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Abstract. The local equivalence problem for sub-Riemannian structures on three-
manifolds is solved. In the course of the solution, it is shown how to attach a canonical
Riemannian metric and connection to the given sub-Riemannian metric and it is shown
how all of the differential invariants of the sub-Riemannian structure can be calculated.
The relation between the completeness of the sub-Riemannian metric, the associated
Riemannian metric, and geodesic completeness is investigated, and an example is given
of a manifold that is complete in the sub-Riemannian metric but not complete in the
canonical associated Riemannian metric. It is shown that the Jacobi equations for sub-
Riemannian geodesics can be interpreted as a scalar, fourth-order, self-adjoint linear
operator along each geodesic. The influence of the differential invariants of the sub-
Riemannian structure on the conjugate points is investigated, and the results are used
to prove a Bonnet-Myers-type theorem for complete sub-Riemannian 3-manifolds.
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1. Introduction

Sub-Riemannian geometry is the study of a smooth manifold equipped with a positive definite
inner product on a sub-bundle of the tangent bundle (see §1.1 below for the precise definition).
When the sub-bundle is equal to the tangent bundle we have the case of Riemannian geometry.
Sub-Riemannian geometry is the natural setting for control theory (Brockett [1], Hermann [12]).
CR geometry can be thought of as a special case of sub-Riemannian geometry (Webster [23],
Chern and Hamilton [5]). Also, classical isoperimetric problems on surfaces, such as that of
Pappus (finding the shortest curve which encloses a given area) can be considered as problems
in sub-Riemannian geometry.

We now outline the contents of this manuscript. In the remainder of this section we define
what a sub-Riemannian structure on a manifold is and give some examples. We also show
how to associate a Riemannian metric to a given sub-Riemannian manifold and we compare
some of the properties of the manifold with the two metrics. In particular, we discuss the
notion of completeness of a sub-Riemannian manifold and show by example that a complete
sub-Riemannian manifold may have an associated Riemannian metric that is not complete.

In §2 we solve the local equivalence problem for sub-Riemannian metrics on three-manifolds.
We obtain the differential invariants distinguishing sub-Riemannian structures and we interpret
these invariants geometrically. We show how to attach a canonical Riemannian metric and
connection to the sub-Riemannian three-manifold. We also compute all of the homogeneous
examples.

In §3 we derive the sub-Riemannian geodesic equations and we compute the second variation
of the length functional and obtain the Jacobi operator. We interpret this operator as a scalar,
fourth-order self-adjoint linear operator along each geodesic. We show that the index of the
Hessian of the length functional is equal to the number of conjugate points; in particular, a
geodesic is not length-minimizing beyond its first conjugate point. We show how the differential
invariants of the sub-Riemannian structure influence the conjugate points and use this to prove
a Bonnet-Myers-type theorem for complete sub-Riemannian three-manifolds. We then define
the exponential map and explore some of its properties; it is shown that this exponential map is
never a local diffeomorphism. Finally, we compute the geodesics for some of the homogeneous
manifolds.

In §4 we discuss possible generalizations to higher dimensions and the problems encountered
there due to the presence of rigid curves and abnormal extremals.
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1.1. Definitions and examples. Let M be a smooth manifold. A distribution D on M is
a sub-bundle of the tangent bundle TM , and a D-curve on M is a smooth immersed curve
γ : [a, b] → M tangent to D, i.e., γ̇(t) ∈ Dγ(t) for all t ∈ [a, b]. A distribution D is said
to be bracket generating if for every p ∈ M the sections of D near p together with all their
commutators span the tangent space TpM of M at p. This condition is equivalent to there
being no completely integrable subsystem of the corresponding differential system I = D⊥. In
this case, by a well known theorem of Chow (see [10] for the smooth version of this theorem)
there is a D-curve joining any two points of M . A sub-Riemannian metric is a smoothly varying
positive definite inner product 〈 , 〉 on D; in the special case where D is equal to the tangent
bundle, 〈 , 〉 gives a Riemannian metric.

A sub-Riemannian manifold, denoted by the triple (M, D, 〈 , 〉), is a smooth n-dimensional
manifold M equipped with a sub-Riemannian metric 〈 , 〉 on a bracket generating distribution
D of rank m > 0. The length of a D-curve γ : [a, b] → M is defined to be

L(γ) =
∫ b

a

√
〈γ̇(t), γ̇(t)〉 dt.

