


How does a falling cat,
dropped from upside down with no spin,
right itself?

What does this problem have to do with
gauge theory ?

With the three-body problem ?



Unifying Mathematical theme:
geometry of a principal G-bundie

G—>0Q—S

group a space on the quotient
which G space Q/G
acts
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Groups ?

Stand up!
move...



For the talling cat
and for the 3-body problem

G = group of rigid motions
= rotations and translations



Principal G-bundles:
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Q = configuration space
= space of located cats’ in space

or , for the 3-body problem:

Q = configuration space of the 3- body problem:
= triples of points in the plane (planar 3-body)

G acts on Q by rotating and translation

the "frozen cat

or, In the 3-body problem, by rotating and translating
the triangle formed by the 3 bodies




Utility of principal bundle picture for understanding
the strategies of the falling cat
for righting herself

a reorientation strategy
IS a loop in shape space
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in shape space



- Initial and Final shapes of cat are almost the same!
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(from "Falling Cat * wiki page; a

copy of a photo taken in 1894)



What is a shape?

.. more kinesthetics..
hands.. (*)



A “shape’ is a G-orbit!

.e
an equivalence class of configurations
under the action of G

A shape is a point in ‘shape space’: S:=Q/G.



Quotient space S = Q/G
= shape space;
SO space of shapes of cats,
or shapes of triangles tor the three-body problem.

Planar 3-body shape space: RS



Bundle w connection. Total space = Config. space
= space of located shapes

!
T
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connection “A’, given by physics

structure group =

group of rigid motions

th(:.e quo(,
S

in shape space =

reorientation strategy or gait
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Horizontal motions =
paths perpindicular to the group orbits,
or perpindicular to the "vertical spaces”

where a "vertical vector ' is a vector tangent to a G-orbit

To show:

Horizontal motions = motions with
total angular momentum zero

Perpindicular relative to what metric on Q7



Model Q, the configuration space for
the "located cat’ as a collection of point masses.

SO:

q = (q17QQ7“‘77QN)7qCL ERS

represents a point of Q. Think of

the g_a’s as marker points. (' Foot’, "head’, ..,)
They have masses m_a. Define an inner product
on Q for which the squared length

of velocities v_a Is twice their kinetic energy

K

1

K(q) — §Ema‘va|27va =qq = <U,?}>

so that :

<q,q >=¥muq. - q, Mass metric



O WOrk out
Hq — (Vq)L

we need V_q, the tangent space to the group orbit through Q:
G(q) ={Rq:= (Rq1,...,Rqn) : R € SO(3) a rotation}

Infinitesimal rotations are given by cross products:

d
d_R(E)Qa — W X (g, W, qq € RB
€

SO:;
V,={‘wxq" :w c R%}
where
“wxq" = (wXqg,wXqga,...,wXqN)



Suppose that v in Q is mass-metric
perpindicular to all these vertical vectors:

0=<wv “wxqg’ >

for all w e RS

This is true iff D0y, X MyU, = 0

But this says the total angular momentum is zero!

>.q, X MgV, = the angular momentum associated to q, v



Prop. A deformation, or motion’ g(t) of a located
shape g(0) is mass-metric perpindicular

to the group orbits
if and only if its total angular momentum is zero.

This tact connects the geometry
to the physics !



Same principle in Riemannian geometric terms

If I have a ‘Riemannian submersion’ 7 : () — S
then any geodesic which is perpindicular to a fiber
at one point is perpindicular to the fibers at all points
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The problem of swimming at low Reynolds number is formulated in terms of a gauge
field on the space of shapes. Effective methods for computing this field, by solving



The three-body problem



Galileo

1632; Dialogo ..” :
ne laws of physics are

[}
| )

variant under my group.

My group contains your group G.

G= group of rigid motions of space
=translations, rotations, retHections



Newton, Principia, 1687:

'he laws of physics can be
tten as differential equations
ich are invariant under
Galileo’s group.

For three bodies moving in the plane or space
under the influence of their mutual gravitational
attraction these differential equations are



where

mig) =
magz =

msigs =

Fo1 + F3y,
Fi2 + F3a,
Fa3 + Fi3,




Planar 3-body problem:
Q=R*xR*xR* — (3
Newton’s 3 body ODEs descend to shape space:

S=0Q/G

which equals...

RB -the space of oriented
congruence classes of

planar triangles
"



Some Detalils..



mod out by translations C3 /translations = C?

then rotations C2?/S! = R?
metrically: R? = Cone(S*(1/2))
S® c C?
g3
Hopf! !






N Lagrange’s solutions.
A —quilateral triangles.

