
Geodesics in Jet Space.

— Alejandro Doddoli,  
UC Santa Cruz

and R. Montgomery 
who is sorry he is not there in Paris with you

with big thanks to Felipe Monroy-Perez



Jk = Jk(R,R) = space of k-jets of  
functions y = f(x) 

x, y, u1, u2, . . . , uk

rank 2 distribution    defined by vanishing of the system 
of k  one-forms 

dy � u1dx = 0

du1 � u2dx = 0
... =

...

duk�1 � ukdx = 0

so 
again:

u1 =
dy

dx

u2 =
du1

dx
... =

...

uk =
duk�1

dx

coordinates

uj represents djy
dxj



 has  the structure  of a Carnot group  
of `Goursat’ type: growth (2,3,4, …, k+1, k+2) 

admitting the global  frame:  

X1 =
@

@x
+ u1

@

@y
+ u2

@

@u1
+ . . .+ uk

@

@uk�1

X2 =
@

@uk

which generates  a nilpotent Lie algebra:

[X2, X1] =
@

@uk�1

(ad�X1)
jX2 =

@

@uk�j
, i = 1, . . . , k u0 = y

=) Jk

( )



 Declare                   to be an orthonormal  frame for   X1, X2 �k

to get a subRiemannian structure on this Carnot group 

Q1: ¿What are its geodesics?

Q2:  ¿What are its globally minimizing geodesics
                               ?� : R ! Jk



Alfonso Anzaldo-Meneses  and Felipe Monroy-Perez
  
available through Research Gate: 

Goursat distribution and sub-Riemannian structures, 
December 2003  Journal of Mathematical Physics

Integrability of nilpotent sub-Riemannian structures
(preprint; INRIA, 2003; inria-00071749 ]

Optimal Control on Nilpotent Lie Groups
 October 2002 Journal of Dynamical and Control Systems

Q1 fully answered in 2002-3 by 

and their results  form ~ 75% of my talk 



k=1:  Heisenberg: 

`distribution’, D 

dy � u1dx = 0

y

u1

u1

X1 =
@

@x
+ u1

@

@y

o.n. frame for 
X2 =

@

@u1



Geodesics:  consider the projection  

J1 ! R2;⇡(x, y, u1) = (x, u1)

geodesics project to lines 

or circles 

in the (x, u1)-plane

i.e. those plane curves with curvature 

 = (s) = constant

(k=1)

Among these geodesics , only those corresponding to  lines  
are   global minimizers



Remark on geodesics for general Carnot groups G.

exp: g ' G

g = V1 � V1 � . . . Vs

V1 Lie generates, corresponds to distribution

⇡ : G ! G/[G,G] ' V1 ' Rr

Lines in the Euclidean space V1 horizontally lift to 
global minimizers  (=metric lines) in G.

¿Are there any other global minimizers? 

For s=2 (two-step, like Heis.) no. [Thm: Eero Hakavouri]
but, for s = 3…





 ¿ What plane curves arise as  projections of geodesics? 

These elastica are the  plane curves param. by arclength s whose 
curvature satisfies:  

 Euler elastica whose directrices are  `vertical’ (= parallel to  u2 - axis

(s) = a+ bx(s)
i.e.  the curvature is a linear polynomial in the coordinate x 

(k=2)

Thm[ Ardentov-Sachkov] Besides the lines and circles, we get  

(Any horizontal lift of such a plane curve is then a geodesic)

k=2:  Engel: dy � u1dx = 0

du1 � u2dx = 0
(x, y, u1, u2)coords: 

o.n. frame: X1 =
@

@x
+ u1

@

@y
+ u2

@

@u1
X2 =

@

@u2

)

⇡ : J2 ! R2
x,u2

⇡(x, y, u1, u2) = (x, u2)



Euler soliton.  

Thm, ct’d [Ardentov-Sachkov] among these, 
only the lines and the Euler solitons correspond to globally minimizing 
geodesics.

(k=2)





General k
⇡ : Jk ! R2

x,uk
;⇡(x, y, u1, . . . , uk) = (x, uk)

is                            and, as such, is a subRiemannian submersion.