Because D is bracket generating we may endow M with a distance d: the distance d(p, q)
between any two points p and q of M is

d(p, q) = inf
γ
{L(γ) | γ is a D-curve joining p to q} .

This distance d is often referred to as the Carnot-Carathéodory distance.

The prototypical example of a sub-Riemannian manifold is given by the following sub-
Riemannian structure on the Heisenberg group H3, the group of upper triangular 3×3 matrices

H3 =


1 y z + 1

2
xy

0 1 x
0 0 1

 : x, y, z ∈ R

 ∼= R
3.

We take the distribution D to be the kernel of the left-invariant one-form ω3 = dz+1
2
(xdy−ydx).

This distribution is spanned by the vector fields ∂
∂x

+y
2

∂
∂z

and ∂
∂y
−x

2
∂
∂z

, and we take the inner
product 〈 , 〉 on D to be the one for which these two vector fields are everywhere orthonormal.

Let γ(t) = (x(t), y(t), z(t)), a ≤ t ≤ b be a D-curve with (x(a), y(a)) = (0, 0). The length
of the tangent vector γ̇ is equal to ẋ2+ẏ2 and so the length of γ is equal to the length of the
projection of γ in the plane. The difference z(b)−z(a) in the z-coordinate of γ is equal to the
integral of one-half of ydx−xdy, and by Green’s Theorem this is equal to the algebraic area
enclosed by the curve (x, y) and the line segment connecting the endpoints of (x, y).

We see then that the D-curves that realize the distance d(p, q) between two points p, q ∈ H3

are the lifts of curves in the plane that minimize the length subject to the constraint that they
“enclose” a fixed area, in the sense discussed above. This is the classical problem of Pappus,
and it is well known that such curves are given by straight lines and circular arcs. Thus the
“sub-Riemannian geodesics” of this example are straight lines in the plane and certain helices.

Another example of a sub-Riemannian manifold is given by taking M to be R
2 ×S1 with the

distribution D = ker(sinφ dx− cosφ dy), where x and y are the coordinates on R
2 and φ is the
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coordinate on S1. This distribution is spanned by the vector fields cosφ ∂/∂x + sin φ ∂/∂y and
∂/∂φ, and we take the inner product 〈 , 〉 on D to be the one for which these two vectors are
everywhere orthonormal.

Every D-curve γ(t) = (x(t), y(t), φ(t)) with γ∗(cosφ dx+ sinφ dy) �= 0 is the lift of a regular
curve α(t) = (x(t), y(t)) in the plane whose tangent vector α̇(t) forms the angle φ(t) with the
x-axis, i.e.,

α̇(t) = v(t) cosφ(t)
∂

∂x
+ v(t) sinφ(t)

∂

∂y
,

where v(t) is the speed of α(t). Conversely, every regular curve α in the plane may be lifted
to a D-curve γ(t) = (x(t), y(t), φ(t)) by setting φ(t) equal to the angle between α̇(t) and the
x-axis. The tangent vector γ̇(t) of the D-curve γ has squared length

〈γ̇(t), γ̇(t)〉 = v2(t) + φ̇2(t) = v2(t)(1 +

(
φ̇(t)
v(t)

)2

) = v2(t)(1 + κ2(t))

where κ(t) is the curvature of α, and so the length of γ is equal to the integral of
√

1 + κ2(t) v(t)
along α.

Thus the D-curves with cosφ dx+sin φ dy �= 0 that realize the distance between two points
(x0, y0, φ0) and (x1, y1, φ1) of M are the lifts of curves α in the plane joining (x0, y0) to (x1, y1)
with initial angle φ0 and final angle φ1 that minimize the functional

L(κ) =
∫ √

1 + κ2 ds

among all such curves in the plane.

As another example, consider M = R
4 with coordinates (x, y, z, w) and let D be the bracket

generating Engel distribution spanned by the two vector fields ∂/∂x and ∂/∂y+x ∂/∂z+z ∂/∂w.
Define the sub-Riemannian metric 〈 , 〉 by declaring these vector fields to be everywhere or-
thonormal.

