A correction/clarification

someone asked

'Is the shape sphere and shape space covered in the references"

Yes. sec 0.4, p 46- 50

Recall:

Course Overview

- 1. Lagrangian systems. Natural Mechanical systems. Symmetry vs topological constraints. Works of: Gordon, Poincaré, me. Braids. Planarity. Strong vs weak forces.
- 2. Shape space, shape sphere, reduction. The Eight
- Functional analysis for the direct method. Two point boundary value problem. The eight again. time permitting: Marchall.
 - **4.** Infinitely many syzygies and coplanarities. Riem. geom methods.
 - 5. Open ending. Open problems.

Recall:

Course Overview

- 1. Lagrangian systems. Natural Mechanical systems. Symmetry vs topological constraints. Works of: Gordon, Poincaré, me. Braids. Planarity. Strong vs weak forces.
- 2. Shape space, shape sphere, reduction. The Eight
- Functional analysis for the direct method. Two point boundary value problem. The eight again. time permitting: Marchall.
 - **4.** Infinitely many syzygies and coplanarities. Riem. geom methods.
 - 5. Open ending. Open problems.

$$\ddot{q} = \nabla U(q) \tag{1}$$

Given: $q_0, q_1 \in \mathbb{E}$ and a time T > 0.

Find a solution q(t) satisfying $q(0) = q_0, q(T) = q_1$

Solution: Direct method of the calculus of variations

$$L(q, v) = K(v) + U(q)$$

$$A(q(\cdot)) = \int_0^T L(q(t), \dot{q}(t))dt$$

Problem Minimize the action $A(q(\cdot))$ over all paths $q:[0,T] \to \mathbb{E}$ such that $q(0) = q_0$ and $q_1 = q(T)$.

If the minimum **exists** and is sufficiently smooth, it solves our two-point boundary value problem

To get existence:

 $\Omega = \text{space of absolutely continuous paths } q:[0,T] \to \mathbb{E}$ having $q(0) = q_0, q(T) = q_1 \text{ and } A(q) < \infty$

and set:

$$a = \inf_{c \in \Omega} A(c).$$

so that there exists:

 $c_n \in \Omega$ such that $\lim_{n \to \infty} A(c_n) = a$.

We construct the minimizer c_* as a limit of a subsequence of the c_n

STEPS. Show:

STEP 1. A subsequence of the c_n converges uniformly to a continuous c_* .

STEP 2. $c_* \in \Omega$.

STEP 3. $A(c_*) = a$.

STEP 4. A is differentiable.

 $dA(c_*)(h) = 0$ for all variations h tangent to Ω .

STEP 5. This minimizer c_* satisfies Newton's equations.

Overview of how the steps are done

STEP 1. Arzela-Ascoli

STEP 2. Banach-Alaoglu. Notion of weak compactness. Work in Sobolev space H^1 , a Hilbert space closely related to Ω .

STEP 3. Ideas from steps 1 and 2.

STEP 4. first quarter calculus, really

STEP 5. Fundamental theorem of the calculus of variations.

DETAILS:

on the Board!