ dplé - Xi.py = dpsI6 - v+ {I§, K - v}, so by (1), K - v necessarily satisfies
dyIé - v + {I¢, K - v} = 0 for each ¢ € g. This PDE is not sufficient however, to determine the
function K - v. Instead we have

Proposition 2.1 Suppose one can find a function K -v € C®(P(m)) such that for all £ € g
(2) dyIé v+ {I§, K - v} = 0.
ThenK-v=K-v — (I~( v ) is the Hamiltonian 1-form for the HB connection.

We say that K - v almost generates parallel translation. This proposition provides a procedure
for calculating the horizontal lift operator, which is sometimes more feasible than computing Hor - v
directly from its definition. This is because it is easier to average a function than a vector field. (For
the latter, one must differentiate the group action &, : E — E, g € G with respect to z € P(m).)
Of course we have the added step of solving (2), but this PDE is sometimes quite simple.

If the family of Hamiltonian G actions admits additional symmetries the above procedure sim-
plifies considerably.

Proposition 2.2 Suppose another Lie group H, with Lie algebra b, acts on P in a Hamiltonian
manner with equivariant momentum map J : P — h*. Suppose also that H acts on M in such a
way that the corresponding diagonal action h - (m,z) = (h-m,h-x), h € H, preserves I1: E — g*.
Then the action of K on vectors tangent to the H orbits in M is given by

Ky =37 - (37),
where ) € b, and npr denotes the infinitesimal generator of the H action on M.

Propositions 2.1 and 2.2 will be our main tools for computing the Hamiltonian one-form K for
the rigid body. Their proofs can be found in [16].

2.3 Curvature of the HB Connection

Recall that the curvature of an Ehresman connection is the vertical bundle valued two form
given by the covariant derivative of the connection one form. (See [14] for a concise treatment of
Ehresman connections.) The curvature induces a two form on the base (also called the curvature)
by composition with the horizontal lift operator. Maintaining the notation of previous sections, let
curv(Vy, V5)(m, z) denote the curvature of an Ehresman connection on mpy : E C M x P - M
applied to V1, V5 € T(s, ) E, (m,z) € E. The induced form is then

Q(v1,v2)(m, z) = curv(Hor - v1, Hor - v)(m, z),

where v1,v9 € T, M.
For the HB connection the form  is Hamiltonian in the following sense.

Theorem 2.3 Let m € M and vi,vy € T, M. Then there is a smooth function Q(vi,v9) : Epy — R
such that

Q(Ula ’UQ)(?TL, iI") = XQ(m,w) (ma IE)

Q is given by
Qv1,v2) = {K-v1,K - v2}).



The proof can be found in [14,16]. We will abuse the terminology slightly and call Q the curvature
of the HB connection.

Remark. Q(vy,v2) is defined only up to addition of a constant, so for Z1, Zs € X(M), Q(Z1, Zo) is
a smooth function on E defined up to addition of a smooth function on M. Thus €2 is a two-form
on M taking values in the ring C*°(E)/C*®(M).

3 Rigid Body Dynamics

In section 3.1 we review the necessary facts concerning the dynamics of rigid body motion,
including the solutions to the Euler equations which will be needed for later calculations. The
reader familiar with the basic material may safely skip §3.1 or just skim to establish notation. §3.2
presents a complete set of action integrals for the rigid body, including one which does not seem to
appear in the standard literature[1,2,12,13]. In §3.3 we study the space of inertia tensors.

3.1 The Euler Equations and Left Trivialization

The configuration space of the rigid body is the Lie group SO(3) consisting of 3 x 3 orientation
preserving orthogonal matrices. Each such matrix represents a rotation of the body in space from
a fixed reference configuration. Let {E;, E2,E3} denote a coordinate frame in R? attached to the
body, and let {e;, e, e3} be an inertial frame. The origin of both frames coincides with the center
of mass of the body. The phase space of the rigid body is the cotangent bundle T*SO(3) which
is naturally diffeomorphic to SO(3) x R?® via the body coordinate system, or left trivialization of
T*SO(3). For (g,z) € SO(3) x R?, g represents a configuration of the body and z represents the
angular momentum as seen from the body fixed frame {E;}. We also identify the Lie algebras
(so(3),[ , ]) and (R?, x) via the map a € R® — a € so(3), where @b = a x b for any b € R*. One
checks that ga = gag~! for a € R, g € SO(3). SO(3) acts on SO(3) x R? by g - (h,z) = (gh,z)
for g,h € SO(3), z € R®, which is the cotangent lift of the left action of SO(3) on itself given by
left multiplication. Thus a function on SO(3) x R? is left invariant exactly when it depends only on
z € R3. The Poisson bracket of two left invariant functions fi, fo is given by

{1, f2}(2) = —(2, Vf1(2) x V fa(2)),

which is the standard left Lie Poisson structure on R*[15]. The Hamiltonian vector field of a left
invariant function is

—

X1(9,2) = (9-Vf(2),2 x V[(2)).

We denote by @{ (9,2) the flow of X; with initial point (g,z). The infinitesimal generator of the

lifted left action corresponding to & € R? is €p(g, 2) = % 1o P t€ - (g,z) = (€g,0). The equivariant

momentum map J : P — R? for the lifted left action is given by right translation to the identity[1,15],
which is J(g, z) = gz in body coordinates. Its value is the angular momentum of the system as seen
from the inertial frame {e;}. Thus X j(g,2) = (£g,0), where Jé(g, 2) := (I(g,2),€) = (gz,€), and
the Hamiltonian flow of J¢ is given by <I>;5I§ (g9,2) = (exp té- g, z).

The rigid body Hamiltonian is the left invariant function H,,(2) = 3(z,m~'z). Here m denotes
the inertia tensor, a positive definite symmetric matrix. If m is diagonal with respect to {E;, Ey, E3},
say m = diag(A1, A2, A3), then



with coordinates z; relative to {E;}. The ); are the principal moments of inertia, and the vectors E;

are the principal axes. One finds that Xy (g,2) = (¢- 77—1\,2, z x m~'z). Thus the flow ®/™ (go, zo)
of Xy, is obtained by solving:

(3) Z=zxm 'z
and .
(4) g =9g- m_lza

with initial conditions g(0) = gy and z(0) = zp. Equations (3) are the Euler equations for a rigid
body, and their solution, z(t), is called a reduced trajectory. The solution of (4), is called the
reconstructed trajectory, and gives the attitude of the body with respect to the inertial coordinate
frame. (See [1,15] for a discussion of Lie-Poisson reduction and reconstruction.) A fixed point of (3)
corresponds to steady rotation of the body about its spatial angular momentum vector.

