A Magnetic Playground for SubRiemannian Geodesics

Richard Montgomery
UC Santa Cruz (%)

Enrico’s Int'l sKR seminar

via Zoom, April 29, 2020

(*) . am retiring, July 1, 2020:
SO - keep me in mind for post
C-virus longish term invites, eg, for 2021..



Two-plane fields in 3-space: {dz — A1 (x,y)dxr — As(x,y)dy = 0}

“distribution’, D one-form, 6

(here: Ardz + Axdy = ydx)

A
4 ==

D can be put in this form, v 9
provided: the two-planes don't go vertical: — ¢ D(x,y, z)

and they are invariant under z-translations



Getting there: PROBLEM :tojoin (x_ 0,y 0,z 0) to(x_1,y_1,z_1)
by a horizontal path. "horizontal’ = tangent to D.

Write horiz. paths as ‘controls’
control system: T = U1 7
Y = U2
z=u1(t)A1(x,y) + ua(t)Az(z, y)
olg qg = Uj (t)X(q(t)) + U2 (t)Y(q(t)) with:
P 0 0
X ax+A1(x,y)a 8y+ 2(5573/)82



Strategy:
1.Line up x and y coordinates , using a line segment
2. Fiddle around at the final (x_1, y_1) using planar loops c.

Step1. u_1(t) =x_1-x_0=const ;
u?2(t)=y_1-y_0,

O<t<1.

with i.c.: x(0) = x_0, y(0) = y_0, z(0) = z_0.

vields: x(1) =x_1, y(1) = y_1 but
2(1) = /Alda; + Apdy # 21
14

Step 2. Try moving around ina planar loop ¢ based at (x_1,y_1) .
Then our height z changes according to :

¢ =Ai1(z,y)T + Aa(x, Y)Yy

or...



Nz = /Aldaj‘—l—AQdy — // B(z)y)daj‘dy = Flux of
C D

Magnetic Field
C

t
Y
0As  0A;
B(x,y) =
(2,9) = —~ 9
= Magnetic Field
S0, choose ¢ so thatflux =z_1-2z(1) .
DONE!
0

( via Lie brackets: [X, Y] =B(x\y) Z;, 7/ = 8_
2z

>
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O=NAz






Next. Getting there optimally:

Join (x_ 0,y 0,z 0) to(x_1,y_1,z_1)

by the shortest horizontal path connecting them.



"Shortest?”: Let the length of a horiz. path = length of its proj. to xy plane.

(we need that D does not go vertical for this def. to work)
< ésR(/y) — ng (C)7 C—= T O, 7-‘-(377 Y, Z) — (ZE, y)

< sRstruc. is : D = {dz — Aidx — Asdy = 0},
and : (-,-) = (dz* + dy?)|p

9, o
ﬁ - | -
X = Oxr | Al Oz form an orthonormal frame
O o forD
Y = - Ao —
0y 0z
. | O
complete this frame: 7 —






Deriving sR geodesics. Use 60 =dz — Ai(x,y)dx — As(z,y)dy

Riem. structure (" penalty metric) tending to

1 |
dsg _ d:L‘Q 4 dy2 4 —26’2 e our SR structure;
€

d.CIZ', dyv 0 <?dual Xa Ya Z

so dually:

X? -+ Y? + 7% 5 X? + Y2 encodes sR structure.

viewed as:
-2nd order diff’| operators
-co-metric [symm. bilinear form on T%]
-fiber-quadratic f'n ("Hamiltonian’!) on cotangent bundle






Symbol of X: = X, thought of as a fiber-linear Hamiltonian on T*

o, 0,
X 5 Al(aj,y)az X 1(z,y)
Y = 0 - Ao (x y)2 — Py = p, + Aa(z,y)p-
Oy 770z
0,
Z: — — P = D,
B Z — D

(2,9, 2, Pz, Py, P-) coord. on T*R?
p = pzdx + p,dy + p.dz € T(zyyjz)RS

1 1
H, = §(P)2< + P + € PZ) — 2(P)2< + PZ)

governs (normal) geodesics.