Def.  a subRiemannian submersion between two sR mfds whose 
distributions  have the same rank r  is a submersion whose differential, 
upon restriction to each distribution r-plane, is a linear isometry

�k ! R2Us: d⇡ :

is a linear isometry since ds2 = dx2 + du2
k restricted to �k

Q1’ : ¿ What are the planar projections of  geodesics in       ?

Write c(s) = (x(s), uk(s)) for such a planar projection, with s = arc-length.

⇡ : G ! V1

here         denotes the distribution on �k Jk

Jk





Thm A. [Anzaldo-Meneses & Monroy-Peréz; 2002] The curvature 
          of c(s) is given by a degree k-1  polynomial K in x: 

Answer : 

(s)

(s) = K(x(s))

Conversely, for any degree k-1 polynomial K(x), any horizontal lift 
to        of any plane curve whose curvature satisfies (*) is  
a  geodesic.  

H(x, p) =
1

2
p
2 +

1

2
(F (x))2 so potential is V (x) =

1

2
(F (x))2

Moreover,     

 for some anti-derivative F(x) of K(x),  
i.e.  F(x) is  a degree   k polynomial such that   
                             dF(x)/dx  = K(x), 

u̇k(s) = F (x(s))

use F to  form the (1-deg-of-freedom) Ham. sys: 

(*) 

To understand x(s) , 

Jk



Thm B [A-M, M-P 2002, ctd]    

and obeys the energy constraint: 

The geodesic flow is  completely determined by the F-curves. 

ẋ =
@H

@p
= p

ṗ = �@H

@x
= �F (x)F 0(x)

(1)

(x(s), ẋ(s)) solves

H(x(s), ẋ(s)) =
1

2

We call such a curve x(s) an ``F- curve’’ .

The  F-curve associated to any deg. k poly F(x) arise as the x-projection 
of some geodesic on the jet space 

Hamilton’s eqns
for this H:



Will give a `magnetic field’ proof of these theorems
below



H(x, p) =
1

2
p
2 +

1

2
(F (x))2Level curves of 

associated Hill regions

Level set 
H = 1/2 

projects onto the Hill region: 

and is the  union of at most k closed  bounded intervals 
whose endpoints       satisfy              .   
Each interval is swept out by an F-curve.  

{|F (x)|  1} = [x1, x2] [ [x3, x4] [ . . . [ [x2i�1, x2i], i  k
{x :

1

2
F (x)2  1

2
} or: 

F (xi) = ±1xi





x(s) periodic. 
Traverses interval once in time L/2, 
there and back in period L 

x(s) critical . 
Of homoclinic type. 
Takes infinite time to reach x_0,  
bouncing off x_1

x(s) critical . 
Heteroclinic from x_0 to x_1. 
Takes infinite time to traverse 
interval once 
 



periodic

critical, homoclinic

 

t

critical, heteroclinic

 

 

critical, homoclinic



 

A

critical, heteroclinic, 
of `turn-around type’: 
F(x_0) = -F(x_1) 





Remark : ¿ Why is  the vertical (      ) direction special ? 

Answer: The singular curves in       are precisely the        lines.Jk uk

uk



Conjecture [Doddoli, M-] Geodesics whose F-curves  
are  critical and not of `turn-around type’  
are  global minimizers. 

For k =2 this is the  theorem of Ardentov-Sachkov above. 
Up to scale there is just one such curve, the one for    

Theorem. [Doddoli, M- ]
   (i) For k >2,  the geodesic whose x coordinate x(s) is an  F-curve for  
   

(ii) Geodesics whose F-curves are periodic are not global mins. 
Indeed, they fail to minimize past one period L.  
specifically: if x(0) = x(L) is an endpoint of for the  F-curve’s interval then  
s = L is conjugate to s = 0 along the corresponding geodesic in J^k

F (x) = x2 � 1

F (x) = xk � 1 is a  global minimizer. 

 MAIN RESULTS



Plan of attack for an eventual  proof for the full conjecture:   

Two ideas :  
    1) Build an intermediate sR manifold          depending on F

All projections are sR submersions between sR manifolds

The  intermediate space will be of ``magnetic type’:

    Use the method of Hamilton-Jacobi to find  calibrations S on 

The solution S will be  associated to  a + b F -curves  

Use:  the horiz lifts of global mins are global mins.  