In the calculations that are to follow we will need the explicit solutions to the Kuler equations
(3). Assume that \; > Ao > A3. The functions H,, and J are conserved so r = ||J(g,2)|| and
¢ = Hp,(z) are constant along the solutions of (3). Thus z(t) lies in the intersection of the sphere
S2 = {2z € R | ||z|]| = r} and the ellipsoid H,,!(c) for all t. If the body is spherical (A; = Ay = A3)
then S? = H,,'(c) and each point on S? is a fixed point of (3). If Ay = Aa > A3 then H,,'(c) is an
ellipsoid of revolution and the equator S2N{z € R?® | z3 = 0} consists of unstable fixed points, while
the poles {+rE3} are stable fixed points and the remaining points of S? lie in closed orbits. This
case (as well as the case A\; > A9 = A3) is known as the axially symmetric body.

Now assume that the body is asymmetrical (i.e. A1 > Ao > A3.) One checks that the condition
S2N H(c) # 0 implies A\; > r2/2¢c > A3. If r2/2c = Ay or A3 then S2 N H_'(c) = {£rE1} or
{£rE3} which are the stable fixed points of (3). If 72/2c = Ay then z(¢) lies in one of the planes
23 = /21 Or 23 = —/n 21, where 1 = A3(A1 — A2)/A1(A2 — A3). We call these the separatriz planes.
They intersect the sphere S? in the two unstable fixed points {£rEs}, and in the four heteroclinic
orbits, which connect the two unstable equilibria. If A > Ao > 72/2¢ > A3 or Ay > 72/2¢ > Ao > A3
then S? N H,.'(c) consists of a pair of closed orbits on the sphere.

In the case A\; > Ao > r2/2¢ > A3 the solution is given by

z1(t) = Pen(s(t —to), k)
(5) z9(t) = —Qsn(s(t —ty),k)
z3(t) = =£Rdn(s(t —to), k),

where P, Q, R, s, k are positive and satisfy
)\1(7‘2 - 26)\3)

)\2 (7‘2 - 26)\3) )\3 (26)\1 - 7‘2)

2 2 _ 2 _
(6) P = (O — A3) @ = (A2 — A3) = (A1 = As)
82 _ (AQ — )\3)(2CA1 — 7‘2) k2 _ (Al — )\2)(7‘2 — 20/\3)
A1A2A3 - (AQ — A3)(20A1 — 7‘2) ’

Here cn(-, k), sn(-, k), dn(-,k) denote the Jacobi elliptic functions of modulus k. The constants
r,c,top and the sign in z3 are chosen in accordance with initial conditions. The solutions (5) are
periodic with period T = 457! K (k) where K (k) = fgr/Q(l — k% sin? $)~/2d¢ is the complete elliptic
integral of the first kind. For the solution in case A\; > r2/2c > Ay > )3 the reader is referred to
Lawden[13] or [18]. The group equations (4) can also be solved explicitly by transforming to Euler

angles on SO(3). Details can be found in Landau and Lifshitz[12] or Lawden[13].
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3.2 Action-Angle Coordinates

Here we obtain a complete set of independent action integrals: I = (I3, I, I3). We refer the
reader to [18,19] for the proofs of the following facts. Let I1(g,z) := (J(g,2),e3) = (gz,e3) and
I>(g,2) := ||J(g, 2)|| = ||#||- One verifies that I;, I, and H,, Poisson commute. Note the definition
of I, is arbitrary in that we could have taken I; = (J,u) with u any unit vector in R®. We
choose u = e3 merely for definiteness. This ambiguity implies that a typical trajectory lies on many
different invariant 3-tori in the phase space SO(3) x R?, and hence on their intersection, an invariant
2-torus. Therefore the system has a resonance which is independent of initial conditions. Define
f = (1,1, Hy): SOB) xR — R® and let

W :={(g,2) € SO(3) xR® | gz x e3 #0, and z x m™ 'z # 0}.

Observe that W is the complement of the set of points at which the spatial angular momentum
vector is parallel to ez or the body angular momentum is parallel to one of the principal axes. W
is open and dense in SO(3) x R®. It can be shown that f|y is a submersion so that f defines a
completely integrable system.

We now remove those points (g,z) € W for which f~1(f(g,2)) N W is non-compact. Recall from
§3.1 that the separatrix planes in R® are given by 22 = nz?. Define

Ui(m) = {2€R| 22 <nzt}—{z axis} = {z € R® | Ay > r?/2c > Ao}
Us(m) = {z€R®|z}>nzl} — {2 axis} = {z € R® | Ay > r?/2¢c > A3},

where 7 = ||z|| and ¢ = H,,,(2) as in §3.1. Thus U;(m) C R® is open and consists of all closed orbits
which encircle the z;-axis (1 = 1, 3). The connected components of U;(m) are

Ut(m)={z € U; | z >0} and U~ (m)={z¢€U |z <0}

] ]

Define the projection 7 : SO(3) x R® — R®, (g,2) = 2z, and set P (m) = n~"(UE(m)) N W, for
i = 1,3. Each P¥(m) C SO(3) x R? is connected and open. Let

P(m) = P;"(m) U P, (m) U Py (m) U Py (m).

It can be shown that f|P(m) is a proper submersion and in fact each level set of f in P(m) is a
disjoint union of two Liouville tori (one in P;" (m) the other in P, (m), i = 1 or 3.) Also each P (m)
admits a single action-angle chart [18].

The Hamiltonian vector fields for I; and Iy are

R z
XIl (gaz) = (elga O)a and XIZ(Q,Z) = (gMa()) )

with flows ®!'(g,2) = ((expté1)g,z) and ®[*(g,2) = (gexptﬁ,z) = ((expt%)g,z), which are
27 periodic. In [18,19] it is shown that a third action integral is given by
A(z)

I =
3(972) 27!'”2’”

(2 € Ui(m)),

where A(z) denotes the oriented surface area enclosed by the periodic trajectory of (3) passing
through z € S? (r = ||z||.) Note that the curve S? N H,.'(c) actually encloses two regions on the
sphere. We take the region contained in one of the sets Uii(m), i.e. the enclosed area does not
contain any separatricies. The orientation is given by the direction of the orbit.

