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Theorem. On the Heisenberg group

1. Geodesics 
are horizontal lifts of  
Euclidean lines and circles in 
the plane. 

2.  Metric lines  
are   horizontal lifts 
of Euclidean lines in the plane.



R3as a manifold: 

as a metric space: 
Call a smooth path c(t) = (x(t), y(t), z(t))  ``horizontal’’ if : 

dz

dt
=

1

2
(x(t)

dx

dt
� y(t)

dy

dt
)

and call the length of such a path : 

`(c) :=

Z

c

p
dx2 + dy2 :=

Z b
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s
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dt

2

+
dy

dt

2

dt

Then d(A, B) = inf { length of c: c horizontal, c joins A to B } 

as a Lie group: (x,y,z)(x’, y’, z’) = (x + x’, y+ y’, z+ z’) 
                             + (0,0,  (1/2)(xy’ - yx’))  

dyed x
O O



 d is a left-invariant metric on the Heisenberg group: 
  d(gA, gB) = d(A, B)  

The projection 
⇡ : R3 ! R2;⇡(x, y, z) = (x, y)

is a submetry: 

DEF: a submetry  is an onto map 
F between metric spaces  such that F(B(p, r)) = B(F (p ), r)  

`(c) = `R2(⇡(c)) =) ⇡ is a submetry
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c is the horizontal lift of �

�(t) = (x(t), y(t)) =) c(t) = (x(t), y(t), z(t)) where

dz

dt
=

1

2
(x(t)
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dt
� y(t)
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dt
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Theorem. On the Heisenberg group

1. Geodesics 
are horizontal lifts of  
Euclidean lines and circles in 
the plane. 

2.  Metric lines  
are   horizontal lifts 
of Euclidean lines in the plane.



In all cases there is a horizontal lift operation 
The  horizontal lifts of  Euclidean lines are  always metric lines.

Are  there any   metric lines besides lifts of  Euclidean lines? 

Other sR geometries admitting submetries onto the Euc plane: 

1  Those arising out of planar magnetic fields 

2  Carnot groups. 

3  Other Lie groups with  homomorphisms onto the plane



 sR structure on a  smooth  manifold Q  consists of 

D  , a linear sub-bundle of TQ, called a `distribution’ 
and < , >  a fiber-linear inner product on D

d(A,B) as before

Def: a ``horizontal’’ path is an (abs cts)  path in Q (a.e.)  tangent to D 

the length of such a  path c is the  integral of  the length 
of its derivative v = dc/dt, this instantaneous norm computed using 
the fiber inner product  

                           = inf { length of c: c horizontal, c joins A to B } 

Theorem. [Chow-Rashevskii] If D bracket-generates TQ 
and if Q is connected then  
d defines an honest metric on Q and the induced metric 
topology on Q agrees with its manifold topology 

Generalities. 



Take the case  rank(D)=  2, for simplicity

 so  D is spanned (locally) by two smooth orthonormal vector fields

X =
X

Xµ(q)
@

@qµ
Y =

X
Y µ(q)

@

@qµ

 and a path q(t) in Q is horizontal if  

in which case  its length is : 

q̇ = u1(t)X(q(t)) + u2(t)Y (q(t))

`(q(·)) =
Z p

u1(t)2 + u2(t)2dt

Exer.  A min. geodesic from A to B is a horizontal curve 
connecting A and B whose length realized the distance 
d(A, B)

Geodesics fall into two categories:  normal and abnormal.



H =
1

2
(P 2

1 + P
2
2 )and 

P1 = PX =
X

pµX
µ(q) P2 = PY =

X
pµY

µ(q)

: T ⇤Q ! R

Form the fiber-linear functions 

the fiber-quadratic function 

Def.  A normal sR extremal is the projection to Q of
a nonzero characteristic for the hypersurface { H = 1/2} 

Def.  An  abnormal sR EXTREMAL  is the projection to Q of
a nonzero characteristic of the codim n-2 dim submanifold { H = 0} 

WHERE Def.  a characteristic for a submanifold  ⌃ ⇢ T ⇤Q
is an abs cts  curve z(t) in  

⌃
⌃ whose derivative dz/dt lies 

the kernel of !⌃

: T ⇤Q ! R

 the restriction to of the canonical symplectic form 

P1, P2 :

equivalently dz/dt 2 Tz(t)⌃ \ (Tz(t)⌃)
!?