Let γ0(t) be the D-curve described by (x(t), y(t), z(t), w(t)) = (t, 0, 0, 0), where, say, a≤t≤b.
The length of γ0(t) is equal to b−a. Let γ(t) = (x(t), y(t), z(t), w(t)) be any other D-curve
joining (a, 0, 0, 0) to (b, 0, 0, 0). The derivative of γ is

γ̇ = ẋ
∂

∂x
+ ẏ

(
∂

∂y
+

ż

ẏ

∂

∂z
+

ẇ

ẏ

∂

∂w

)
,

and so γ has length

L(γ) =
∫ b

a

√
ẋ2 + ẏ2 dt ≥

∫ b

a

|ẋ| dt ≥ b − a = L(γ0).

Therefore γ0 is a length-minimizing curve.
It can be shown [3] that γ0 is rigid, i.e., it has a C1-neighborhood U in the space of D-curves

that join (a, 0, 0, 0) to (b, 0, 0, 0) with the property that every other D-curve in U is just a
reparametrization of γ0. Rigid curves need not satisfy the geodesic equations; see [15] and [18]
and §4.1 below for discussions on this issue.
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1.2. Metric space properties. The sub-Riemannian manifold (M, D, 〈 , 〉) with the Carnot-
Carathéodory distance d is a metric space (M, d). We discuss some of the properties of this
metric space below. We also show how to associate a Riemannian metric to the sub-Riemannian
structure and we show by example that a complete sub-Riemannian manifold may have an
associated Riemannian metric that is not complete.

If the rank of D is strictly less than the dimension of M , then the Hausdorff dimension of
(M, d) is strictly larger than the dimension of M as manifold. More precisely, Mitchell [16]
shows the Hausdorff dimension of (M, d) is equal to the sum

∑
i i(dim(Di)−dim(Di−1)), where

Di denotes the span of the sections of D together with their commutators of order less than or
equal to i. For example, if D is a contact distribution on a 3-manifold M then the Hausdorff
dimension of (M, D, 〈 , 〉) is equal to 4.

Suppose γ : [a, b] → M is any continuous curve, not necessarily tangent to D. The arc length
LA(γ) of γ is the supremum over all partitions of [a, b] of the sum

∑
k d(γ(tk), γ(tk+1)). We define

the distance dA(p, q) between any two points p and q of M to be the infimum of all arc lengths
of continuous curves joining p to q. It is not too hard to show that the metric dA is equal to the
Carnot-Carathéodory metric d. Therefore (M, d) is a “length space” in the sense of Gromov [8].
Consequently, every point p in M has a neighborhood U with the property that for every q ∈ U
there is a continuous curve γ joining p to q with arc length equal to d(p, q). In fact, this curve
may be assumed to be Lipschitz, and so its derivative exists almost everywhere, and where it
exists, γ̇ ∈ D (see Strichartz [21]). Furthermore, if the distribution D satisfies the strong bracket
generating hypothesis, i.e., if TM is generated by D and [X, D] for every nonzero local section
X of D, then Strichartz shows, by using a theorem of Pontryagin, that this Lipschitz curve γ
is actually smooth. Therefore in the strong bracket generating case, any two points within a
sufficiently small neighborhood U may be joined by a length-minimizing D-curve. The only
requirement for this neighborhood U is that it be small enough so that its closure is compact. If
(M, d) has the property that every neighborhood has compact closure, then the same argument
would show that every two points in M may be joined by a length-minimizing D-curve.

The sub-Riemannian manifold (M, D, 〈 , 〉) will be said to be complete if M is complete with
respect to the metric d. The next proposition gives useful equivalent criterion for completeness.
Its proof follows from general topology and will be omitted.

Proposition 1.1. The following are equivalent:
(1) (M, D, 〈 , 〉) is complete.
(2) The closed balls are compact.
(3) There is a nested sequence {Kn} of compact sets with M =

⋃
Kn such that if qn �∈ Kn,

then d(p, qn) → ∞.
(4) Every D-curve that leaves every compact set has infinite length.

Corollary 1.1. If (M, D, 〈 , 〉) is complete and D satisfies the strong bracket generating hy-
pothesis, then every two points in M may be joined by a length-minimizing D-curve.