It is known that for one degree of freedom systems, an action integral is given by (27) ! times the
symplectic area enclosed by a periodic orbit through a given point. In fact I35 above is an example
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of this. Applying Marsden-Weinstein reduction[1,15] to J=(u) C SO(3) x R? for u a regular value
of J, one obtains the reduced manifold S? with reduced symplectic form r—! times the standard
oriented area form on S2. Thus I3 is an action integral for the reduced system.

Observe I; and I do not depend on m € M so that dyI1 = dprlo = 0. One can show directly
that (darI3) =0 so that I = (I, I1, I3) satisfies the hypothesis of Theorem 2.2.

3.3 The Space of Inertia Tensors

Let M; be the set of all possible rigid body inertia tensors, i.e. real positive definite symmetric
matrices whose eigenvalues satisfy A; + A; > Mg (4,7,k cyclic.) M; is an open subset of the six
dimensional vector space of 3 x 3 symmetric matrices. Observe that the elements of M; are in
one to one correspondence with the ellipsoids in R* which are the level sets of the corresponding
quadratic forms. It will be very helpful to keep this identification in mind when considering loops
in the space of inertia tensors. Let ¥ C M; be the set of matrices with exactly two distinct
eigenvalues and ¥’ C M; those with just one eigenvalue. ¥ and ¥’ are (regular) submanifolds of M
of dimensions four and one respectively (see Arnold[2] Appendix 10) and are therefore closed. The
set M = M; — (2 UY') of matrices with three distinct eigenvalues is thus an open submanifold of
M;. M will be the parameter space in our problem.

There is a natural (trivial) fibration of M which will figure heavily in our calculation of the
HB connection for the rigid body. The fibers are orbits of the conjugation action of SO(3) on
M: m +— gmg !. In other words each fiber consists of all m € M with a fixed set of (distinct)
eigenvalues. The base of the fibration (or rather any section parallel to the base) consists of all
m € M which are diagonal with respect to a fixed set of principal axes. Thus we may write

M=~BxF,

where
B={X€eR |\ > >A3>0and )\ +\; > X\ (4,4, k cyclic)},

and
F = S0(3)/{diagonal matricies}.

It can be shown [18] that the homotopy group of F' is the quaternion group {+£1, £i, £j, £k} where

i, 7, k satisfy i? = j2 = k> = ijk = —1.
Sk ok ok sk sk sk sk ok sk sk sk sk sk ok sk skook skesk skook sk sk sk okosk skesk ok

In general gmg ™! is diagonal for some g, and SO3)gmg—1 = 9-503)m - g~ Y. Thus all isotropy

groups are conjugate. It follows from a standard result of the theory of compact group actions
(Corollary 2.5 p.309 of Bredon[5]) that

Lemma 3.1 M/SO(3) is a smooth manifold and the canonical projection w: M — M/SO(3) is a
locally trivial fiber bundle with typical fiber SO(3)/G).

In fact, as we’ll see, M/SO(3) is contractible and hence 7 is globally trivial. Define 7 : M — B
by m — A = (A1, A2A3) where \; (1 <4 < 3) are the distinct eigenvalues of m taken in descending
order. Note that 7p is clearly onto and smooth since the eigenvalues are smooth functions of m. Since
the action preserves eigenvalues, mp drops to a smooth function on the quotient. That is, we have
a smooth function ¢ : M/SO(3) — B satisfying ¢ o # = wg. We claim that ¢ is a diffeomorphism.
Observe that mp admits a smooth section o : B — M, A = (A1, A2, A\3) — diag(A1, A2, A3). Write
[m] = mw(m) for the equivalence class of m € M, so that ¢([m]) = wg(m). Then (7 o o) o ¢([m]) =
m(oomg(m)) = w(m) = [m]. Also ¢po (mo0o) = mg oo = identityg, whence moo : B — M/SO(3) is
a smooth inverse to ¢. This shows that M/SO(3) B, and in fact that = and mp are isomorphic

as fiber bundles.
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Theorem 3.1 7 : M — M/SO(3) is a trivial fiber bundle isomorphic to mg : B x F — B, with
F :=S0(3)/Gy. The fiber has homotopy group m1(F) = Q, where Q is the quaternion group.

Proof: The first statement follows from Lemma 3.1 and the preceding discussion. For the second
statement, let H denote the quaternions and identify S C R* with the quaternions of unit length.
The quaternion group is Q = {£1,+i,+5,+k}. If ¢ = qo + q1i + g25 + g3k € H, its conjugate is
d = qo — q1% — goj — g3k, and its squared length is |g|?> = ¢g. The covering projection p : 3 — SO(3)
is defined as follows. The map H — H, = + qzq, = € H, g € S° is orthogonal since it preserves
lengths. It also preserves the purely real quaternions, and so also their orthogonal complement,
span{i,j,k} = R3. Let p(q) € O(3) be the restriction of this map to R3: p(q) - v = qug, for
v = 14 + v2j + v3k € R3. The matrix of p(q) is computed to be

2@ +a}) -1 2(q1g2 — qoa3) 2(q1a3 + qoq2)
(7) p(q) = | 2(q192+q093) 2(g§ +43) — 1 2(q2g3 — q190)
2(q193 — q092) 2(q2q3 + qoq1) 2(q3 +43) — 1

We see that det(p(q)) = 1, whence p(q) € SO(3), and p is clearly smooth. Since dim(S®) =
dim(SO(3)) = 3, invariance of domain implies p is onto. For ¢, p € S% and v € R® we have
plgp) - v = qpvgp = q(pvd)q = p(q) o p(p) - v, showing that p is a homomorphism. From (7) we
obtain ker(p) = {1,—1} C @, and p(Q) = Go. Thus the surjective homomorphism p : 3 — SO(3)
induces a diffeomorphism 5 : $2/Q — SO(3)/Gy of quotient manifolds, showing that F = $3/Q.
Now the natural projection $2 — $2/Q is a bundle with discrete fiber . The long exact sequence
of homotopy groups arising from this fibering (see Gray[9]) is

- = 11 (5°/Q) = m(Q) = ma(S?) = T (S7/Q) = Ta-1(Q) = -+,

which leads to 0 — 71(5%/Q) — m(Q) — 0, since m1(S3) = mp(S?) = 0. Thus m(S3/Q) = 7(Q)
and since @ is a discrete group, m(Q) = Q. Therefore 71 (F) = @ and the proof is complete. ///

Under the identification M = B x F, the orbits F) := SO(3) - o(A\), A € B, correspond to the
fibers {\} x F = $3/Q which are compact. Note that since B is contractible, M contracts onto
a single fiber F, and hence m (M) = m(F)) = Q. We can realize the isomorphism @ — 71 (F))
explicitly as follows. Define ; to be the constant curve at o(\) € Fy and

v-1(t) = exp(tf) - o() (0 <t <2m),
yi(t) = exp(£tEr) - o(N) (0<t<m),
15(t) = exp(£tEz) - o()) 0<t<m),
vik(t) = exp(:ttEg) a(N) (0<t<m)

In the definition of 7_; we may take ¢ to be any unit vector in R3. (If we choose some other
unit vector n € R3, then since t — exp t£ and t — expti are homotopic in SO(3), the loops
t > expté - o(N) and t — expti - o(A) are homotopic in F).) The isomorphism @ = 71 (F)) is then
given by a € Q — [vy,], where [y,] denotes the homotopy class of 7,. We shall be interested in
calculating the holonomy of the HB connection on loops belonging to these classes.

