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Not all sub-Riemannian minimizing geodesics are
smooth

Alessandro Socionovo, Yacine Chitour, Frédéric Jean, Roberto Monti, Ludovic
Rifford, Ludovic Sacchelli, Mario Sigalotti

"We consider the sub-Riemannian structure (A, g) in R? with coordinates (z1,2,z3), gen-
erated by an orthonormal family of vector fields {X!, X2} defined as

Xt = 01 and X% = 0s +P(l‘)263,

where
P(z) = :vf -z Vz = (z1,T2,23) € R3,

and m is an odd integer satisfying m > 5. Besides the motivations described above, the
counterexample took this particular form after a study of several types of possible examples
in [18], its structure (in particular with the square of P) being inspired by the Liu-Sussmann
example [10].
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UNDER THE SPELL
OF THE
PRINCIPLE OF LEAST ACTION

P. de Fermat, P.L. Maupertuis,
J.L. Lagrange, W.R. Hamilton




UNDER THE SPELL
OF THE
GAUGE PRINCIPLE

G.'t Hooft




| witnessed a revolution. Gauge theory from physics invaded differential georréi
and topology and remarkable advances were made.
| was a grad student in Berkeley from 1980 to 1985.
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Taubes was there. Singer was there. A PDEfarising in gauge theory
became employed to say remarkable things about 4 dimensional topology.

A re - @l Aoyl anﬁ- Mslls
Method: Given a compact 4-manifold, attach to it 57")
the moduli space of solutions to a certain non-linear
PDE over M. One component of this moduli space

was M itself! From properties of this moduli space
one could conclude surprising theorems about M.

This PDE is the anti-self-dual Yang Mills equations”. G.
t’Hooft gave the first example of solutions. The conformal group
acts on the solutions, and as a result they concentrate. Taubes
showed how to glue these concentrated 't’'Hooft instantons onto
any 4-manifold M, provided "b_{2 +} = 0"
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Two-plane fields in 3-space: {dz — A1 (z,y)dx — Asx(x,y)dy = 0}

“distribution’, D one-form, @
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Geometry of self-propulsion at low R \ L_\/' al/|
Reynolds number '

By ALFRED SHAPERE} AND FRANK WILCZEK? %/ \

t Institute for Advanced Study, Princeton, NJ 08540, USA
1 Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106, USA

(Received 15 April 1987 and in revised form 12 July 1988) ‘
e

The problem of swimming at low Reynolds number is formulated in terms of a gauge
field on the space of shapes. Effective methods for computing this field, by solving
a linear boundary-value problem, are deseribed. We employ conformal-mapping
techniques to calculate swimming motions for cylinders with a variety of cross;
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(5.1.4) Mit,x, 7) = m£ Ht, x,u, 7).
e

The necessary condition for Lagrange problems now takes the form below, which
we shall deduce explicitly from (4.2.1) in Section 5.2. A direct proof is indicated in
Section 731

5.1 (Tueorem). Under the hypotheses listed above, let x(r) = (x',...,x"), ulf)=

(w',...,W")\ t, <t <t,, be an optimal pair, that is, an admissible pair x, u such that

I[x,u] < I[%,&) for all pairs X, @ of the class Q of all admissible pairs. Then the optimal

pair x, u has the following properties:

(P1) There is an absolutely contimwous vector function Z(t) = (2g, 2y, . .. b t; S LS 1;
(multipliers), which is never zero in [1,,1,), with i, a constant in [ty,1,], ie = 0,
such that

dijdt = —H A, x(0, ), 2(0)),  i=1,...,n te[t,t,](ae)

(P2) For every fixed tin[t,,t;](ac.), the Hamiltonian H(t, x(1), % (1)) as a function of u
only (with u in U) takes its minimum value in U at u = wlt):

Mt x(e), A1) = Hit, x(e)ult), i), € [1,,1;] (ae)

(PY) The function M(t) = Mz, x(t), 2{1)) is absolutely continuous in [t,,t,] (more specifi-
cally, M(1) coincides a.e. in [t,t;] with an AC function), and

dM /de = (d/d)M(t, x(2), Al2), ult))

= Hftx(e) Z0) 1€ [r,1,] (ae)

(P4) Transversality relation:
Aodg — M(ry)dry + 3 Afe)dx| + M(ty)dry ~ ¥ Afty)dxd =0

=1 =1
Jor every (2n + 2pvector h = (dt,, dx, dty, dx;) € B, that is,
(5.1.5) dodg + [mcm - Y indx' | =0

=1 1

The transversality relation is identically satisfied if 1,, x,, 1,, x, are fixed, that is, for
the boundary conditions which correspond to the case that both end points and times
are fixed (dt, = dx} = dty = dxy = 0,i=1,...,n). For Lagrange problems of course
g=0dgw=0

Here x, u is an admissible pair itself, so that the differential equations

(5.1.6) de'/de w [, x(ehulr), i=1,....n
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