Geodesics in Jet Space.

— Alejandro Doddoli,
UC Santa Cruz

and R. Montgomery
who Is sorry he is not there in Paris with you

with big thanks to Felipe Monroy-Perez



Jk — Jk (R7 R) — space of k-jets of
functions y = f(x)

coordinates I, Y, U1, UQ, ..., UL
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admitting the global frame:
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which generates a nilpotent Lie algebra:
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— Jk has the structure of a Carnot group
of "Goursat’ type: growth (2,3,4, ..., k+1, k+2)



Declare X, X9 to be an orthonormal frame for A

to get a subRiemannian structure on this Carnot group

Q1: ;What are its geodesics?

Q2: ¢What are its globally minimizing geodesics

W:R%Jk?



Q1 fully answered in 2002-3 by

Alfonso Anzaldo-Meneses and Felipe Monroy-Perez
available through Research Gate:

Goursat distribution and sub-Riemannian structures,
December 2003 Journal of Mathematical Physics

Integrability of nilpotent sub-Riemannian structures
(preprint; INRIA, 2003; inria-00071749 ]

Optimal Control on Nilpotent Lie Groups

October 2002 Journal of Dynamical and Control Systems

and their results form ~ 75% of my talk



Heisenberg:

“distribution’, D

0.Nn. frame for

/

dy — uidr =0




(k=1)
Geodesics: consider the projection

Jh— RQ;W(%%’M) = (2, u1)

geodesics project to lines
or circles

inthe (x,u1)-plane

l.e. those plane curves with curvature

k = k(s) = constant

Among these geodesics , only those corresponding to /ines
are global minimizers



Remark on geodesics for general Carnot groups G.

exp: ¢ = G

g=ViaeViae...V
V1 Lie generates, corresponds to distribution

T:G—G/G G~V ~R"

Lines in the Euclidean space V1 horizontally lift to

global minimizers (=metric lines) in G.

; Are there any other global minimizers?

For s=2 (two-step, like Heis.) no. [Thm: Eero Hakavouri]
but, for s = 3...






(k=2) k=2: Engel: dy — uidx =0

duy — usdx = 0
coords: (z,y,ul,m)
0 0 %, 9
o.n. frame: X, = | | —_ _ v
1= 5 U1 oy U2 ou, X9 = s

T Jd = Ri’m (X, Yy, Uy, us) = (x,us)

¢, What plane curves arise as projections of geodesics?
(Any horizontal lift of such a plane curve is then a geodesic)

Thm| Ardentov-Sachkov] Besides the lines and circles, we get
Euler elastica whose directrices are “vertical’ (= parallel tous - axis)

These elastica are the plane curves param. by arclength s whose
curvature satisfies:

k(s) = a + bx(s)

l.e. the curvature is a linear polynomial in the coordinate x



(k=2)

Euler soliton./

Thm, ct’d [Ardentov-Sachkov] among these,
only the lines and the Euler solitons correspond to globally minimizing
geodesics.






T JE = Ri,uk;w(x,y,ul, o ug) = (T, ug)

s 1 — Vl and, as such, is a subRiemannian submersion.

Def. a subRiemannian submersion between two sR mfds whose
distributions have the same rank r is a submersion whose differential,
upon restriction to each distribution r-plane, is a linear isometry

Us: d : Ak %RZ

is a linear isometry since ds? = dx? + du? restricted to Ay

here A ;. denotes the distribution on J*

Q1’: ; What are the planar projections of geodesics in ./ ka

Write c(s) = (,CE(S), Uk (S)) for such a planar projection, with s = arc-length.






Answer :

Thm A. [Anzaldo-Meneses & Monroy-Peréz; 2002] The curvature
k(s) of c(s) is given by a degree k-1 polynomial K in x:

k(s) = K(x(s)) )

Conversely for any degree k-1 polynomial K(x), any horizontal lift
to J" of any plane curve whose curvature satisfies (*) is
a geodesic.

Moreover, 1 (s) = F'(x(s))

for some anti-derivative F(x) of K(x),
l.e. F(x)is adegree k polynomial such that

dF(x)/dx = K(x),

To understand x(s) , use F to form the (1-deg-of-freedom) Ham. sys:

H(z.p) = 50" + 5 (F(x))*  sopotentlis V(z) = o (F(x))



Thm B [A-M, M-P 2002, ctd] (z(s), £(S)) solves Hamilton's eqgns

for this H:
. _ 0H _
T = o =D
p= -0 = —F@)F(x)

and obeys the energy constraint:

We call such a curve x(s) an ~F- curve” .

The geodesic flow is completely determined by the F-curves.

The F-curve associated to any deg. k poly F(x) arise as the x-projection
of some geodesic on the jet space



Will give a ‘magnetic field’ proof of these theorems
below



Level curves of H(a:',p) — 5]02 =+ (F(x»Q

Level set
H=1/2

z - e ey ~ F-curves
i JR—

projects onto the Hill region: {: : %F(x)2 < %} or:

{|F(£IZ‘)| S 1} — [,’131,32?2] U [33‘3,374] J...U [51327;_1,3721‘],7; < k

and is the union of at most k closed bounded intervals
whose endpoints x; satisfy F(x;) = £1
Each interval is swept out by an F-curve.






o X(s) periodic.
F -4 | Traverses interval once in time L/2,
there and back in period L

e R e s o e Pres T s SR
)‘c x xl
VZ7a x(s) critical .
) Of homoclinic type.
=k Takes infinite time to reach x_O,
= bouncing off x_1
+
X X x,

X(s) critical .
Heteroclinic from x_0 to x_1.
Takes infinite time to traverse
Interval once




periodic

><o Xl )(0 X

X4 X,

critical, homoclinic it N . .
critical, homoclinic critical, heteroclinic



critical, heteroclinic,
of “turn-around type’:
F(x_0) = -F(x_1)






Remark : ;, Why is the vertical (Uf ) direction special ?