4 The Hannay-Berry Connection for the Rigid Body

As before {e1, e, e3} and {E1, Es, E3} denote inertial and body frames in R?® respectively. How-
ever, we will not always assume that {E;} diagonalizes m. It will be necessary to consider a third
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frame, denoted by {£1(m), E2(m), E3(m)}, which diagonalizes the inertia tensor. Note that this basis
cannot be defined in a consistent manner along certain non-contractible loops in M; namely those
corresponding to the quaternions ¢, j, k under the isomorphism of the last section. When considering
loops m(t), we will take {E1, E2,E3} and {&1(m(t)), E2(m(t)),E3(m(t))} to coincide initially. We
define the sets Uii(m) C R3 and Pii(m), P(m) C S(3) xR (i = 1,3) just as in §3.2 except that all
coordinates are taken relative to the diagonalizing basis {&;(m)}. If for instance, the inertia tensor
is rotated by 7 about E; (which is a loop corresponding to i € Q) then U;"(m) and U; (m) change
places while U;"(m) and U; (m) return to their original positions. Similarly such a loop causes
P (m) and P; (m) to interchange while P;"(m) and P, (m) return. Examination of other examples
reveals that the orbits of the connected components {P;"(m), P; (m), P (m), Py (m)} of P(m)

under the action of m; @0)mjettioned in the example of §2.1 are precisely
{P"(m),P{ (m)}  and  {Pj (m),Py (m)}.

In some of the subsequent calculations we restrict our attention to the orbit {Pi(m)}, i.e. we
consider initial conditions z € R® satisfying A1 > Ao > r?/2c > A3. The reader is referred to [18]
for the other cases. Define E := {(m,g,2) | (g,2) € P(m)} C M x (SO(3) x R®). Note that the
T3 action on 7y|E : E — M given by the parameter dependent integrable system H,, forms a
family of Hamiltonian group actions by the example of §2.1. We consider the HB connection on
mu|E: E — M.

4.1 The Hamiltonian One-Form, Case I: v € TF),

In this section we compute the Hamiltonian one-form in the direction of vectors tangent to the
orbits F), of the SO(3) action on M from §3.3. To do this we appeal to Proposition 2.2 which gives
K - &p(m) in terms of a momentum map for an SO(3) action on P(m).

Consider the left SO(3) action on SO(3) x R® given in body coordinates by

(8) h- (g,Z) = (gh_lahz)a

for h € SO(3). This is the cotangent lift of the left action on SO(3) given by right multiplication by
h~!. We remark that this action commutes with the lifted left action. For ¢ € R?, the infinitesimal

generator is {p(g, z) = ¢ @|,_, P t€-(g,2) = —(g€, 2 x £). Define L : SO(3) x R® — R?, by L(g, ) =

@ |y
—z. Then L(g, z) = — (¢, 2) so that VL& = —¢, and hence by §3.1 Xp¢(g,2) = (g- VL, 2 x VLE) =
¢p(g,z). Thus L is a momentum map for the action (8). One checks that L is equivariant with
respect to (8) and the usual action of SO(3) on R®.
To utilize Proposition 2.2 we must first check that the actions I = (I, I, I3) for the rigid body
are invariant under the corresponding diagonal action on E C M x (SO(3) x R3):

(9) h - (maga Z) = (hmhilagh’ila hZ),

for h € SO(3), m € M, (g,z) € P(m). Recall that I; = (J,e;1), and Iy = ||J|| do not depend on the

inertia tensor m. One verifies that J is invariant under (8) whence Iy, I5 are invariant under (9).

To check the invariance of I3 we first note that the energy H(m,z) = 3(z,m~'z) is invariant:

1 1
H(hmh™, hz) = 5 (h2, (hmh™1) " hz) = 5 (h2, hm™1z) = H(m, z).

Thus the original integrals in involution f = (I, I, H,,), are invariant under the diagonal action
(9). We noted in §3.2 that the value of I3 is 1/27r times the oriented area of the spherical cap
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enclosed by the curve S? N H,'(c). Observe that replacing m by hmh~!, h € SO(3) has the effect
of rigidly rotating the level sets of H about the origin, i.e.

H 1 _(c)=h-H,'(c).

This rotation does not alter the area of the spherical cap, and therefore I3 is invariant as required.
The invariance of I = (I, I, I3) under the diagonal action together with Proposition 2.2 yields

Lemma 4.1 The Hamiltonian 1-form acting on vectors tangent to the SO(3) orbits in M is given
by K- &pr(m) = LE — (L), for m € M, & € R3.

We remark that K -&7(m) is a left invariant function on P(m) since L¢ is. The following lemma
will facilitate the computation of the average (L¢). We shall see that for left invariant functions the
averaging operation (over the T? action) can be replaced by the time average over the rigid body
dynamics.

Lemma 4.2 Fiz m € M and suppose F : P(m) — R is continuous and left invariant. Let ;'™
denote the flow of the Euler equations (3) in R® with period T, and define

< Hm : T / (I>Hm dt.

Then (F) = (F)q,,-

Proof: Let (-)p2 denote averaging over the T? action generated by the flows of I and I3. Since F
is left invariant, it is invariant under the Hamiltonian flow of I;:

®;'(g,2) = ((expté1)g, z) .

By Fubini’s Theorem we have immediately that (F') = (F)r2, so we must show that (F)p2 = (F)g,, .