1772

—uler’s collinear solutions. 1767

Projected to the shape sphere, ,
the corresponding curves A
do not move: they are points!




ulilateral

collinear
triangles

Lagrange = Equilateral

SHAPE SPHERE C SHAPE SPACE

Oriented similarity classes Oriented congruence classes
of triangles of triangles



G—>0Q—S

group quotient

config. space on
J P space by G

which G acts






How we (re)discovered
the figure eight



We used the variational principle:

The extremals of a certain function A (= "action’)
on the FATH SPACE of Q solve Newton's equations.

A(q()) = / L(q(t), d(t))dt

L(q, v) = K(v) + U(q) U = G(mlm2 . Mam3  Mims
(Lagrangian) (neg. of potential energy)

Domain of A: paths q:[0,T] to Q with g(0) =q_0 fixed
and g(l) = qg_1 fixed.



We took inspiration from Riemannian
geometry and topology:

e

Thm.
On a compact Riemannian manifold

every free homotopy class (*) of loop
IS realized by a periodic geodesic.

Pf. Direct method of the calculus of
variations: (1) fix such a class. (2)
minimize the lengths of loops over
all loops representing this class

ength: = | L@@t L) = Vv,



We applied this topological direct method’
idea to Newton’s three-body eqgns

a. Replace length’ by "action’

b. REALIZE THAT: A free homotopy class of loops in the
collision-free planar 3-body configuration space

A conjugacy class in the pure braid group on 3 strands

Y e O

FIGURE 30. Borromean rings as the closure of a string link

c. Push the variational principal down to shape space
(don't insist loop closes up; rather only closes up modulo rotations)
SO as to minimize over loops realizing a given projective pure braid’



This strategy fails....
due to tight binary loops’
converging to collision and
destroying topological constraint (*)

The strategy can be saved - made to work - if we take alli
three masses to be equal and impose additional discrete
symmetries on the competing paths, symmetries arising
from mass interchange.
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Li-Liao :

movies.htmumericaltank.sjtu.edu.cn


https://numericaltank.sjtu.edu.cn/free-fall-3b/free-fall-3b-movies.htm

< C M 2% numericaltank.sjtu.edu.cn/free-fall-3b/free-fall-3b-movies.htm

S me3 @ listHome.ntml [ math [ water [ programming [ Conferences [ biz [ computerHelp [ folks [ French [ GoogleDocs

ovies of the Collisionless Periodic Orbits in the Free-fall Three-body Pr

on Shape Sphere

Kiaoming LI and Shijun LIAO

Shanghai Jiaotong University, China

Parameters:
Body mass: my, my, my

ewton's gravitational constant: G = |

nitial positions: (-0.5,0), (0.5,0), (x,y)

nitial velocities: (0,0), (0,0), (0,0)

[ is the period

Fj(m;,m;,mj3)
Fy(1,1,1)
F,(1,1,1)
F3(1,1,1)
F4(1,1,1)
F5(1,1,1)
Fg(1,1,1)
F4(1,1,1)

X
0.0207067154
0.2053886532
0.0562664280
0.1846729355
0.0880412663
0.3142334050
0.0741834378

y
0.3133550361

0.1952668419
0.4691503375
0.5753740774
0.5488924176
0.5384825297
0.5324424488

T
2.1740969264
1.6896364928
4.5419125588
5.1586391029
4.9647695145
4.8672002993
5.4455591108

Real Space

movie
movie
movie
movie
movie
movie

movie

Shape Sphere

movie
movie
movie
movie
movie
movie

movie
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Y1

Quotient map: C3 — R3 from Configurations to shapes

C3 _ymodtranslations (2 _ymodrotations g3 ig.

C3 _yJacobi (-2 _,Normalization (2 _,'Hopf' p3

Jacobi:

(91,92,93) = (92 — 91,93 — Gy s 11 + 7y 2om,92)) = (Y0, Y1)
Normalization: (Yp, Y1) — (u_llYO"_’ (#lel) = (Zo, Z1)

Hopf:

(Zo, Z1) = (|20|%°—|2Z1|%,2Z02Z1) = (|1Z0|?—|Z1|?,22Z0-Z1,2Zo N Z1)

real imag.

Honest Hopf: C2 — §2 = shape sphere C R3
(Zo, Z1) = 1(|120|? — | 21|2,220Z4)

with I = mom. of inertia = |Zy|2 4 |Z1]2 = (g, q)



Fini






Overflow:









N\

Surrau’ or
Pythagorean 3-4-5
Overflow! three body problem (*)

(*): Greg Laughlin, UCSC made film w
Burlisch-Stoer integrator



Fix energy = H =-h < 0. Hill region:part of shape space for which
there is a v and H(q,v) = -h. Domain where motion occurs.
|dentical to region with U(g) > +h



Under the spell of the gauge principle’ -t'Hooft

Under the spell of the variational principle
-Maupertuis, Hamilton, Lagrange, Feynman...
(me)
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Figure 4. The shape sphere.









