
A Magnetic Playground for SubRiemannian Geodesics

Enrico’s Int’l sR seminar

Richard Montgomery 
   UC Santa Cruz (*) 

via Zoom, April 29, 2020

(*) : am retiring, July 1, 2020: 
so - keep me in mind for post 
C-virus longish term invites, eg, for  2021.. 



Two-plane fields in 3-space: {dz �A1(x, y)dx�A2(x, y)dy = 0}

provided: the two-planes don’t go vertical: 

and they are invariant under z-translations

@

@z
/2 D(x, y, z)

(here: A1dx+A2dy = ydx)

`distribution’, D one-form,  ✓

D can be put in this form, 



Getting there: PROBLEM : to join (x_0, y_0, z_0)  to (x_1, y_1, z_1) 
by a horizontal path.  `horizontal’ = tangent to D.   

Write horiz. paths as 
control system: ẋ = u1

ẏ = u2

ż = u1(t)A1(x, y) + u2(t)A2(x, y).

`controls’ 

or: q̇ = u1(t)X(q(t)) + u2(t)Y (q(t)) with: 

X =
@

@x
+A1(x, y)

@

@z
Y =

@

@y
+A2(x, y)

@

@z

,



Strategy:  
1.Line up x and y coordinates , using a line segment  
2.  Fiddle around at the final (x_1, y_1) using planar loops c. 

Step 1.  u_1 (t) = x_1 - x_0 =const  ;   
              u_2 (t) = y_1 - y_0,  
0 < t < 1.  
with i.c.:  x(0) = x_0, y(0) = y_0,  z(0) = z_0. 

yields:  x(1) =x_1,  y(1) = y_1 but   

6= z1z(1) =

Z

`
A1dx+A2dy

Step 2.  Try  moving around ina planar loop c based at (x_1, y_1) . 
              Then our height z  changes according to :  
               

ż = A1(x, y)ẋ+A2(x, y)ẏ

or…
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�z =

Z

c
A1dx+A2dy =

Z Z

D
B(x, y)dxdy

B(x, y) =
@A2

@x
� @A1

@y

= Magnetic Field

= Flux of 
Magnetic Field

So, choose c so that flux = z_1 - z(1) .  

DONE! 

( via Lie brackets:  [X, Y] = B(x,y) Z;   Z =
@

@z





Next. Getting there optimally:

Join (x_0, y_0, z_0)  to (x_1, y_1, z_1) 

by the shortest  horizontal path connecting them.    



`Shortest?’’:  Let the length of a  horiz. path  = length of its proj. to xy plane.  

() `sR(�) = `R2(c); c = ⇡ � �,⇡(x, y, z) = (x, y)

(we need that  D does not go vertical for this def.  to work)  

() X =
@

@x
+A1

@

@z

, Y =
@

@y
+A2

@

@z

form  an orthonormal frame 
for D   

() sR struc. is : D = {dz �A1dx�A2dy = 0},

and : h·, ·i = (dx2 + dy2)|D

complete this frame: 
  Z =

@

@z





ds2✏ = dx2 + dy2 +
1

✏2
✓2

Deriving sR geodesics.   Use   ✓ = dz �A1(x, y)dx�A2(x, y)dy

!✏!0
our sR structure;   

dx, dy, ✓ $dual X,Y, Z

so dually: 

X2 + Y 2 + ✏2Z2 ! X2 + Y 2

viewed as:  
   -2nd order diff’l operators 
   -co-metric  [symm. bilinear form on T*] 
   -fiber-quadratic f’n (`Hamiltonian’!) on cotangent bundle 
                       

encodes sR structure.  

Riem. structure (`penalty metric)   tending to    





Symbol of X:  = X,  thought of as a fiber-linear Hamiltonian on T* 

PX = px +A1(x, y)pz

PY = py +A2(x, y)pz

X =
@

@x
+A1(x, y)

@

@z

Y =
@

@y
+A2(x, y)

@

@z

Z =
@

@z
PZ = pz

(x, y, z, px, py, pz) coord. on T ⇤R3

p = pxdx+ pydy + pzdz 2 T ⇤
(x,y,z)R3

H✏ =
1

2
(P 2

X + P
2
Y + ✏

2
P

2
Z) !

1

2
(P 2

X + P
2
Y )

governs (normal)  geodesics. 



Full disclosure: 
    up till now,  right out of a review of the book 
   `A Comprehensive Guide to subRiemannian Geometry’ 
    - by Agrachev, Barilari, and Boscain 
   which I wrote for the Bulletin of the AMS.  
  
out in a year ? 