Let w; denote the frequency of rigid body motion with respect to the angles #; conjugate to I;
(1 =1,2,3.) If the initial point z is such that wy/ws is irrational then the flow of Hy, is a dense wind-
ing on the 2-torus parametrized by 65, 605. Since in this case we know that the time average equals
the space average (see Arnold[2]) we have (F);2(z) = (F)g,,(2). Its clear that (F);2 and (F)g,,
are continuous functions so to show they are equal its sufficient to show they coincide on a dense
subset of P(m). Thus we must check that ws/wj is irrational for a dense set of initial conditions. In
[18,19] it is shown that we/ws is real analytic being given by a combination of algebraic operations
and complete elliptic integrals. Thus the critical points of ws/ws are isolated and therefore any
neighborhood of (g, z) € P(m) contains a regular point of wy/ws, and hence also a point at which
wy/wsg is irrational. ///

Remark. In general the time average of a function is defined as

1
lim — [ F(@f"(g,2)d,

T—00 T 0

which is not continuous. The key point in the last lemma, is that by left invariance of F' one need
only consider a reduced trajectory, which is periodic. The result of averaging such a function over
a period is continuous.

The next result shows that the operator K is invariant under a certain SO(3) action.

Lemma 4.3 Let E € R, m € M, z € U(m), and h € SO(3). Then

(K- (R e (b)) (h2) = (K - Ear(m) (2).
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Proof: Since L (hz) = —(h¢, hz) = —(h,z) = L&(z), we need only show (L")(hmh~! hz) =
(L&) (m, z). Note that even though L¢ does not depend on m, its average does, since the T3 action
we average over does. By Lemma 4.2 its sufficient to show (L") o, , (hz) = (L& w,, (2).

With a slight abuse of notation let ®/™ (z) denote the flow of the Euler equations (3) in R® with
energy H,, and initial point z € U;(m), i = 1 or 3. The flow satisfies @f’bmh_l (hz) = h- @, ™(2),
i.e. by rotating a given trajectory by h € SO(3), we obtain a trajectory for the system with rotated
inertia tensor and rotated initial point. Thus

LM (@, (h2)) = —(he, h- B (2)) = (€, Bf™(2)) = LE(@{ (2),

and therefore | T
H,_ ., _
(i 1 (02) = 5 [ T@7 ()t = (L), (2),

as required. /1]

As a consequence of Lemma 4.3 we need only calculate K-&ys(m) for m which are diagonal with
respect to the fixed basis {Ej, Eo, Es}. If we set m = o(\) = diag(A1, A2, A3), A € B, then

(10) (K- ar(hoh™) () = (K- (b7 m(c(V)) (h™'2)

for any h € SO(3). Note that z € U(ha(A\)h™!) = h-U(c()\)) implies b~z € U(a(\)), so the right
hand side is defined whenever the left is.

Proposition 4.1 Letm = o()\), A € B, z = (21,22, 23) € U;(m), i = 1,3, and & = (£1,&2,63) € R3,
with all coordinates relative to {E1,Eq, E3}. Then

(K- &nm(m)) (2) = Gi(2)&i — (£, 2) for z € Us(m),

where
() emy/ 23 + 23 ) emy\/vza + 22
)= —Y——— = =V = °
! 2K (k1 (2)) 3 2K (k3(2))
_ A1(A2 — A3) _ A3(A1 — A2)
u = — — . B ———
Aa(A — A3) A2(A1 — A3)
2 2
C2Z5 + €323 _1
k =45 —5=k
1(z) clz% + czzg 3(z)
and
c1T = )\2)\3 )\1

Cr = Al/\g Al - )\2)(A2 - Ag)

( A2)(A1 — A3)
(

Cc3 = Al)\Q(AQ Ag)()\l — Ag).
)

Also € = +1 according to whether z € U;"(m) or U7 (m), and K (k) denotes the complete elliptic
integral of the first kind[6].

Proof: By Lemmas 4.1 and 4.2 we have (K - £37(m)) (2) = L&(2) — (L&) (m, 2) = — (&, 2)— (L) g, (2),
so we must show that the identity

(11) (L) m,, (2) = —&Gi(2).
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holds for z € U;(m), i = 1,3. As in the previous proof let ®/'™(z) denote the solution to the Euler
equations (3) with initial point z. For z € U;(m), ®™(z) is periodic with period T', whence

1 1

T T 1 /T
W) = 7. [ 1@l = [ (eatr @) a= (e, 7 [ atinyar)
Hence (11) is satisfied if and only if
1 rT
(12) " /O O™ (2) dt = Gi(2)Eq

for z € Uj(m). Now @, ™(z) = z1(t)E1 + 22(t)E2 + 23(t)E3 is given by (5) for the initial point
z(0) = z € Us(m). In this case we have

/OT 2(t) dt = /OT () dt = 0,

since cn(-, k) and sn(-, k) have average zero over one period. Thus

T T
e = (% [0 dt) B

Let R,s,k,e be as in (6), then

1 (T eR (T eR 4K (k)
’f/o ad = [ dn(s(t—to),k)dt_mfo An(u, k) du = g0

In the second equality above we have set u = s(t —ty) and used 7' = 4s ' K (k). Using (6), r = ||z|,
and ¢ = H,,(z), we obtain

2 2
c12] + c%

R? =vzs + 23 and B = "2 = k3(2)”.
c2zy + 323

Therefore
m/uz + 22
/ 23(t) dt = 22 Gy(2),

T 2K (k3(2))
proving (12) and hence (11) for i = 3. We omit the case i = 1 and refer the reader to [18] for further
details. /]/

Proposition 4.1 and Equation (10) yield

(13) (K- ép(ho(W)h™)) (2) = Gi(h ™" 2) (€, hEy) — (€, 2)

for any h € SO(3) and z € U;(ha(A)h™1), i = 1,3. Equation (13) now gives the expression for
K - &y(m) for any m € M.

4.2 The Hamiltonian One-Form, Case II: v € TB

Our goal in this section is to compute K - v for vectors v € TM tangent to B under the
identification M = B X F in §3.3. These are vectors tangent to curves in M along which the
principle axes of inertia remain fixed and the moments of inertia are allowed to vary. Throughout
we assume m is diagonal with respect to the fixed frame {Eq, Eq,E3}, i.e m = o()), A € B.
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If we solve the system
(14) dulj-v+{[;;K-v}=0 (1<j<3)

for the unknown function K - v, then by Proposition 2.1 we may take K -v = K- v — (K - v). Recall
that I; = (J,e1), and Iy = ||J|| do not depend on the parameter m so dyl; - v = 0 for j = 1,2.
Thus (14) reads
{,K-v} = 0
{I,K-v} = 0
dnls-v+ {15, K- v} = 0

The first two equations imply that K - v is constant along the flows ®/'(g,z) = ((expté1)g,z) and
(g, 2) = (g exp tﬁ, z) If we assume that (K-v)(g, z) is left invariant then the first two equations

are automatically satisfied. Therefore it is sufficient to find a smooth function K - v, depending only
on z € U;(m), which satisfies the single equation

(15) {K-v,I3} =duyls - v.

