The point of this short note is to give most of the proof of:

Proposition 0.1. If the monodromy matriz A associated to a periodic orbit has
an eigenvalue with modulus greater than 1 then that orbit is not Lyapunov stable.

This proposition is a special case of:

Proposition 0.2. If a diffeomorphism of the disc has the origin as a fixed point
and if the derivative of that diffeomorphism has an eigenvalue with modulus greater
than 1 then that fized point is not Lyapunov stable.

What follows is a Lyapunov inspired proof of the 2nd proposition.

Write D C R” for the disc, R : D — D for the map and A = dRy for its differential
at the fixed point 0. Let E; be the direct sum of all generalized eigenspaces for
eigenvalues of modulus greater than 1. Write Eqg C R™ for the direct sum of all
generalized eigenspaces for eigenvalues having modulus 1 or less. We then have

R" = E, & E,.

Write AL > 1 for the minimum modulus of all eigenvalues having modulus greater
than 1. For any inner product on E we have

|Av| > At fo],v € Ey

where | - | is the associated norm. On the other hand, by choosing the basis of
Jordan blocks arising in the factors associated to Ey to make the off-diagonal parts
of the block arbitrarily small, we can find, for any € > 0, an inner product on Eg
such that
|[Av] < (1 + €)lv|,v € Ey.

Together, the direct sum of these two inner products, yields an inner product on
R™ having the above properties on each factor. For later use we choose ¢ > 0 so
small that

(1) )\+—56>1

We use this inner product for definitions and estimates below. We write x +— x4
and z — x_ for the linear projections onto E; and Ey.

Consider the cone
C={zeR":|zq|>|z_]|}

We will describe below a small ball B about 0 with the following properties.

1) R(CnNnB)cCC.

2) There is a constant ¢ > 1 such that |R(z)| > c|z| for all x € C'N B.

From these two properties, we get Liapunov instability. In order to see this,
write B(d) C D for the ball of radius ¢ about 0 in this norm. Now suppose that
By := B(e1) C B and let By := B(ez) C B(e1) be any smaller ball. T claim there
are points of By which exit B; after sufficiently many iterations of R. Indeed, take
N so that ¢Ves > €;. Then, for all » = r, sufficiently close to es we also have
cNr, > €. Take any one of these radii r, sufficiently close to e and any point
2. € CN By with |z,| = 7. CLAIM. After N iterations of R, the orbit of z, has
left By. That is RNz, ¢ B.

Proof of claim. If, for some j < N we have that R’(z,) has left B then it has
also left By and we're done. Otherwise, for each j < N we have that R?(z.) € B.
But in this case we also have R’(x,) € C by an inductive argument. For example:
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xx € C'N B so that, by (1) above, we have that R(z,) € C. And we've assumed
R(z.) € B so nowR(z,) € C N B and we can repeat the argument based on (1)
to see that R(R(x.)) € C. This process repeats so that iterating (2) above we get
that R’ (x.) > ¢/|z.| for j < N and finally we work all the way up to j = N to get
RN (z.) > cNry > €1, which is to say, RVz, has left B;.

Proof that we can find a ball B so that (1) and (2) hold.
We have
R(z) = Az + g(x)

where g(z) is smooth and O(|z|?). Thus, for any € > 0 we can choose a ball small
enough so that |g(z)| < €|x| on B. We choose the € as per inequality (1).

(To fill in: THIS € needs to be linked with the € of nilpotency ... )

Now say ¢ € BN C. Then |zy| > |z—| and |g(z)] < €|z]. T claim |(Rx)| >
|(Rz)_|. Indeed we can write

= (z4,2_) € E4 & E
and
9(x) = (9(2)+,9(2)-)
for the projections of x and g(x) onto E; and Ey. Then
Re = (Ayzq +g(x)4, Az +g(z)-)
So that
[(Bz) 4| = [Avzy +9(2) 1] = [Apzy| = |g(2)]
which yields
[(Rz) 4| = Aoy | — €|zl

On the other hand (Rz)_- = A_x_+g(x)_ and |A_z_| < (1+4¢€)|z_| from which

it follows that
(Re)_| < (1+)|o_| +elz]
It follows that
(Rz) | = |[(R2) | = Ap)|ee| = (1 + )z | = 2elz].
Use now that
|z] < |zyg|+|z—| < 2|zy|, for z € C
(Ra)s| — [(Re)_| > (A —4€)|oy| — (1+ o],
So, as long as (A1 —4e) > (14¢€) or Ay —5e > 1. But our choise of € from inequality
(1) is precisely this: A — e > 1. We have shown that
(R) 1| — |[(Re) | = (1 + &) (|| — [x-])

and the latter is greater than zero for z € C'. We have shown that R(z) € C for
x € C'N B. This establishes (1).

To establish (2), return to |(Rx)y| > Ay|zy| — €|z|. Use again |z| < 2|z | to
conclude that

[(R2)+| = Aglat] — elz] = Aq|og | — €[z |

from which it follows |(Rz)+| > c|axy| with ¢ = Ay —2¢ and x € C. Note Ay —2¢ >
Ap —5e> 1.
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