Two Open Questions
In the N-body problem

-Richard Montgomery,
orof. emeritus, UC Santa Cruz
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NEWTON'S EQNS

mi1q1 = Fo1,
F21 — _F12 —
moqo = Fio
. q
—> q = _MW where qd = {41 — {42



The center of mass 2191 T 11242 6yes in straight line
1 T 1Mo

Viewed from a moving frame with this center of mass as origin,
the individual masses move on homothetic ellipses with origin as center



Kepler’s 3 laws!

each of the two planets moves
INn a conic about their shared
center of mass



_ 3-body.
Lagrange’s solution(s)
| -/ —quilateral triangles.

mi1q1 = Fo1+F3;

mopqpy = Fio+F3o

Lagrange 1772 m393 = Fo3 + Fi3




for each mass distribution
for each Kepler conic...

Euler 1767



Poincare. 1892: Chaos in Restricted
three-body problem. Shown here:

a transit orbit, in a rotating frame

{15

first example of
“deterministic chaos’;
discovered homoclinic
tangles’ led to Smale horseshoe

Earth

co-rotating frame, so earth, moon fixed



for each mass distribution
for each Kepler conic...
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Cris Moore 1994; Chenciner-Montgomery 2000
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pictures, animations

thanks to:
Rick Moeckel, Gil ,
Carles SImo




Galileo:

he laws of physics are

iInvariant under the

"Galilean group’ of isometries of space,
or time, and of space-time boosts’

qo(t) solves

< (, (t) + d solves (translations)
<= Rq,(t), R € O(d), solves

< {q (t — ?f()) solves

<= (.(—t) solves

< q,(t) + tv solves



Newton: Maqq = Fy

go €ERY a=1,...,N whee mg >0

Fo = Zb;éana
Gmpm — )
g G agqb 9a) wrere 1o = lab — g0
Tba

A system of dN non-linear 2nd order analytic ODEs
having singularities at collisions.

It has a large Lie group of symmetries (Galileo)

and associated conservation laws (energy, ang.
mom, linear momentum)



Some open questions
within the N-body problem:

1. |s the number of central configurations finite 7
2. Are there any Lyapunov stable periodic solutions ?

* 3. Is every braid on N strands realized ? (eight, choreos)
* 4. |s the scattering image open and dense”?



1st Question.

¢Is every braid on 3 strands realized by some periodic solution?

plane at t=0

plane at t=1



Inspiration:

Thm.

In a compact Riemannian geometry
every free homotopy class of loops
IS realized by a periodic geodesic.

Pf. Direct method of the calculus of
varns. Minimize length of loops
over all loops which represent the
given class

3-body. A conjugacy class in the pure braid group on 3 strands

a free homotopy class of loops in the collision-free planar 3-body
config . space



3-body problem:

a free homotopy class of loops for the collision-free
planar 3-body config . space

a conjugacy class in the pure braid group on 3 strands



Answer: Yes'
if | cheat.

THE N-BODY PROBLEM, THE BRAID GROUP,
AND ACTION-MINIMIZING PERIODIC

SOLUTIONS.

1998, -R.Mont.



and if | don’t cheat ?7

2000

arXiv:math/0011268v1 [math.DS] 1 Nov 2000

Annals of Mathematics, 152 (2000), 881-901

A remarkable periodic solution
of the three-body problem
in the case of equal masses

By ALAIN CHENCINER and RICHARD MONTGOMERY

Dedicated to Don Saari for his (censored) birthday

Abstract

Using a variational method, we exhibit a surprisingly simple periodic orbit
for the newtonian problem of three equal masses in the plane. The orbit has
zero angular momentum and a very rich symmetry pattern. Its most surprising
feature is that the three bodies chase each other around a fixed eight-shaped
curve. Setting aside collinear motions, the only other known motion along
a fixed curve in the inertial plane is the “Lagrange relative equilibrium” in
which the three bodies form a rigid equilateral triangle which rotates at con-
stant angular velocity within its circumscribing circle. Our orbit visits in turns
every “Euler configuration” in which one of the bodies sits at the midpoint
of the segment defined by the other two (Figure 1). Numerical computations

