
The point of this short note is to give most of the proof of:

Proposition 0.1. If the monodromy matrix A associated to a periodic orbit has
an eigenvalue with modulus greater than 1 then that orbit is not Lyapunov stable.

This proposition is a special case of:

Proposition 0.2. If a diffeomorphism of the disc has the origin as a fixed point
and if the derivative of that diffeomorphism has an eigenvalue with modulus greater
than 1 then that fixed point is not Lyapunov stable.

What follows is a Lyapunov inspired proof of the 2nd proposition.
Write D ⊂ Rn for the disc, R : D→ D for the map and A = dR0 for its differential

at the fixed point 0. Let E+ be the direct sum of all generalized eigenspaces for
eigenvalues of modulus greater than 1. Write E0 ⊂ Rn for the direct sum of all
generalized eigenspaces for eigenvalues having modulus 1 or less. We then have

Rn = E+ ⊕ E0.

Write λ+ > 1 for the minimum modulus of all eigenvalues having modulus greater
than 1. For any inner product on E+ we have

|Av| ≥ λ+|v|, v ∈ E+

where | · | is the associated norm. On the other hand, by choosing the basis of
Jordan blocks arising in the factors associated to E0 to make the off-diagonal parts
of the block arbitrarily small, we can find, for any ε > 0, an inner product on E0

such that

|Av| ≤ (1 + ε)|v|, v ∈ E0.

Together, the direct sum of these two inner products, yields an inner product on
this ε gets linked to the
one below; necessitating a
redesign of the proof .. -
RM

Rn having the above properties on each factor. For later use we choose ε > 0 so
small that

(1) λ+ − 5ε > 1

We use this inner product for definitions and estimates below. We write x 7→ x+
and x 7→ x− for the linear projections onto E+ and E0.

Consider the cone

C = {x ∈ Rn : |x+| > |x−|}
We will describe below a small ball B about 0 with the following properties.
1) R(C ∩B) ⊂ C.
2) There is a constant c > 1 such that |R(x)| > c|x| for all x ∈ C ∩B.
From these two properties, we get Liapunov instability. In order to see this,

write B(δ) ⊂ D for the ball of radius δ about 0 in this norm. Now suppose that
B1 := B(ε1) ⊂ B and let B2 := B(ε2) ⊂ B(ε1) be any smaller ball. I claim there
are points of B2 which exit B1 after sufficiently many iterations of R. Indeed, take
N so that cN ε2 > ε1. Then, for all r = r∗ sufficiently close to ε2 we also have
cNr∗ > ε1. Take any one of these radii r∗ sufficiently close to ε2 and any point
x∗ ∈ C ∩ B2 with |x∗| = r∗. Claim. After N iterations of R, the orbit of x∗ has
left B1. That is RNx∗ /∈ B1.

Proof of claim. If, for some j < N we have that Rj(x∗) has left B then it has
also left B1 and we’re done. Otherwise, for each j < N we have that Rj(x∗) ∈ B.
But in this case we also have Rj(x∗) ∈ C by an inductive argument. For example:
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x∗ ∈ C ∩ B so that, by (1) above, we have that R(x∗) ∈ C. And we’ve assumed
R(x∗) ∈ B so nowR(x∗) ∈ C ∩ B and we can repeat the argument based on (1)
to see that R(R(x∗)) ∈ C. This process repeats so that iterating (2) above we get
that Rj(x∗) ≥ cj |x∗| for j < N and finally we work all the way up to j = N to get
RN (x∗) ≥ cNr∗ > ε1, which is to say, RNx∗ has left B1.

Proof that we can find a ball B so that (1) and (2) hold.
We have

R(x) = Ax+ g(x)

where g(x) is smooth and O(|x|2). Thus, for any ε > 0 we can choose a ball small
enough so that |g(x)| < ε|x| on B. We choose the ε as per inequality (1).

(To fill in: THIS ε needs to be linked with the ε of nilpotency ... )
Now say x ∈ B ∩ C. Then |x+| > |x−| and |g(x)| < ε|x|. I claim |(Rx)+| >

|(Rx)−|. Indeed we can write

x = (x+, x−) ∈ E+ ⊕ E0

and
g(x) = (g(x)+, g(x)−)

for the projections of x and g(x) onto E+ and E0. Then

Rx = (A+x+ + g(x)+, A−x− + g(x)−)

So that
|(Rx)+| = |A+x+ + g(x)+| ≥ |A+x+| − |g(x)|

which yields
|(Rx)+| ≥ λ+|x+| − ε|x|

On the other hand (Rx)− = A−x−+g(x)− and |A−x−| ≤ (1+ε)|x−| from which
it follows that

|(Rx)−| ≤ (1 + ε)|x−|+ ε|x|
It follows that

|(Rx)+| − |(Rx)−| ≥ (λ+)|x+| − (1 + ε)|x−| − 2ε|x|.
Use now that

|x| ≤ |x+|+ |x−| < 2|x+|, for x ∈ C
|(Rx)+| − |(Rx)−| ≥ (λ+ − 4ε)|x+| − (1 + ε)|x−|.

So, as long as (λ+−4ε) ≥ (1+ε) or λ+−5ε ≥ 1. But our choise of ε from inequality
(1) is precisely this: λ+ − 5ε ≥ 1. We have shown that

|(Rx)+| − |(Rx)−| ≥ (1 + ε)(|x+| − |x−|)
and the latter is greater than zero for x ∈ C. We have shown that R(x) ∈ C for
x ∈ C ∩B. This establishes (1).

To establish (2), return to |(Rx)+| ≥ λ+|x+| − ε|x|. Use again |x| ≤ 2|x+| to
conclude that

|(Rx)+| ≥ λ+|x+| − ε|x| ≥ λ+|x+| − 2ε|x+|
from which it follows |(Rx)+| ≥ c|x+| with c = λ+− 2ε and x ∈ C. Note λ+− 2ε >
λ+ − 5ε > 1.
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