Given a sub-Riemannian manifold (M, D, 〈 , 〉), it is always possible to obtain a Riemannian
metric 〈 , 〉R on M by choosing a sub-bundle E ⊂ TM complementary to D, putting a positive
definite inner product on E, and declaring E to be orthogonal to D. We will say a Riemannian
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metric 〈 , 〉R is associated to (M, D, 〈 , 〉) if 〈V, W 〉R = 〈V, W 〉 for all V, W ∈ D. If γ is a
D-curve, then 〈γ̇, γ̇〉R = 〈γ̇, γ̇〉, and hence the Riemannian length of γ is equal to the sub-
Riemannian length of γ. It follows that the Riemannian distance is no greater than the Carnot-
Carathéodory distance. Therefore, if (M, D, 〈 , 〉) has a complete associated Riemannian metric,
then (M, D, 〈 , 〉) is complete.

Proposition 1.2. There exists a complete sub-Riemannian manifold that has a non-complete
associated Riemannian metric.

Proof. We will construct an example. Consider M = R
3 with the sub-Riemannian structure

defined by

D = ker(dz−1
2
r2dθ)

〈 , 〉 =
1

1 + z2
(dr2 + r2dθ2),

where (r, θ, z) are cylindrical coordinates on R
3. Set ω = dz−1

2
r2dθ. Observe that ω ∧ dω =

−r dz∧dr∧dθ �= 0; therefore D is a contact distribution and in particular is bracket generating.
The associated Riemannian metric 〈 , 〉+ω2 is not complete: Let γ0 be the curve described

by (r, θ, z) = (0, 0, t). Its length in the metric 〈 , 〉+ω2 is equal to the integral over the positive
t-axis of 1/(1 + t2). Therefore γ0 is a curve that leaves every compact set but has finite length.

On the other hand, we claim that 〈 , 〉 is complete. First observe that if γ(t) = (r(t), θ(t), z(t))
is a D-curve that leaves every compact set but stays bounded in z, i.e., |z(t)| ≤ z0, then the
length of γ is

L(γ) = lim
h→∞

∫ h

0

1√
1 + z2(t)

√
ṙ2(t) + r2(t)θ̇2(t)dt

≥ 1√
1 + z2

0

lim
h→∞

∫ h

0

|ṙ(t)|dt

≥ 1√
1 + z2

0

lim
h→∞

(r(h)− r(0)).

Because γ leaves every compact set, limh→∞ r(h) = ∞, and therefore γ has infinite length.
To show that the D-curves that escape every z-bound have infinite length, we will find

another associated Riemannian metric 〈 , 〉R for which 〈 , 〉R ≥ dz2. Set

〈 , 〉R = 〈 , 〉 +
ω

1 + z2

(
µ1dr + µ2dθ + (1 + z2)dz

)
,

where µ1 and µ2 are the continuous functions

µ1 =

0 if z2 ≤ 4
r2 − 1,

2
√

z2 − 4
r2 + 1 if z2 ≥ 4

r2 − 1

and

µ2 =

{
1
2
r2(1 + z2) if z2 ≤ 4

r2 − 1,

4 − 1
2
r2(1 + z2) if z2 ≥ 4

r2 − 1.
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The reader may easily verify that the quadratic form 〈 , 〉R−dz2 is non-negative.
Therefore, every curve that escapes every z-bound has infinite length with respect to 〈 , 〉R,

and thus (M, D, 〈 , 〉) is complete.

2. Local Equivalence of Sub-Riemannian Structures

In this section, we solve the local equivalence problem for sub-Riemannian metrics on three-
manifolds. We show that sub-Riemannian structures on three-manifolds locally depend on
two functions ϕ1 and K of three variables and we investigate how these differential invariants
influence the geometry. We show for example that if ϕ1 vanishes identically, then the three-
manifold naturally fibers over a surface with Gauss curvature K. We show how to attach a
canonical Riemannian metric and connection to the sub-Riemannian three-manifold. We also
compute and classify all of the homogeneous examples.

2.1. The G0-structure. We define the G-structure that completely characterizes the sub-
Riemannian structure.

Given an n-dimensional manifold M , every local coframing η = (η1, . . . , ηn) on U ⊂ M
determines a sub-Riemannian structure (D, 〈 , 〉) on U by setting D = {ηm+1, . . . , ηn}⊥ and
〈 , 〉 = (η1)2 + · · ·+ (ηm)2|D. Conversely, given a sub-Riemannian structure (D, 〈 , 〉) on U ,
we can always choose a local coframing η that satisfies D = {ηm+1, . . . , ηn}⊥ and 〈 , 〉 =
(η1)2 + · · ·+ (ηm)2|D. Now such a choice of coframing η is not unique, for D determines
ηm+1, . . . , ηn only up to a Gl(n−m, R) action, the quadratic form (η1)2+· · ·+(ηm)2 determines
η1, . . . , ηm only up to an O(m) action and, furthermore, since 〈 , 〉 = (η1)2 + · · ·+ (ηm)2|D, we
may add arbitrary multiples of the forms ηm+1, . . . , ηn to each ηi for 1 ≤ i ≤ m.