Now recall that I3 = A/27r where A is the oriented spherical area enclosed by one of the periodic
trajectories of (3). If z € Us(m) we see form the direction of the trajectories (5) that A = —|A],
where |A| denotes the strictly positive area. A straightforward calculation yields

4] _// PQr dxdy
o D V12 — P22% — Q%2

where D C R? is the unit disc, and P?, Q? are given by (6) (This area integral can be written as a
combination of complete elliptic integrals[18].) Thus for z € Us(m)

_ _L// PQdxdy
m D /12 — P22 — Q%2

Using 72 = 22 + 23 + 23 and 2c = 22 /A1 + 23 /Ay + 23 /A3 we have

P2 :Z%Jrllzga and Q _:u'_lZ% +227
where g1 = A1 (A2 —A3)/A2(A1 — A3) is as in Proposition 4.1. Now one checks that g = 1/(1+n) where
n = A3(A1 — X2)/A1(A2 — A3) gives the slope of the separatrix planes in R3. Thus I3(z) depends on
m only through 7 for z € Us(m). Similar arguments show the same is true for z € U;(m). Hence if
we let A € B vary along a level set of n = n()), then U;(m) and Us(m) are unchanged and I3(z) is
constant.

One checks that Vyn # 0 for all A € B. Since B is contractible it follows that n can serve as a
coordinate function on B. If we set 777 = 7, then there exist smooth functions 79,73 on B such that
the gradients V,7n; are linearly independent at each A € B. The coordinate vector fields 0/0n; are
then convenient directions along which to compute K - v.

Proposition 4.2 K -9/0n; =0 for j =2,3.

Proof: The preceding discussion implies that dysls - 8/0n2 = dpIs - 8/8773 = 0. Thus for v =
d/0n;, j =2,3, (15) reads {K - v, I3} = 0, which has the simple solution K - v = 0. Therefore

K.i:f{.i_<f<.i>:0
j onj



for 5 = 2,3, as required. /1]

For v = 8/0m1, (15) becomes
~ 0l
1 K-v, I3} =—.
(16 (®oo,1) = 50

Since K - v is left invariant we have by §3.1
{K-v,I3}(z) = — (2, V(K-0) x VIz) = (2 x VI3, V(K -0)) = D(K - v)(2),

where D is the linear differential operator D = (z x VI3, V). Thus (16) can be written as D(K-v) =
0I3/0m . It would be a formidable task to solve this linear PDE since its coefficients and right hand
side are elliptic integrals. Fortunately it is not necessary to know K - 9/91n; explicitly in order to
compute the holonomy of loops in B.

4.3 T? Averaging

The basis for the averaging principle is the fact that for multifrequency systems without reso-
nances, the time average over a dynamic trajectory can be replaced by the space average (Arnold[2]
Chapter 10). It was mentioned in the proof of Lemma 4.2 that the generic trajectories of the rigid
body are dense windings on the 2-torus parametrized by the angles 62, 03 conjugate to Is, I3. View-
ing this as a three frequency system, it has a proper resonance, while as a two frequency system it
is generically non-resonant. It would therefore seem more reasonable to study the HB connection
associated to the family of Hamiltonian T? actions induced by the flows of I, I5. In fact the results
would be identical to those already obtained, as we now show.

In calculating the Hamiltonian one-form in case I: v € T'F), we find that we must replace the
average appearing in the statement of Lemma 4.1 with the average over the T? action. But we argue
in the proof of Lemma 4.2 that since the momentum map L is left invariant, and hence doesn’t see
the flow of I, the T? and T3 averages of L coincide. Thus the Hamiltonian one-forms are identical
in this case. In case II: v € T'B, Proposition 2.1 indicates that we must simply remove the first
equation from system (14). Proceeding as before we find it is sufficient to solve the single equation
(15). The Hamiltonian one-forms are again identical. Since the Hamiltonian one-form uniquely
determines the HB connection, it follows that the connections associated to the T? and T? actions
are identical.

Observe however that the T2 action can be defined over a slightly larger region in SO(3) x R?
than can the T3 action. In particular there is no need to assure that dI; be independent of dI, and
dH,,, which means we can drop the requirement gz x e; # 0 in the definition of W C SO(3) x R3
(see §3.2). For m € M, set

W' ={(g9,2z) € SOB3) xR | z x m 'z # 0},

and define P(m) C SO(3) x R®, E C M x (SO(3) x R?) as in §3.2, with W replaced by W’'. Our
formulas for the Hamiltonian one-form, curvature, and holonomy are then valid on this slightly
larger bundle.

That these two actions give the same results ultimately derives from the arbitrariness of the
definition of the action I;. Recall we could have taken I; = (J,u) where u € R?® is any unit vector.
Then the corresponding action-angle charts do not cover points (g, z) at which gz x u = 0. The
different T actions (one for each choice of u) induce connections defined on bundles which exclude
different codimension one submanifolds of SO(3) x R3. The resulting formulas are the same in each
case, so we need not leave out any such submanifold.
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4.4 Curvature

We now turn our attention to calculation of the curvature form on M, described in §2.3. Recall
that for m € M, vy,vo € T, M,

(17) Qvr,v2) = {K-v1,K-v2})

gives the smooth function on F,,, whose Hamiltonian vector field is the curvature applied to Hor -
v1, Hor - v9. Throughout we assume m = o(\) = diag(A1, A2, A\3), A € B and identify M = B x F)
as in §3.3. We will calculate € on a conveniently chosen basis for T, M. Note that since the SO(3)
action on M is locally free, the map R® — T}, Fy given by & ~ £7(m) is an isomorphism, so that the
infinitesimal generators {(E;)au(m) | 1 < j < 3} form a basis of T}, F. We will use the coordinates
(m1,m2,7m3), described in §4.2 on B, and the coordinate vector fields {0/0n;,3/0n2,0/0ns} as a basis

on T,,B.
Define
F o= K. 2 1<i<3
Oni
Fi = K-(Bj)u(m) 1<j<3,
and

O = ({FLF}) 1<i<j<3
Q; = {F,F} 1<i<j<3
QO = ({FLFEY  1<i,j<3.