2):  

R3
F

Characterize its geodesics and global minimizers

the intermediate space, thus generating (quasi-) global mins







Step 1.  i) A polynomial change of coordinates : 

(x, u0 = y, u1, . . . , uk) 7! (x, ✓0, ✓1, . . . , ✓k)

✓0 = uk ✓1 = �uk�1 + xuk …

X1 =
@

@x

X2 =
@

@✓0
+ ⌃k

j=1
xj

j!

@

@✓j

yields an alternate expression for our frame: 

Define the  projection        to 3-space, with coords X, Y, Z  by

X = x
Y = ✓0 := uk

Z = a0✓0 + a1✓1 + . . .+ ak✓k

ii) Suppose given  

, ,

F = a0 + a1x+ a2
x2

2!
+ . . .+ ak

xk

k!
⇡F



The projection        is linear in these coordinates  
so its differential easy to compute. Get: 

⇡F⇤X1 =
@

@X
=

@

@x

⇡F⇤X2 =
@

@Y
+ F (x)

@

@Z

which is an o.n. frame for the sR structure of magnetic type: 

Distribution: dZ � F (x)dY = 0

dX2 + dY 2metric: restricted to distribution. 

magnetic analogy: vector potential: F (X)dY

F 0(X)dX ^ dY = K(X)dX ^ dYmagnetic field: 

⇡F

= E1

= E2



Example: Martinet case.  F(x) = x2





General F, ct’d.  The geodesics for          are generated by: 

H =
1

2
p
2
X +

1

2
(pY + F (X)pZ)

2

ṗY = ṗZ = 0
Since:

H =
1

2
p
2
x +

1

2
(a+ bF (x))2

  generates a family of F-curves x(s), not just for  F, 
but for the pencil of polynomials a + b F(x). 

pY = a, pZ = bwe can view as constant  parameters.

(X = x) 

R3
F

Then 



Step 2.  Hamilton-Jacobi method

solve H(q, dS(q)) =
1

2
for S

eqn is equiv to krhorS(q)k = 1

Integral curves q(t) for q̇ = rhorS(q)

are minimizing geodesics.  

rhorS =
@S

@x
E1 + (

@S

@Y
+

@S

@Z
F (x))E2

Our case of 

R3
F

R3
F

(
@S

@x
)2 + ((

@S

@Y
+

@S

@Z
F (x))2 = 1

Hamilton-Jacobi eqn:



Ansatz:   S(x,Y, Z) = b Z  + a  Y + f(x)

yields f 0(x)2 + (a+ bF (x))2 = 1

Compare with the energy H=1/2 eq implied by the geodesic equations: 

(ẋ)2 + (a+ bF (x))2 = 1

ẋ = px, a = pY , b = pZ

Suggests: 
Ẏ := u̇k = (pY + PZF (x))

&

which are the first two components  of the  ODE:  

q̇ = rhorS(q)

ẋ = f 0(x), u̇k = a+ bF (x)

The last (Z) component arises by horiz lift:    Ż = F (x)u̇k = F (x)(a+ bF (x))



Solve the boxed eq by taking a square root and integrating:

Must have 

which means that x  &  x(0)  must  lie within a single interval  [xi, xi+1]
of the Hill region (*) associated to the 1-deg of freedom Hamiltonian

H =
1

2
p
2
x +

1

2
(a+ bF (x))2

at energy level 1/2.   

f(x) = ±
Z x

x(0)

p
1� (a+ bF (⇠))2d⇠

1� (a+ bF (⇠))2 � 0





The criticality or regularity of a + b F(x) 
at the endpoints of the interval of def, [xi, xi+1]

govern whether or not the horizontal gradient flow of S is 
complete or not on the slab  

{x, Y, Z) : x 2 [xi, xi+1]} ⇢ R3
F

ẋ = ±
p

1� (a+ bF (x))
2

Ẏ = a+ bF (x)

Ż by horizontally lifting the x, Y curve…

Heteroclinic case, no `turn-back’:  
 a + b F(x) =1 at endpoints x_i, x_{i+1}

EXAMPLE: 










































































































F I

n

F I
O

S defined here

Result: the geodesic 
corresponding to this 
heteroclinic F-curve 
is a global minimum
within the larger slab 
within which S is defined. 



END
perhaps… but if …



…time permitting - a bit of blather on 

-Buseman,  
-being bi-asymptotic to two singular lines, 
-dim count ons space of pairs of singular lines…



END