Answer: The singular curves in J* are precisely the Uk lines.



MAIN RESULTS

Conjecture [Doddoli, M-] Geodesics whose F-curves
are critical and not of "turn-around type
are global minimizers.

For k =2 this is the theorem of Ardentov-Sachkov above.
Up to scale there is just one such curve, the one for F(z) = 2% — 1

Theorem. [Doddoli, M- ]
(1) For k >2, the geodesic whose x coordinate x(s) is an F-curve for

F(z) =2 —1 isa global minimizer

(i) Geodesics whose F-curves are periodic are not global mins.

Indeed, they fail to minimize past one period L.
specifically: if x(0) = x(L) is an endpoint of for the F-curve’s interval then
s = L is conjugate to s = 0 along the corresponding geodesic in JAk



Plan of attack for an eventual proof for the full conjecture:

Two ideas :
1) Build an intermediate sR manifold ]R% depending on F

e T F ‘ I'F ‘
J* =5 R} =5 R?
PrpoOmp = T: J* = R?
All projections are sR submersions between sR manifolds

The intermediate space will be of "magnetic type’:

Characterize its geodesics and global minimizers

Use: the horiz lifts of global mins are global mins.

2): Use the method of Hamilton-dJacobito find calibrations S on
the intermediate space, thus generating (quasi-) global mins

The solution S will be associated to a + b F -curves









Step 1. i) A polynomial change of coordinates :
(x,up =y, u1,...,ur) — (x,00,01,...,0%)
Op = ur 01 = —up_1 + zup

vields an alternate expression for our frame:

0
X = =
ox |
¥ 0 sk ) O
2 — T =1
({9(9() ]! (3)(9]
if) Suppose given 72 rk
F:CLO—I‘alﬁU—FCLQg—F...—I—CLkF
Detine the projection 7t to 3-space, with coords X, Y, Z by |
X = X
Y = 90 = UL

Z:a06’0+a191+...+ak9k



The projection 7T is linear in these coordinates
so its differential easy to compute. Get:

0 0
WFJ“&TX‘% = £
0

which is an o.n. frame for the sR structure of magnetic type:
Distribution:  dZ — F(x)dY =0

metric: dX2 + dY2 restricted to distribution.

magnetic analogy: vector potential: F(X)dY
magnetic field: F'(X)dX NdY = K(X)dX NdY



Example: Martinet case. F(x) = ;132






General F, ct'd. The geodesics for R% are generated by:

1
H = -p% + 5 (py + F(X)pz)°
Since: .
Py =Pz =
we canview Py = a,pz = b asconstant parameters.
1 1
Then H = 5]?2 + 5(0/ + bF(QZ‘))Q (X = X)

generates a family of F-curves x(s), not just for F,
but for the pencil of polynomials a + b F(x).



Step 2. Hamilton-Jacobi method

solve H(q, dS(q)) — % for S

eqgn is equiv to thmS(q)H — 1

Integral curves q(t) for ¢ = thTS(Q)

are minimizing geodesics.

Our case of R%

0S5 oS 05
vhorS — %El | (8Y | 8ZF(37))E2
Hamilton-Jacobi egn:
28 ., 08 9S . .,



Ansatz: S(x,Y,Z)=bZ +a Y + f(x)

vields | £/(2)* + (a + bF(z))? = 1

Compare with the energy H=1/2 eq implied by the geodesic equations:
-\ 2 2
(2)°+ (a+bF(x))” =1

jj:pmva:pY7b:pZ& , .
Y ;= = (py + PzF(x))
Suggests:

T = f'(x),0 = a+ bF(x)

which are the first two components of the ODE:

q — vhorS(Q)

The last (Z) component arises by horiz lift:  Z = F(z)u, = F(z)(a + bF(z))



Solve the boxed eq by taking a square root and integrating:

fo)=+ [ /1= (a+ bF(E)2de

x(0)

Musthave 1 — (a4 bF(£))* >0

which means that x & x(0) must lie within a single interval [5137;, a?i+1]

of the Hill region (*) associated to the 1-deg of freedom Hamiltonian

1 1
H = §p§ + §(a + bF(z))?

at energy level 1/2.






The criticality or regularity of a + b F(x)

at the endpoints of the interval of def,  [z;, ;1]

govern whether or not the horizontal gradient flow of S is
complete or not on the slab

(2,Y,7):x € |x;,xi41]} C R%

2

m':::\/l—(a—l—bF(:L’))
Y =a+ bF(z)

Z by horizontally lifting the x, Y curve...
EXAMPLE:

Heteroclinic case, no turn-back’:
a + b F(x) =1 at endpoints x_i, x_{i+1}

A

N



Result: the geodesic
corresponding to this
heteroclinic F-curve

Is a global minimum
within the larger slab
within which S is defined.




END

perhaps... butif ...




...time permitting - a bit of blather on

-Buseman,
-being bi-asymptotic to two singular lines,
-dim count ons space of pairs of singular lines...