Let us say a coframing η = (η1, . . . , ηn) is 0-adapted to (M, D, 〈 , 〉) if D = {ηm+1, . . . , ηn}⊥
and 〈 , 〉 = (η1)2 + · · ·+ (ηm)2|D. The set of 0-adapted coframes of (M, D, 〈 , 〉) forms a G0-
structure B0 → M , where the structure group is

G0 =
{(

A B
0 C

)
: A ∈ O(m), B ∈ M(m, n− m), C ∈ Gl(n− m, R)

}
.

Now specifying the sub-Riemannian structure (D, 〈 , 〉) on M is equivalent to specifying the
G0-structure. In particular, sub-Riemannian structures are locally equivalent if and only if their
corresponding G0-structures are locally equivalent. We will solve this equivalence problem using
the equivalence method of Cartan (see [7] for a nice description of this method).

Given a G-structure B → M , let Rg denote the right action of G on B defined by Rgη = g−1η,
and let ω denote the R

n-valued tautological one-form on B (in terms of a local section η of B
we have ω = g−1η). Note that ω is semi-basic, and that R∗

gω = g−1ω. A pseudo-connection is
given by a g-valued one-form Θ on B whose restriction to the fiber is the Maurer-Cartan form.
In terms of Θ, the exterior derivative of ω can always be expressed in the form

dω = −Θ ∧ ω + Tω ∧ ω,

where T is the torsion associated to Θ.



THE GEOMETRY OF SUB-RIEMANNIAN THREE-MANIFOLDS 7

2.2. Reduction of the G0-structure for the 3-dimensional case. For sub-Riemannian
three-manifolds, we show how to reduce the structure group to the group O(2). As a conse-
quence, we see that two sub-Riemannian structures on a three-manifold M3 are equivalent if
and only if a canonical coframing on a certain S1-bundle B2 → M3 is preserved.

If (M3, D, 〈 , 〉) is a 3-dimensional sub-Riemannian manifold, then the bracket generating
distribution D is necessarily a contact distribution, and so every 0-adapted coframing η =
(η1, η2, η3) satisfies η3 ∧ dη3 �= 0. The structure group for the 0-adapted coframes is

G0 =
{[

A b
0 c

]
: A ∈ O(2), b ∈ R

2, c ∈ R − {0}
}

,

and the structure equations dω = −Θ ∧ ω + Tω ∧ ω are in this case

d

 ω1

ω2

ω3

 = −

 0 α β
−α 0 γ
0 0 δ

 ∧

 ω1

ω2

ω3

+

 T 1
23 T 1

31 T 1
12

T 2
23 T 2

31 T 2
12

T 3
23 T 3

31 T 3
12

 ω2∧ω3

ω3∧ω1

ω1∧ω2

 .

We can modify β, γ, and δ so as to absorb the first two columns of T , and we can modify α
so as to absorb the top two entries T 1

12 and T 2
12 of the last column of T . Of course, T 3

12 cannot
possibly be absorbed since D is a contact distribution. Thus the structure equations can be
written

d

 ω1

ω2

ω3

 = −

 0 α β
−α 0 γ
0 0 δ

 ∧

 ω1

ω2

ω3

+

 0 0 0
0 0 0
0 0 T 3

12

 ω2∧ω3

ω3∧ω1

ω1∧ω2

 .

The choice of pseudo-connection

Θ =

 0 α β
−α 0 γ
0 0 δ


for which the structure equations are of the above form is not unique, for we may add arbitrary
multiples of ω3 to β, γ, and δ.

The equation R∗
gω = g−1ω implies R∗

gω
3 = c−1ω3, and taking the exterior derivative of both

sides gives

−c−1δ ∧ ω3 + c−1T 3
12 ω1 ∧ ω2 = −c−1R∗

gδ ∧ ω3 + R∗
gT

3
12(det A−1ω1 ∧ ω2 + Φ ∧ ω3),

where Φ is a non-zero combination of ω1 and ω2. In particular,

R∗
gT

3
12 = c−1 detA T 3

12.