Equivalently:  a normal extremal is the projection to Q 
of a solution to Hamilton’s equations for H which has energy H = 1/2

this equivalency holds   because 1/2 (or any positive number) 
is a regular value for H

while :  an abnormal extremal is the projection to Q 
of an abs. continuous curve z(t) = (q(t), p(t)) lying in 

with p(t) never zero, 
and with z(t) a characteristic in the previous sense for this        

⌃ = D? := {(q, p) : p(Dq) = 0}

⌃

these Hamilton’s eons are smooth ODEs on T*Q so normal geodesics are smooth

these eqns are a mix of algebraic and differential eqns and 
their solutions - the abnormal extremals -  need not be smooth  

Ker wz lRXH



Every minimizing geodesic is an arc of either a normal or abnormal 
extremal 

It could  be both  (with two different cotangent lifts then) 

Sufficiently short arcs of 
the  normal extremals are always minimizing geodesics, 
 

Very short arcs of abnormal extremals might not be 
minimizing geodesics  

[M-]  It can happen that a  minimizing geodesic is really abnormal: 
it is an abnormal extremal, and it is not a normal extremal:  
it does not ``satisfy the geodesic equations’’

For rank 2 distributions, this phenomenon of ``strictly abnormal 
minimizers’’ just described is topologically stable  and 
generic 



Generalizations 

1. Carnot groups 
2. Planar magnetic fields yielding sR submetry     
3. Lie groups endowed with onto homomorphism to Euc plane. 

R3 ! R2

in these three cases there is a horizontal lift operation 
and the  horizontal lift of  a Euclidean line is a metric lines.

In these examples are  there any   metric lines besides these
these horiz. lifts of Euclidean lines? 
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recall  Heisenberg  
….

special case of:  



X =
@

@x
+A1(x, y)

@

@z
Y =

@

@y
+A2(x, y)

@

@z

( here   A_1  = 0,  A_2   = x)

 D is framed by a pair of vector fields: 

which we take to be o.n. : 

B(x, y) =
@A2

@x
� @A1

@y
= planar magnetic field

Q is usual 3-space



Original Heisenberg example:  A = (1/2) ( xdy - y dx )

ie
A_1 = -(1/2) y
A_2 = + (1/2) x  

so dA = dx ^ dy  
13 1



Horizontal lift  : 

z(s) = z(0) +

Z

c([0,s])
A1(x, y)dx+A2(x, y)dy

If c is a  plane curve,   c(t)= (x(t), y(t)) ,  

to obtain (x(t), y(t), z(t))  a horizontal curve projecting onto c(t). 

horizontality condition:   dz - A_1 dx - A_2 dy  = 0

then integrate the horizontality eqn : 

Call this  `hc’’ , the horizontal lift of c.  
  = unique up to a z-translation
(choice of z(0))   

⇡ : R3 ! R2

� = hc

⇡(�) = c

`(�) = `R2(c)
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�z =

Z

c
A1dx+A2dy =

Z Z

D
B(x, y)dxdy

B(x, y) =
@A2

@x
� @A1

@y

= Magnetic Field

= Flux of 
Magnetic Field

( via Lie brackets:  [X, Y] = B(x,y) Z;   Z =
@

@z

If c is closed, then the difference between its final and initial height is

Mr O





  Heisenberg case:  flux = area, 

   so sR geodesic  problem is equivalent to the isoperimetric problem

whose solutions are lifts of lines and circles, 

Defining eqn for lines and circles, a la elem. differential geometry:  
 = const.

where  = curvature of plane curve c.

or

(s) = �B(x(s), y(s))

B ⌘ 1



Geodesic equations, general magnetic 
case:   
 

�0(s) = �B(c(s))

�0,� constants with �0� 6= 0

(s) = curvature of plane curve c(s) = (x(s), y(s))

s = arc length parameterizeration of c

B(x,y) = planar magnetic field `pointing out of board’’

�0 6= 0Normal geodesics:   
�

�0
=  mass *charge/ (speed)^2

Abnormal extremals :    �0 = 0 curve: zero locus of magnetic field.

Straight lines  :    � = 0



H =
1

2
{(px +A1(x, y)pz)

2 + (px +A2(x, y)pz)
2}

no z’s

so  ṗz = 0

pzView the const. parameter  as electric charge
Then H is  the Hamiltonian of a particle of mass 1 and  this charge 
moving in the xy plane under the influence of the magnetic field 
B(x,y) where 

These good geodesic eqns can be derived from the earlier H  : 

B(x, y) =
@A2

@x
� @A1

@y {P1, P2} = �B(x, y)pz

follows from Hamilton’s eqns 

In  Heisenberg:  B(x, y) = 1, identically 

pz = �



Observe: 

Straight lines  in the plane are solutions (with charge 0), 
for any B(x,y)

 Their horizontal lifts  are always metric lines

since ⇡ : Q = R3 ! R2

satisfies  `(�) = `R2(⇡ � �)

for any horizontal curve �

Question [LeDonne]:   are there any other metric lines besides those
whose projections are straight lines   ? 