-V/2 t=0(Es) t =T = T/6 (E)

—_
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9 t=T=T/12 (M) /

Figure 1 (Initial conditions computed by Carles Simd)
x1=—22=0.97000436—0.24308753i,03 =0; V =i 3=—21 =—2i2=—0.93240737—0.864731467
T=12T=6.32591398, I(0)=2, m1=ma=maz=1



But... (priorities !)
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—
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Braids in Classical Dynamics

Cristopher Moore

Santa Fe Institute, Santa Fe, New Mexico 87501
(Received 19 October 1992)

Point masses moving in 2+ 1 dimensions draw out braids in space-time. If they move under
influence of some pairwise potential, what braid types are possible? By starting with fictional patk
the desired topology and “relaxing™ them by minimizing the action, we explore the braid types of po
tials of the form Ve r® from a = — 2, where all braid types occur, to @ =2, where the system is int
able. We also discuss issues of symmetry and stability. We propose this kind of topological classifica
as a tool for extending the “symbolic dynamics™ approach to many-body dynamics.

1993



existence

exists for all o

exists for all o

a< —1.1+0.05

b3b5?

a< —-14+40.05

(b1b2)?

exists for all o

(b1b3')?

a < 2

(b3b2)?

a< -1.0+£0.05

(b3b3")?

a< —-1.7+£0.05

blbzbrlbgbx bz_l
= b2byby %b,

$80630¢8 000

at least o < 2




and even earlier:



SUR LES SOLUTIONS PERIODIQUES
EI LE PRINCIPE DE MOINDRE ACTION

Comptes rendus de UAcadémie des Sciences, 1. 123, p. g15-g18 (30 novembre 18g6).

La théorie des solulions périodi
principe de moindre action.

Suppésons trois COTps se mouvant dans un plan et s’atlirant Cn raison inverse
du cube des distances ou d’une pulssance plus élevée de

bq C Ces iraic farne

1896

ces distances; j’appelle a,






Methods:



R ISOSC5

Figure 4. The shape sphere.



Eclipse sequences.



..Every free homotopy class...
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Figure 8: 123123




N= 3, the eclipse sequence of a periodic
collision-free curve represents
its free homotopy class (braid) mod rotation.

The eclipse sequence of the eightis 123123
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Technical heart: existence of a collision-free
minimizer






Choreographies, etc. : a 15 year detour
from question
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a) Chain with 11 bodies
in 10 loops.

3
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d) Bifurcated chain
with 9 bodies

| 15}

4 b
3 4

0.5

1-05

115}

0.5

D514

1

2

b)

1 0 1

in 4 loops.

. 2
Chain with 11 bodies
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e) 8 petal daisy
with 9 bodies.

1

15

0.5

-0.5

| .15

0.5

05}

4

o dP =

-2 -1 0 1 2

c) Chain with 8 bodies
in 6 loops.

-1 0 1
f) An asymmetric case

with 7 bodies.







and about 100 more
for d=3; roughly
SIX per
Platonic solid

Fusco,Gronchi, Negrini.
Platonic polyhedra, topological constraints
and periodic orbits of the classical N-body problem'
Invent. Math., Vol.285/2, 283-332. 2011



The original question was specific to zero angular momentum
and for realizing all eclipse sequences. It is still open.

| worked on it off and on for 17 years before a 2014 theorem
with Rick Moeckel, valid for angular momentum epsilon
that | will describe

Scientific Three B()d
Problem

American,

Au g 20 1 9 Although mathematicians know they can never fully “solve” this

centuries-old quandary, tackling smaller pieces of it has yielded
some intriguing discoveries
By Richard Montgomery
Illustration by Chris Buzelli
Y THE SPRING OF 2014 I HAD LARGELY GIVEN UP ON THE THREE-BODY PROBLEM.

Out of ideas, I began programming on my laptop to generate and
search through approximate solutions.




cancelling stutters.

Notation: 15 = 11111 etc

hUS 1°2433 = 13

periodic reduced eclipse sequences.

<—> free homotopy classes of loops (mod rotation) .