With these conventions we have

Theorem 4.1 Let G;, i = 1,3 be defined as in Proposition 4.1, z € U;(m), and A\ € B. Then

(18) onB:  { Q¥ =0B=012=),
( B —Gi(2) z€Ui(m)
os(2) = { 0 z € Us(m)
(19) on Fy: Q3(z) = 0

B 0 z € U(m)
Mia(2) = { —G3(z)  z € Us(m),

\

(20) cross terms: { Qg = Q? =0 1<j<3.

The terms Q1, Q3, Q3 remain unknown.

Proof of (18) and (20): Proposition 4.2 yields 7?2 = F3 = 0 while F! is unknown. Thus
{F,,F7} =0, 1 <i < j < 3, which proves (18). Also {F!,F;} =0fori=2, 3and1<j <3,
proving (20). ///

The presence of so many zero terms in the curvature suggests that there are many loops in M
with trivial holonomy. Since B is contractible, an immediate consequence is that the holonomy
about any loop lying in B is trivial. Thus the Hannay angles corresponding to any loop in M
consisting of inertia tensors which are simultaneously diagonalizable, are zero. This proves Theorem
1.2. To prove (19) we first establish two lemmas. It follows immediately from Proposition 4.1 that
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Lemma 4.4 For z € Ui(m), i =1,3

Fi(z) = { Gi(z) — =1 z € Uy(m)

—z1 z € Us(m)

Fo(z) = —22

. -z z € Uy(m)
Falz) = { G3:()’z) —23 zE€ U;(m),

where G and G3 are defined in Proposition 4.1.

Lemma 4.5 If z € Ui(m) then

{Fi, R2}(z) = —z+223f1
(21) {F1,F3}(2) = z+zzf
{Fo, F3}(z) = —=,
and if z € Uz(m)
{Fi,Fo}(z2) = —2
(22) {F1,F34(2) = 22+ 2023f3
{Fo, F3}(z) = —z1+ 2z123f4,

where f1, fo, f3, f1 are certain smooth functions of (22,22,22).

Proof: The Poisson bracket for left invariant functions is given in §3.1 as {F;, F; }(z) = — (2, VF; x
VF;j). Let z € U3(m), then by Lemma 4.4

VF = B
VF = —-E
VF; = VG3;—Es.
Now observe from the statement of Proposition 4.1 that G3(z) is actually a function of (27, 22, 22).
Hence VG3 = (2191, 2292, 23g3) for some smooth functions g1, g2, g3 of (22,23, 22). We compute:
VF xVF, = Ej
VFI xVFs = (2395 — 1)Eg — 2090E3
VF, xVF; = (1-2393)E1 + 2191E3,

whence
{Fi, P} (z) = —=z
{F1,F3}(2) = 22+ 2223(92 — 93)
{Fo, F3}(z) = —z1+z123(93 —g1)-

Observe that f3 := go — g3 and f4 := g3 — g1 are smooth functions of (27, 22, 22) as required. This
proves (22). Equation (21) is proved for the case z € U;(m) similarly. ///

Proof of (19): By (17) we must average the expressions in Lemma 4.5 over the T® action

induced by I, Iz, I3. Since in all cases {F;, F;} is left invariant, we may instead take the time
average over the rigid body dynamics. (See Lemma 4.2 and the remark immediately following.) Thus
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we substitute into the expressions (21) and (22) the appropriate solution to the Euler equations (3)
and average over one period of the motion.

We review a few facts concerning the Jacobi elliptic functions. (See Byrd and Friedman[6] or
Lawden[13] for additional details.) The functions cn(u, k), sn(u, k), (k* < 1), are periodic in u of
period 4K (k), while dn(u, k) has period 2K (k). Now cn(u, k) is an even function with respect to
the point u = 0, and odd with respect to u = K; sn(u, k) is odd with respect to u = 0, and even
with respect to u = K finally dn(u, k) is even with respect to both v =0 and u = K.

Let z € Us(m). Then combining the above information with (5) we see that z(¢) (with initial
point z(0) = z) has period T = 4s~ 1K (k); z1(t) is even with respect to t = 0, odd with respect to
t = T/4; z9(t) is odd with respect to ¢ = 0, even with respect to ¢ = T'/4; and z3(t) is even with
respect to both t =0 and ¢ = T'/4.

Now the integral of an odd periodic function over one of its periods is zero. We see from (22)
that {Fy, F3}(z(t)) is an odd function with respect to ¢ = T'/4, while {Fy, F3}(2(t)) is odd with

respect to t = 0. Hence ({F2, F3}) = ({F1,F3}) =0, and
1 T
-7/,

{F1, R} (2) = —(23)m,,, = z3(t) dt = —G3(2).

The last calculation was carried out in the proof of Proposition 4.1. Thus for z € Us(m)

Qgg(z) = 0
ng(z) = 0
ng(z) = —G3(z).

In a similar manner we obtain from (21) that for z € Uy (m)

923 (Z) = —Gl (Z)
Miz(z) = 0
Q12 (Z) = 0.
This completes the proof. /1]

4.5 Holonomy

As in the last section we identify M = B x F)\. We saw in the comments following Theorem
4.1 that if m(t) is a loop lying in B, then its holonomy is trivial; equivalently the Hannay angles
are zero. In this section we compute the holonomy of certain loops lying in F, A € B. These are
closed curves in M along which the principal moments of inertia remain fixed, while the principal
axes rotate about a fixed vector in R3. Throughout this section we consider curves of the form

(23) m(t) = (expté) - o(A) = (exp t&)o(A) (exp t&) ™"

where o()\) = diag(A1,A2,A3), A € B, and ¢ € R® with ||| = 1. These are integral curves of the
infinitesimal generator &y, i.e. m'(t) = &a(m(t)). Observe from §3.3 that if 0 < ¢ < 27 then
m(t) is a loop whose homotopy class corresponds to —1 € ) under the isomorphism of §3.3. If
¢ =+E;,+Eo, £E;3 and 0 < ¢ < 7 we have loops corresponding to +4,+7, +k € @ respectively. We
shall examine these cases in turn.

Let z € U;(m(t)), i = 1,3. Then by (13) and (23)

(K -m!(1)) () = (K- € (m() () = G ((exp 1) ') (&, (exp t6)Ba) — (€, 2).
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Thus .
(24) (K-m/(1) (2) = Gi ((expté) '2) & — (&, 2),

since expté € SO(3) is a rotation about . Note that U;j(m(t)) = expté - Ui(a())), so that
(expté)~'z € Ui(o()N)) as required by the definition of G; in Proposition 4.1.