By considering the set B1 of coframes η ∈ B0 satisfying T 3
12(η) = 1, we may reduce to the

G1-structure B1 → M3 where

G1 =
{[

A b
0 det A

]
: A ∈ O(2), b ∈ R

2

}
⊂ G0.
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Restricting to B1, the structure equations become

d

 ω1

ω2

ω3

 = −

 0 α β
−α 0 γ
0 0 0

 ∧

 ω1

ω2

ω3

 +

 0 0 0
0 0 0

T 3
23 T 3

31 1

 ω2∧ω3

ω3∧ω1

ω1∧ω2

 .

Again, we may add arbitrary multiples of ω3 to β and γ, so the choice of pseudo-connection is
not unique.

If we now differentiate the equation R∗
gω

3 = det A−1ω3, we find that the induced action of
G1 on the torsion space {(T 3

23, T
3
31)} is

R∗
g

(
T 3

23

T 3
31

)
= A−1

(
1

detA

(
T 3

23

T 3
31

)
− b

)
.

In particular, G1 acts transitively on the reduced torsion space, thus we may consider the
G2-structure B2 → M3 where

B2 =
{
η ∈ B1 | T 3

23(η) = T 3
31(η) = 0

}
and

G2 =
{[

A 0
0 det A

]
: A ∈ O(2)

}
.

The local sections of the bundle B2 → M3 are the local coframings η = (η1, η2, η3) of M3

that satisfy dη3 = η1∧η2 and for which the sub-Riemannian structure is given by D = (η3)⊥,
〈 , 〉 = (η1)2 + (η2)2|D . We will say such a coframing is 2-adapted to the sub-Riemannian
structure.

Restricting to B2, the structure equations are now

d

 ω1

ω2

ω3

 = −

 0 α 0
−α 0 0
0 0 0

 ∧

 ω1

ω2

ω3

+

 T 1
23 T 1

31 0
T 2

23 T 2
31 0

0 0 1

 ω2∧ω3

ω3∧ω1

ω1∧ω2

 .

By replacing α with α+1/2(T 2
31+T 1

23)ω
3, we may assume that T 1

23= − T 2
31. Furthermore, differ-

entiation of dω3 = ω1∧ω2 shows that (T 1
31−T 2

23) ω1∧ω2∧ω3 = 0.
Thus the structure equations can be written

d

ω1

ω2

ω3

 = −

 0 α 0
−α 0 0
0 0 0

 ∧

ω1

ω2

ω3

 +

a1 a2 0
a2 −a1 0
0 0 1

ω2∧ω3

ω3∧ω1

ω1∧ω2

 ,(1)

where we have set a1=T 1
23= − T 2

31 and a2=T 1
31=T 2

23. Now the choice of pseudo-connection is
unique, for Θ ∧ ω = 0 if and only if α = 0.
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Let Ai, Bi be the covariant derivatives in the ωi direction of a1, a2, respectively. By differen-
tiating the structure equations (1), we find

da1 = −2a2α +
3∑

i=1

Aiω
i,(2)

da2 = 2a1α +
3∑

i=1

Biω
i,(3)

dα = (A2 − B1)ω2∧ω3 + (A1 + B2)ω3∧ω1 + Kω1∧ω2.(4)

Because the choice of pseudo-connection Θ is unique, the automorphisms of the G2-structure
B2 → M3 must preserve the coframing (ω1, ω2, ω3, α) on B2. In particular, every automorphism
must preserve the functions a1, a2, K, and all of their covariant derivatives. It follows from the
general theory of {e}-structures that a1, a2 and K form a complete set of differential invariants
of the G2-structure B2 → M3.

Note that if a1 and a2 are both identically zero, then K is the only invariant. If a1 and a2

are not both identically zero, then the G2-structure may be reduced to a discrete G-structure:
It is not too hard to show that G2 acts by rotation on the torsion space {(a1, a2)}, thus we may
consider the subset B3 ⊂ B2 of coframes for which a2 is zero and a1 is positive. The stabilizer
group G3 ⊂ G2 of B3 is isomorphic to Z2 × Z2. Restricting to B3, the forms ω1, ω2, and ω3

are now basic and α is some combination α =
∑

λiω
i, thus the structure equations for the

G3-structure B3 → M3 are

d

ω1

ω2

ω3

 =

λ3 + ϕ1 0 −λ1

0 λ3 − ϕ1 −λ2

0 0 1

ω2∧ω3

ω3∧ω1

ω1∧ω2

 ,(5)

where ϕ1 =
√

a2
1 + a2

2.