Taking a; € {1,2,3}
Thm: [RM & RM 2014] There exists an M such that for
all sequences of integers

every Infinite eclipse sequence of the form

n1T . MNo N3
e o o ajl a/2 a/3

IS realized by a sol'n having this sequence. If the
eclipse sequence is periodic, then so is the solution.

We need masses equal or close to equal.
Need some angular momentum.



Cor.: [Moeckel & M-] every free homotopy class
mod rotations is realized for the planar 3 -body problem |

Pf: take allthe n: > M to be odd. Then

ny n2 N3 __ :
...Q7 Gy°ag” ... =...a1a2a3 ... (homotopically)

Caveats: Need masses equal or "close to equal’.
Need some angular momentum.






2nd Question:
.lIs the scattering image open and dense?



Rutherford scattering, 1917:

essential to his discovery that nuclei were very tiny and dense



sebbbobddlblilbadliddlidddadads



3-body scattering?

Is anisotropic : different directions of the incoming
“beam” lead to different outgoing scattering maps

2-body scattering is isotropic: scattering map
the same regardless of direction of incoming beam

What is a "direction’ for a beam/solution g(t) to
the positive energy N-body problem *?

t
Answer: lim w = lim ¢(t) :=a
t——oco ¢ t— —o0

a € (RHN\ collisions



The energy E of such a solution is positive

and equal to E = EHOJH2
2

where

lal|® := Zimila;|”

The space of all such solutions for fixed a
sweeps out a Lagrangian submanifold lying in
the energy E hypersurface of phase space.

Call it ﬁ;



Similarly:

lim alt) = lim q¢(t) :=b

t—+oco 1 t——+00

and “forward’ Lagrange submanifold

Ly



Question: if |la|| = ||b]| (energies equal)

True for N = 2, 1. e "Rutherford scattering”



sebbbobddlblilbadliddlidddadads



Original Question: Fixair
figuration space. Is it tru

con
ope

N and dense set of b lyir

of radius |la|| we have that

the N-body

et
g |

nat for an

N the sphere

La () g #0 2



Inspiration

JEAN CHAZY

Sur I’allure du mouvement dans le probleme des trois corps
quand le temps croit indéfiniment

\ Annales scientifiques de 'E.N.S. 3¢ série, tome 39 (1922), p. 29-130.

q(t) = at — F(a)log(t) + ¢+ o(1)

/ \

asymptotic shape, impact
(or velocity) parameter

JEAN CHAZY



bcR—0Oc St do

b = Chazy'ys c
= Impact parameter

N
beam dir'n <
Call this map the - >
““scattering map” ,/“‘"

=

 aa

/Il‘

denoteitby: 1 R — 1 -
( w(b) = 2Arctan(—
(v (577

m(F+oo) =0

)




Numerical Experiments
(Rick Moeckel, the other RM’)



4. Is the scattering image open and dense?

La
' OS2 The shape sphere: the quotient of
3-body configuration space
\ (minus triple collision)
A FU- by the group of
_ VEU; A\ I R } (orient. pres. isometries) x (scaling)

" EU,

moda

, reflection
Lag

shape disc: gquotient of 3-body configuration space
(minus triple collision)

by (all isometries) x (scaling). Equals shape sphere
modulo reflection about the collinear equator.




4. Is the scattering image open and dense?




4. Is the scattering image open and dense?

A picture Rick Moeckel made of the image of the scattering map for
an incoming equilateral triangle (Lagrange) beam projected onto the
shape disc

colors indicates how close the trajectories stays to infinity



“The equilateral shape is at the center and the collinear shapes are at the outer edge.
The isosceles shapes form three diameters of the disk. The collision shapes are at the
third roots of unity on the diameter.

The unstable manifold is a 3D disk whose boundary is a 2 sphere in the infinity
manifold. The points to follow are chosen from other 2D spheres in this disk. Black
points are near the infinity manifold and blue, green orange farther from infinity.
Very crude experiment so far, but encouraging. How to prove ?”

-email, Rick Moeckel , .. 2020 (?)