The Hamiltonian vector field of K - m/(t) yields the parallel transport equations for the path
m(t), which we wish to solve. These equations are

§ = g(VE -m(t)(2)
(25) { = 2 x (VK- m/(8)(2)),

where V (K - m/(t)) (z) = (expt€)VGi((expté)~12)& — € for z € Ui(o(N)). System (25) becomes
autonomous upon going to a frame which rotates about &. Set

(26) y(t) = (expté) '2(t) and h(t) = g(t)(exp t€),
which we observe is just (expt€)~! acting by (8) on (g(¢), z(t)). Then (25) becomes
h = RVGi([)&
7
0 { i = ux VG

In the remainder of this section we take 7 = 3 for definiteness. (The case i = 1 is entirely similar.)
First consider the case ¢ € E3. Then ¢3 = 0 and the right hand side of (27) is zero. In fact (25) is
autonomous and can be solved directly. We have

(9(t), 2(t)) = (expt€) - (g0, 20)

using the action (8). For loops m(t), 0 < t < 27 given by (23) the holonomy is trivial. If £ =
+E;, 7 =1,2 and 0 <t < 7 the holonomy is

(28) (go,Zo) = (exp T‘-EJ) ' (g(),Z())-

Now consider the general case ¢ ¢ E;y. The proof of Proposition 4.1 shows that G3(y) is a
function of 72 = ||y||? and ¢ = Hy,(y) where mo = o()). Namely Gs(y) = Gs(c,?) = erR/2K (k),
where R, k, e are as in (6) and K (k) denotes the complete elliptic integral of the first kind. Define

0G 0G3
2 = &3— d =283 ——+.
(29) we) =650 and o) =2

(Note that u and v depend on ¢ only through &5.) Thus &VGs(y) = u(y)VHuy(y) +v(y)y =
(umg ' +vI)y, and (27) becomes

(30) h = h(umg! +vl)y
g = yx(umg® +ol)y.

Equations (30) are rigid body equations with “inertia matrix” umgy ' +vI. A calculation shows that
u/Aj + v is negative for j = 1,2 and positive for j = 3. Thus um ' 4 oI is non-degenerate but not
positive definite. The second equation in (30) reduces to

(31) g =u(y)(y x mg'y).

Note that w and v are constant along solutions to the Euler equations (3). It follows that the
solution of (31) is given by (5) with ¢ replaced by u(yo)t. Thus u and v can be treated as constants
(depending on yp) in (30).
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At this point we concentrate on (31). Let @f "0 (z) denote the solution to (3) with initial point

x € Us(myg). Then
Hm

is the solution to (31), and (26) implies that

(32) 2(t) = (expté) @70, (z0)

is the vector part of the solution to (25). (Note that yo = zp.) Thus the parallel transport of the
body angular momentum vector is a composition of the scaled Euler flow and a steady rotation
about £. The (vector part of the) holonomy of m(t), 0 < ¢ < 27 is then

(33) 20— @yt (20).

Notice that if £ € Ef; so that &3 = 0, then u = 0, making the above holonomy trivial. This coincides
with our earlier result. If ¢ = +E3, 0 <t < 7 the holonomy is

(34) 20+ (expwBs) B0 (20).

Equations (28), (32), (33), and (34) prove Theorem 1.1 and its Corollaries.

4.6 The Axially Symmetric Body

The calculation of phases simplifies considerably when two of the principal moments of inertia
are equal. Observe that ¥ C M; (see §3.3) contains two connected components. One component ¥
consists of inertia tensors whose double eigenvalue is the smaller eigenvalue (A\; > A2 = A3), and the
other component 33 has double eigenvalues larger (A\; = A2 > A3). Observe that cl(X;)Ncl(X3) = X',
We shall see that the HB connection can be extended to just one of these components, but not both
simultaneously.

Suppose m € M approaches ¥3. From §3.1 we see that (A; —A2) — 0 implies n — 0, showing that
the two separatrix planes become the z; 2 plane. Thus the sets Uit (m) and P:(m) are squeezed out
of existence and the parallel transport of an initial point in P (m) cannot be continued. Similarly
the parallel transport of an initial point in P;E (m) cannot be prolonged while m passes through ¥;.
Thus the HB connection cannot be extended to ¥; and ¥3 simultaneously.

On the other hand if we consider only initial points in P;(m) the connection can be extended to
Y3 as we now show. The loop m(t) € M, 0 <t¢ < 7 given by (23) with £ = E3 encircles X3 C Mj.
As (A1 — X2) — 0 this loop contracts to a point in ¥.3. To show that the connection can be extended
to X3 its sufficient to show that the holonomy of such a loop becomes trivial in the limit. From
equations (6) and Proposition 4.1 we see that (A; — A\y) — 0 implies & — 0 and v — 0, whence
K(k) — /2 and G3(z) — 23 for z € Us(o())). Therefore (K - m/(t))(z) — 0, showing that the
parallel transport (and holonomy) becomes trivial as required. A similar argument would show that
the connection can be extended to ¥ as long as we only attempt to transport points in P (a())).

We now compute the holonomy of loops lying in 33. First recall that the parallel transport along
curves of type II (see §4.2) is trivial if m = o()\) varies along a level set of n = n(A\), A\ € B. But
we saw above that n = 0 for m € X3, hence the holonomy of such loops is trivial. Now consider
loops of type T (see §4.1) with initial point (go,20) € P (o(A)). The above discussion shows that
G3(z) = z3 so that VG3(z) = E3. Equation (27) becomes

h = hé&E;
y = yx&EE3=-E3y
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with solution

h(t) = ho(exp té3E3) y(t) = (exp t&3E3) " Lyo.

By (26) the parallel transport is

(9(t), 2(t)) = (expté)(expt&sEs) ™" - (g0, 20),

using the action (8). The holonomy about m(t), 0 <t < 27 is

(90, 20) + (exp 27F§3ﬁ73)_1 - (90, 20)-

(Observe that this is trivial if ¢ = E3 or & € E3.) The holonomy of m(t), 0 < t < 7 with
§=+E;, j=1,2is

(90, 20) (eXPWEj)(eXP 7F€3E3)71 - (90, 20)-

One may verify that these results are consistent with those in §4.5 by taking the limit as (A; —A2) — 0
in equation (32).

5 Conclusions
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