2.3. The homogeneous manifolds. The homogeneous sub-Riemannian manifolds are those
for which the the group of automorphisms of the reduced G-structure acts transitively. We now
classify all of the homogeneous examples of sub-Riemannian three-manifolds.

The group of automorphisms of the G2-structure B2 → M3 are identified with the group of
diffeomorphisms of B2 that preserve the coframing (ω1, ω2, ω3, α). This group has dimension
less than or equal to four with equality if and only if the group acts transitively on B2. In this
case a1, a2, and K are constant; equations (2) and (3) then imply that a1 and a2 are both zero.
Thus the homogeneous manifolds with the largest group of symmetries are those for which a1

and a2 are both zero. In this case, K ≡ K0 is the only invariant.
There are three distinct homogeneous examples with a1 and a2 both identically zero cor-

responding to the sign of K0: If K0 > 0, then locally (M3, D, 〈 , 〉) is equivalent to SO(3); if
K0 = 0, then locally (M3, D, 〈 , 〉) is equivalent to the Heisenberg group; and if K0 < 0, then lo-
cally (M3, D, 〈 , 〉) is equivalent to Sl(2, R). In each case, D = (η3)⊥ and 〈 , 〉 = (η1)2+(η2)2|D,



10 KEENER HUGHEN

where (η1, η2, η3) is the standard left invariant coframing satisfying

d

 η1

η2

η3

 =

 K0 0 0
0 K0 0
0 0 1

 η2 ∧ η3

η3 ∧ η1

η1 ∧ η2

 .

The homogeneous examples which have a1 and a2 not both identically zero are those for which
the group of automorphisms of the G3-structure B3 → M3 acts transitively; in this case, the
symmetry group has dimension three and the functions λi and ϕ1 are constant. Differentiating
the structure equations (5) we find that if λi and ϕ1 are constant then λ1(λ3−ϕ1) = λ2(λ3+ϕ1) =
0. Thus the homogeneous manifolds with a1 and a2 not both identically zero can be classified
according to three cases: case 1 has λ1 = λ2 = 0, case 2 has λ2 = 0, λ3 = ϕ1, and case 3 has
λ1 = 0, λ3 = −ϕ1. To compute these examples, we compute the Lie algebras corresponding to
the different cases. We assume that ϕ1 is positive.

case 1: λ1 = λ2 = 0.
Here the structure equations are

d

 ω1

ω2

ω3

 =

 λ3 + ϕ1 0 0
0 λ3 − ϕ1 0
0 0 1

 ω2∧ω3

ω3∧ω1

ω1∧ω2

 ,

and so the Lie algebra g of M is determined by the signs of the diagonal entries of the matrix
C of the structure constants

C =

 λ3 + ϕ1 0 0
0 λ3 − ϕ1 0
0 0 1

 .

a) If λ3 > ϕ1, so that the diagonal entries are all positive, then g = so(3). Here the manifold
is SO(3) with the sub-Riemannian structure D = (η3)⊥ and 〈 , 〉 = 1

λ3−ϕ1
(η1)2 + 1

λ3+ϕ1
(η2)2

∣∣∣
D

,

where η is the standard coframing satisfying

d

 η1

η2

η3

 =

 1 0 0
0 1 0
0 0 1

 η2 ∧ η3

η3 ∧ η1

η1 ∧ η2

 .

b) If λ3 = ϕ1, then g is the Lie algebra of E(2), the group of rigid motions of the Euclidean
plane. A specific example here is given by the sub-Riemannian structure on R

2 × S1, with
coordinates (x, y, φ), induced by the coframing

η1 =
√

2ϕ1 (cosφ dx + sinφ dy)

η2 = −dφ/
√

2ϕ1

η3 = sinφ dx− cosφ dy.
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c) If −ϕ1<λ3<ϕ1, then g=sl(2, R). Here M=Sl(2, R) with the sub-Riemannian structure
D = (η3)⊥ and 〈 , 〉 = 1