ḟ = {f,H}

Geod eqns = Ham’ns eqns = 

f runs over fns on T* ;  f =x, y, z , P_X, P_Y, P_Z = p_z,  good enough

ẋ = PX

ẏ = PY

ż = A1PX +A2PY + ✏PZ

ṖZ = 0

Poisson bracket of fns

PZ = const. = ‘charge ’

ṖX = �(B(x, y)PZ)PY

ṖY = +(B(x, y)PZ)PX
= � , later







Details of computation:
{f, gh} = g{f, h}+ h{f, g}

=) {f,H✏} = PX{f, PX}+ PY {f, PY }+ ✏
2{f, PZ}

{x, px} = {y, py} = {z, pz} = 1; {x, y} = . . . = 0 = {px, py} = . . . = 0

=) for f = f(x, y, z), {f, PX} = X[f ] := df(X); {f, PY } = Y [f ]; ..

=) {f(x, y, z), H} = PXX[f ] + PY Y [f ] =) u1(t) = PX(t), u2(t) = PY (t)

of q̇ = u1(t)X(q(t)) + u2(t)Y (q(t))

Finally: 
{PZ , PX} = {PZ , PY } = 0; {PX , PY } = �B(x, y)PZ



The x, y, P_X, P_Y eqns decouple from z;  P_Z = \lambda, parameter:

d

dt
(x, y) = (PX , PY )

d

dt
(PX , PY ) = �B(x, y)J(PX , PY )

where J(PX , PY ) = (�PY , PX) = 90 deg. rotation of (P_X, P_Y)

regardless of \epsilon !



These planar ODES  
are the eqns of charged particle traveling in the plane under the 
influence of a magnetic field  of strength B(x,y) `pointing out of the 
plane’

WLOG: H = 1/2, so (P_X)^2 + (P_Y)^2 = 1, which says that the plane 
curve is parameterizes  by arc length s, i.e.  t= s.    
  Riem case:   

(s) = �B(x(s), y(s))

 = plane curvature of curve (x(s), y(s))

~q(s) = (x(s), y(s)),
d

ds
~q(s) = ~T (s);

d

ds
~T (s) = (s)J~T (s)

which in turn  are  equivalent to the geometric eqns:

Recall 

P 2
X + P 2

Y + ✏2P 2
Z = 1;PZ = �

where: 



Heisenberg Group Case
 B(x,y) = const. = 1

Projected geodesic eqs: (s) = �

Solutions:    circles and lines  

Geodesics:  (rough) helices , and lines 

for the circles : rate of climbing    

�z/cycle = (signed) area of circle 





The set of planar curves arising as projections 
to the xy plane of geodesics is the same for  
all the Riemannian [penalty] metrics  

 A nice surprise: 

  
and  for the sR case

H✏

H = lim
✏!0

H✏












































































































Horiz. lift of nondeg. zero locus 
of magnetic field = C^1- rigid  
curve (sense of Bryant-Hsu) 

 Thm. These curves are geodesics 
(= loc. length minimizers)

�0(s) = �B(x(s), y(s))

repaired geodesic eq: 

multiplier for `cost’ in Max princ. 
zero for these abnormal good.

ABNORMAL GEODESICS.

accounts for all possible geod’s.










































































































as charge (\lambda) —> infinity 
normal geod C^0-converge to 
abnormal geod  
 












































































































Straighten out zero locus: 
B(x,y) = x; 

Martinet model for D(x,y,z): 
dz - (x^2) dy  = 0 
 

Abnormal geod is also Normal
�0(s) = �B(x(s), y(s))

reads `0 = 0’ for all choices of 
multipliers 

Other geodesics: 
Euler elastica, given by 
elliptic fns

FLAT MARTINET CASE:.

B = x . 



thank you Levien ;  Ardentov



BRANCHING GEODESICS.
(Meitton-Rizzi, 2019)

B =

(
x, y < 0

1, y > 1

interpolates between 
flat Martinet and Heisenberg

B = x, y < 0

B(0, y) > 0, y > 0
and

A simpler model (for me)





sR exponential map 
`explanation’ of branching



Big open problem: 
Are all sR geodesics smooth? 

Idea for counterexamples: 
look at situations  where the  zero-locus of B(x,y) 
is not smooth. 