4. Is the scattering image open and dense?

Melrose’s view of:

W

McGehee's DIOW-U 9, &‘.l’_k IMETRIC

SCATTERING
THEORY




Set-up and egns N bodies in d-dimensional Euc. space:

Newton's egns:

— (= V,,U(q)

q:(ql,...,qN)E ﬂzzRNd anRd,azl,...,N

Conserved energy

E(q,q)

1 MMy
— a5 .7 ) m G
5 (d: @) > -~
= h.
= K(q) —Ul(qg)
N : :
e 2K (4) = (¢, @)m = ¥ mallgil|* =
g Ty
d U(g) =G
an () =G ==
gradient relative to mass metric.



4. Is the scattering image open and dense?

q
"Spherical ’ change of var’s :
r
q
s €S ghd-l
0
dT
1 2 1 2
p = —vp
Newton's <+«— ¢ =w
egns
) o' = [w]? = pU(s)

w' = pVU(s) —vw — |w|?s

TS

|allm
vs+w,s L w

rdt

(VU(s) = VU(s) + U(s)s =
tangential proj of
VU(s)
by Euler’s ident. )

Spatial Infinity : p = (0 | an invariant submanifold

the Infinity manifold.



4. Is the scattering image open and dense?

s = w
Flow at infinity. Set 0 =0. ) 5
w = —vw — ||w||*s
~ qdN-—1
FERES v = [l
veER,v#0
Energy at infinity: 11)2 + 1HwH2 — h.
2 2
Flow at infinity is independent of U !
Equilibria! (p,s,v,w) = (0,s,v,0)

form a normally hyperbolic manifold of equilibria within the full phase space.

N=3_ UX,

disjoint union of unstable (v > 0) and stable (v < 0) equilibria
representing past and future end shapes



4. Is the scattering image open and dense?

Flow at infinity is independent of U.

Set U = 0 to understand the dynamics at infinity.
Flow = reparam. of free motion -
projected onto the sphere !:

v <0
v >.O | rays outgoing
rays incoming to infinity
from infinity

S, -S become equilibria! ; flow is gradient like between them...



Q. Unstable manifold? Of what?

Answer. A beam is the family of solutions making up the
unstable manifold of an equilibrium point (a, |al) lying on the
infinity manifold

Q. Why those black
diameters of near
infinity points™?

Answer. The image of "scattering orbits” that "stay near infinity’ converge to
“broken geodesics” on the sphere -‘linear point billiards’ or “train tracks’ come in.



What we can prove:

Thm[ Nathan Duignan, RM, RM, and Guowei Yu]
The image of the scattering map has non-empty interior.

What E.M. and A.V. can prove:

Thm[Ezequiel Maderna and Andrea Venturelli]
L, projects onto configuration space (including
collisions.



some words on broken geodesic
flow

and the mystery of the

black diameters



a picture from Melrose

2i_ 2.

P’ P

p. 80. Geometric Scattering Theory -Melrose.

l'.ig. 11. Geodesic of a .s('.'sllvring Mo,



Vasy. Knauf.
... Mazzeo. Zworski. Also:

A COMPARISONS OF THE GEORGESCU AND VASY SPACES ASSOCIATED TO THE N-BODY PROBLEMS AND APPLICATIONS

BERND AMMANN, JE'RE' MY MOUGEL, AND VICTOR NISTOR
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Pimar
callision

vV

"Broken’ geodesic flow: the collision loci on
the sphere act as perfect reflectors’

Non-deterministic!

If a geodesic hits a point on the collision locus it
bounces off in a random direction, continuing until
either it hits another , continuing in this manner

“flowing’ for a total time = spherical arclength of /[



B23 B12

It =

Lag-> Collision = Lag -> Collinear Equator = —— = Z
T N 3m 1 3m
—+rT="T — rT=— = = —
4 4 2 2

Scenario: Leave binary. Hit collision locus at a point B. Go 3/2 away around the
sphere in any direction and mark the resulting points:

Circle of radius about B on standard unit sphere ircle of radius

= circle of radius = great circle midway between B and -B.

ol | §
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Fix energy = H =-h < 0. Hill region:part of shape space for which
there is a v and H(q,v) = -h. Domain where motion occurs.
|dentical to region with U(g) > +h



..Every free homotopy class...
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Figure 8: 123123