Full disclosure:

___up till now, right out of a review of the book
‘A Comprehensive Guide to subRiemannian Geometry’
- by Agrachev, Barilari, and Boscain
which | wrote for the Bulletin of the AMS.

out in a year ?



Geod egns = Ham’ns egns =

| _— Poisson bracket of fns
f=11fH;

frunsoverfnsonT*; f=x,y,z,P_X P_Y,P_Z=p_z, good enough

r = Px
y =Py
M A1PX —|-A2PY —|—€PZ

PX — —(B(QZ‘, y)Pz)Py

Py = +(B(x,y)Pz)Px Py = const. = ‘charge’

7 — \ |, later

P, =0










Details of computation:

{f,9h} = g{f, h} +1{f, 9}
— {faHG} :PX{faPX}_I_PY{f7PY}_|_€2{f7PZ}

{z,p.} =1y, py} =12, 0.} = 1; {z,y}=...=0={ps,py} =...=0
— {f(r,9,2),H} = PxX[f]|+ PYY|f] = wui(l) = Px(t),u2(t) = Py (1)

of ¢ = u1(t) X (q(t)) + u2(t)Y (q(t))

Finally:
{Pz,Px} =1{Pz,Py}=0;{Px, Py} =—B(z,y)Pz



The x,y, P_X, P_Y egns decouple from z; P_Z =\lambda, parameter:

d regardless of \epsilon !

E(%y) = (Px, Py)

d
—(Px, Pr) = AB(z,9)J(Px. Py)

where J(PX, Py) = (—Py, PX) — 90 deg. rotation of (P_X, P_Y)



These planar ODES

are the egns of charged particle traveling in the plane under the

influence of a magnetic field of strength B(x,y) pointing out of the
plane’

WLOG: H = 1/2, so (P_X)N2 + (P_Y)"N2 = 1, which says that the plane

curve is parameterizes by arc length s, i.e. t=s.
Riem case: P3 + PE + €*P2 =1; Py, = A

which in turn are equivalent to the geometric egns:

k(s) = AB(z(s),y(s))

where: K = plane curvature of curve (z(s), y(s))
Recall K



Heisenberg Group Case
B(Xx,y) = const. =1

Projected geodesic egs: /1(8) — )\

Solutions: circles and lines
Geodesics: (rough) helices , and lines

for the circles : rate of climbing

AZ/Cycle = (signed) area of circle



¢ GEOMETRIC FHASES
| IN PHYSICS

Alfred Shapere
Frank Wilczek




A nice surprise:

The set of planar curves arising as projections
to the xy plane of geodesics is the same for
all the Riemannian [penalty] metrics

H.

and for the sR case

H = lim H.

e—0






ABNORMAL GEODESICS.

Horiz. lift of nondeg. zero locus
of magnetic field = CAN 1-rigid
curve (sense of Bryant-Hsu)

Thm. These curves are geodesics
(= loc. length minimizers)

repaired geodesic eq:

Mok(s) = AB(x(s),y(s))

\ multiplier for “cost’ in Max princ. e (thyn way f’ us)
zero for these abnormal good. 2 U= 0.3 < -. Ff?

Flux k/

accounts for all possible geod’s.



as charge (\lambda) —> infinity
normal geod CAO-converge to
abnormal geod




FLAT MARTINET CASE..

B=x.

Straighten out zero locus:

B(x,y) = X;

Martinet model for D(x,y,z):

dz-(xA2)dy =0

Abnormal geod is also Normal
Aoki(s) = AB(x(s), y(s))

reads 0 = O’ for all choices of

multipliers

Other geodesics:

Euler elastica, given by

elliptic fns

Martinet model







BRANCHING GEODESICS.
(Meitton-Rizzi, 2019)

r,y <0
Ly >1

B =

Interpolates between
flat Martinet and Heisenberg

A simpler model (for me)

B=x1y<0
and
B(0,y) >0,y >0






sR exponential map
“explanation’ of branching



Big open problem:
Are all sR geodesics smooth?

|dea for counterexamples:
look at situations where the zero-locus of B(x,y)
IS not smooth.