Eg:  a)  B(x,y) =  xy  [`normal crossing’]

Eero Hakavouri & Enrico Le Donne shoot down this example.
with their ``No corners theorem’’ [2016]



Eg (b):    Tacnode

B = y2 � x4

1994. Minnesota. Winter. ICM. 
Sussmann.  Yacine Chitour.  
a certain warm crowded cafe across the 
railroad tracks.  Crossing the frozen 
Mississippi, with hexagonal patterns of ice; 
 (youngest daughter, heart problem appears..) 
Agrachev… looking looking looking for 
counterexamples… 

so.. subject: returning to the beginning 

Richard Montgomery <rmont@ucsc.edu> 
Wed, Apr 22, 9:15 PM (7 days ago) 
to sussmann, Andrei… 

try order 2 contact: 



[.... ] 
   

[..] I hope you are well […] 

I have been thinking about old things, 
and realize that you two  have likely already pursued these things 
and with high likelihood to the bitter  end - and found it a dead end.  ... 
Hence this letter, so either I do not repeat your dead end, 
or you give me some nuggets of hope.  [  ....]  

Take a magnetic field B whose zero locus is 
a tacnode or its higher degree generalizations: 
B(x,y) = y^2 - x^{2k} ; Its zero  locus -[...]  consists of two branches  
y = x^k,  and  y = -x^k 
with order k-1  of contact at the origin.

[…] Either branch, following until the origin will be a locally minimizing 
geodesic of Martinet type.  So, follow the +  branch to the origin, then switch 
to the other branch.. [to get ]   a horizontal   curve  
which is C^{k-1} but not C^k. 

QUESTION: is this concatenation  a minimizer for any  positive integer k ?



Sat, Apr 25, 2020 at 3:32 AM Andrei Agrachev  wrote: 
Dear Richard, 

I am fine, thank you very much. 
I do not know the answer but may be there is a way to reduce this case to the 
Hakavuori - Le Donne theorem by taking a jet prolongation in the spirit of your 
and Misha Monster?   

What do you think? 
With kindest regards, 
Andrei  





Thm: [Agrachev-M-;][2020] 
The tacnode example  does not minimize. 
More generally  any piecewise smooth  
(or piecewise  C^k) 
sR minimizer is  smooth (C^k)

Pf.  By induction ,starting w 
Hakavouri-LeDonne’s  k =1. 

Tool: Prolongation of distributions AND their curves. 

Key facts:  
1) the sR struc. also prolongs,   

2) the prolongation of a geod is a geod.



 

Prolonging a distribution  
and its horizontal  curves

new space:  points are rays in D downstairs. 

old space: sR manifold Q, 
w distribution D, inner prod on…   

so: points in new space: 
(pt, line):  

Q̃ = PD

(q, `), ` ⇢ D(q)

new distribution:
  def a) : 
  def b): horiz. curves are curves s.t.

D̃(q, `) = d⇡�1
q (`)

(q(t), `(t)) : dq/dt 2 `(t)

q 2 Q,



Prolonging  horizontal curves

q(t) (q(t), `(t)) = (q(t), span(dq/dt))

✓ for fiber  

Tacnode case:  x = t, y = ±t2, z = 0;

Prolong: introduce fiber variable u 

u = tan(✓) = dy/dx

[dx, dy] = [1, u] = [cos(✓), sin(✓)]

x = t;u =

(
2t, t < 0

�2t, t > 0
NOW A CORNER!

want to invoke Hakavouri-LeDonne…



Prolonging  sR struc.: 
              use that fiber inherits metric from inner 
              prod on D . Eg: rank 2 case: identify proj line 
              w unit circle [doubled]  X, Y o.n. for D,   

o.n. for prolongation of  D  X✓ = cos(✓)X + sin(✓)Y ;
@

@✓

Exer:  The proj. map ⇡ : Q̃ ! Q is  distance decreasing  
(actually ``non-increasing’’)  

Exer:  The prolongation of a geodesic is a geodesic.   



Proof of theorem: k =2: 
Say a geodesic  is p.w. C^2. 
Prolong it, and its  sR struc. : 
Result: a  C^1 geod in the prolongation 
WITH corners! 

Contradicts  `no corners’ theorem of H-LeD.   

So the  original curve must have been C^2

General k. Similar. Use induction on k. 

fini.  Thank you all , esp. Enrico, 
for the opportunity to talk and 
inspiration to prove a theorem



 

in base  
circle radius r = 1/\lambda 

in space: 
roughly, helices: 
lie on cylinder of radius, 

in sR case: they climb 
area of circle/ revolution 

in Riem case: increase height 
from sR case by \eps*\lambda 
per rev.