`Martinet case’: B(x,y) = x.

 = �x
Theorem. [Ardentov-Sachkov]  Yes. 

The Euler kinks correspond to the other metric lines.

These are the full list of projected geodesics. 
They are the Euler elastica  aligned 
to have y-axis (x = 0) as directrix.

All but the kink are periodic 
 in the x direction  

Normal geod eqns: 



Their theorem actually concerns the Engel group,
a Carnot group of growth (2,3,4) 

The Engel group admits a submetry onto 

R3 with this magnetic-type sR structure

⇡ : E ! R3

E = R2 � R� R

the projections  of Engel geodesics to this 3-space are sR magnetic 
geodesics for magnetic fields B(x) = a x + b 

consequently, the horizontal lifts to the Engel group of these elastica 
are sR geodesics,

and the lift of an Euler kink is a metric line,
since lifts of metric lines are metric lines  



E = R2 � R� R

Engel group

X, Y Z W

[X, Y] = Z [X,Z] = W

a nilpotent Lie algebra.

Exponentiate. Get a polynomial group structure on  E

View X, Y as left-invariant vector fields on this group. 
They span a bracket generating distribution 
and hence a   left-invariant sR structure 
such that the projection

⇡ : E ! R2 ⇠= E/[E,E]

is a sR submersion

12,3 4



The projections  of Engel geodesics to this 3-space are sR magnetic 
geodesics for magnetic fields B(x) = a x + b  

parameter count:  an n-1 dim family of sR geodesics 
through each point of a sR n manifold

Engel: n =4 

 = �(ax(s) + b) = Ax+B

geod eqns:  

Parameters:  initial direction: 1  
                       A,  B:                2

3 parameters in all.  OK. 

he
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Compare to Heisenberg  group

X, Y Z

[X, Y] = Z

a nilpotent Lie algebra.

Exponentiate. Get the  group structure on  

View X, Y as left-invariant vector fields on this group. 
They span a bracket generating distribution 
and hence a   left-invariant sR structure 
such that the projection

is a sR submersion

H = R
2 � R

H

⇡ : H ! R
2 = H/[H,H]



One big difference between Engel and Heisenberg. 

Engel admits abnormal geodesics

These are the integral curves of the vector field Y.

What is special about Y: 
write D = span{X, Y},  D^2 = D + [D, D] = Span{X, Y, Z}

then [Y, D^2 ] is contained in D^2 
i.e. the flow of Y leaves D^2 invariant

Under the `Martinet projection’ these integral curves project onto 
x = 0  , the zero locus of the Martinet magnetic field B(x) = x. 

Theorem [ M-; Sussmann-Liu]  Take any inner product on the 
Engel distribution. Then the Engel lines are geodesics. 
      Take any magnetic field on the plane having a nondegenerate 
zero locus.  Then the horizontal lifts of this zero locus are geodesics 
for 3-space with corresponding magnetic sR structure.  



2.  Carnot groups G =exp( )

V1 Lie generates

Vr = 0, r > s

⇡ : G ! V1
⇠= G/[G,G]

g
g = V1 � V2 � . . . Vs

graded nilpotent: so [Vi, Vj ] ⇢ Vi+j

D = V_1 , viewed as being left-translated about G 
so as to form a left-inv. distribution

A choice of inner product on V_1 yields a  
left-invariant sR struc  (V_1, < , >)  
on G, one for which \pi is a submetry onto a Euc space

is a group homo. onto  V_1 , with V_1 now viewed as an 
Abelian Lie group (vector space)  

generally
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Goursat case: g = R2 � R� . . .� R
k factors of R

so: growth (2,1,1, … , 1) - k 1’s

Canonical model : G = Jk(R,R)

k =1: Heisenberg; k = 2:  Engel. 

⇡ : Jk(R,R) ! R2

geod eqns? 

I 1



The projections  of Goursat  geodesics to the plane are 
the trajectories of a particle in a polynomial magnetic 
field B = B(x) of degree k- 1 in x:   

 = �(akx
k�1 + ak�1x

k�2 + . . .+ a0)

= Akx
k�1 +Ak�1x

k�1 + . . . A0

Alejandro:  isolating which solutions correspond to 
metric lines, i.e., the Euler kinks of the Engel / Martinet case

  Theorem. Anzaldo-Meneses and Monroy Perez [2004]
 ;   Alejandro Doddoli [2019].  B(x,y) = p(x) = polynomial in x

exercise: verify proper  parameter count: n-1 = k+1 ..

does this
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where from here? 

Magnetic playground? 

what does it (really) mean to be an abnormal extremal? 

Hakavuouri’s surprise? 
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