Eg: a) B(x,y) = xy [ normal crossing’]

Eero Hakavouri & Enrico Le Donne shoot down this example.
with their "No corners theorem” [2016]



try order 2 contact:
Eg (b): Tacnode

B:yQ—x4

1994. Minnesota. Winter. ICM.

Sussmann. Yacine Chitour.

a certain warm crowded cafe across the
railroad tracks. Crossing the frozen
Mississippi, with hexagonal patterns of ice;
(youngest daughter, heart problem appears..)
Agrachev... looking looking looking for
counterexamples...

. subject: returning to the beginning

Richard Montgomery <rmont@ucsc.edu>
Wed, Apr 22, 9:15 PM (7 days ago)
to sussmann, Andrel...



— gl

[..] | hope you are well [...]

| have been thinking about old things,

and realize that you two have likely already pursued these things

and with high likelihood to the bitter end - and found it a dead end. ...
Hence this letter, so either | do not repeat your dead end,

Or you give me some nuggets of hope. | ....]

Take a magnetic field B whose zero locus is

a tacnode or its higher degree generalizations:

B(x,y) = yN2 - xM2k} ; Its zero locus -[...] consists of two branches
y = x"K, and y = -X"Kk

with order k-1 of contact at the origin.

[...] Either branch, following until the origin will be a locally minimizing
geodesic of Martinet type. So, follow the + branch to the origin, then switch

to the other branch.. [to get | a horizontal curve
which is CA{k-1} but not CAk.

QUESTION: is this concatenation a minimizer for any positive integer k ?



Sat, Apr 25, 2020 at 3:32 AM Andrei Agrachev wrote:
Dear Richard,

| am fine, thank you very much.

| do not know the answer but may be there is a way to reduce this case to the
Hakavuori - Le Donne theorem by taking a jet prolongation in the spirit of your
and Misha Monster?

What do you think?
With kindest regards,
Andrel
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Thm: [Agrachev-M-;][2020]

The tacnode example does not minimize.
More generally any piecewise smooth
(or piecewise C/Kk)

SR minimizer is smooth (C/k)

Pt. By induction ,starting w
Hakavouri-LeDonne’s k =1.

Tool: Prolongation of distributions AND their curves.

Key facts:
1) the sR struc. also prolongs,

2) the prolongation of a geod is a geod.



Prolonging a distribution
and its horizontal curves

old space: sR manifold Q,
w distribution D, inner prod on... I

. | L=
new space: points are rays in D downstairs.
3 ?
Q=PFD )[ zY
SO: points in new space:
(pt, line):  (q,¢),£C D(q) , q € Q) L _u— T
new distribution: N
defa): D(q,f) =dmr " ({)
def b): horiz. curves are curves s.t.
(q(t),4(t)) : dq/dt € £(t) ——

v~

A\



Prolonging horizontal curves

q(t) ~ (q(t),£(t)) = (q(t), span(dq/dt))

Tacnode case: ' =1,y = __t2, z = 0;
. . . ¢ for fiber
Prolong: 1introduce fiber variable u
dx, dy| = [1,u] = [cos(0), sin(0)]
u = tan(0) = dy/dx
2, t < 0
r==tu= NOW A CORNER!
—2t.t >0

want to invoke Hakavouri-LeDonne...



Prolonging sR struc.:
use that fiber inherits metric from inner
prod on D . EQ: rank 2 case: identify proj line

w unit circle [doubled] X, Y o.n. for D,

0
o.n. for prolongationof D Xy = CQS(Q)X + Sin(H)Y; %

Exer: The proj. map 71 : @ — () is distance decreasing
(actually “"non-increasing”)

Exer: The prolongation of a geodesic is a geodesic.



Proof of theorem: k =2:

Say a geodesic is p.w. CA2.

Prolong it, and its sR struc. :

Result: a CA1 geod in the prolongation
WITH corners!

Contradicts no corners’ theorem of H-LeD.

So the original curve must have been CA2

General k. Similar. Use induction on k.

fini. Thank you all , esp. Enrico,
for the opportunity to talk and
inspiration to prove a theorem



IN base
circle radius r = 1/Alambda

INn space:
roughly, helices:
lie on cylinder of radius,

In sR case: they climb
area of circle/ revolution

IN Riem case: increase height
from sR case by \eps*\lambda
DEr rev.

)
—