−λ3+ϕ1
(η1)2 + 1

λ3+ϕ1
(η2)2

∣∣∣
D
, where η is the coframing satisfying

d

 η1

η2

η3

 =

 1 0 0
0 −1 0
0 0 1

 η2 ∧ η3

η3 ∧ η1

η1 ∧ η2

 .

d) If λ3= − ϕ1, then g is the Lie algebra of E(1, 1), the group of rigid motions of the
Lorentzian plane. A specific example here is given by the sub-Riemannian structure induced
by the following coframing on R

3 with coordinates (x, y, z):

η1 = dz/
√

2ϕ1

η2 =
√

2ϕ1 (cosh z dx − sinh z dy)

η3 = sinh z dx− cosh z dy.

e) If λ3< − ϕ1, then g=sl(2, R). Here M=Sl(2, R) again, but with the sub-Riemannian
structure D = (η3)⊥ and 〈 , 〉 = 1

−λ3+ϕ1
(η1)2 − 1

λ3+ϕ1
(η2)2

∣∣∣
D
, where η is the coframing satisfying

d

 η1

η2

η3

 =

 −1 0 0
0 −1 0
0 0 1

 η2 ∧ η3

η3 ∧ η1

η1 ∧ η2

 .

case 2: λ2 = 0, λ3 = ϕ1.
In this case, the structure equations are

d

 ω1

ω2

ω3

 =

 2ϕ1 0 −λ1

0 0 0
0 0 1

 ω2 ∧ ω3

ω3 ∧ ω1

ω1 ∧ ω2

 .

The Lie algebra is determined by the sign of the determinant 2ϕ1−λ2
1/4 of a certain 2×2 block

of the symmetric matrix 1/2(C + CT ).
a) If 2ϕ1−λ2

1/4 > 0, then it is easily verified that this case is given by the sub-Riemannian
structure on R

3 induced by the coframing

η1 = e−
λ1
2 z

(
(−σ sin σz − λ1

2
cosσz)dx + (σ cos σz − λ1

2
sinσz)dy

)
η2 = −dz

η3 = e−
λ1
2 z (cos σz dx + sinσz dy) ,

where σ =
√

2ϕ1−λ2
1/4.
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b) If 2ϕ1−λ2
1/4=0, then it is easily verified that this case is given by the sub-Riemannian

structure on R
3 induced by the coframing

η1 = −λ2
1

4
e

λ1
2 z(dx − zdy)

η2 = dz

η3 =
λ1

2
e

λ1
2 z(dx + (1− z)dy).

c) If 2ϕ1−λ2
1/4<0, then it is easily verified that this case is given by the sub-Riemannian

structure on R
3 induced by the coframing

η1 = e−
λ2
2 z

(
(
λ2

2
sinhσz − σ coshσz)dx + (σ sinhσz − λ2

2
cosh σz)dy

)
η2 = −dz

η3 = e−
λ2
2 z (− sinh σz dx + cosh σz dy) ,

where σ =
√

λ2
1/4−2ϕ1.

case 3: λ1 = 0, λ3 = −ϕ1.
Here the structure equations are

d

 ω1

ω2

ω3

 =

 0 0 0
0 −2ϕ1 −λ2

0 0 1

 ω2∧ω3

ω3∧ω1

ω1∧ω2

 .

Now the determinant of the certain 2 × 2 block of the symmetric matrix 1/2(C+CT ) is equal
to −2ϕ1−λ2

2/4, which is always negative. Therefore the Lie algebra in this case is determined
and this situation is essentially the same situation as case 2 c). It is easily verified that this
case is in fact given by the sub-Riemannian structure on R

3 induced by the coframing

η1 = dz

η2 = e−
λ2
2 z

(
(
λ2

2
sinhσz − σ coshσz)dx + (σ sinhσz − λ2

2
cosh σz)dy

)
η3 = e−

λ2
2 z (− sinh σz dx + cosh σz dy) ,

where σ =
√

2ϕ1+λ2
2/4.

2.4. The meaning of the invariants. The functions a1, a2, and K form a generating set of
differential invariants for sub-Riemannian structures on 3-manifolds. We now give geometric
interpretations of these invariants. We show for example that if a2

1+a2
2 is identically zero, then

M3 naturally fibers over a surface with Gauss curvature K.

Proposition 2.1. The functions a2
1 + a2

2 and K are well defined on M3.
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Proof. We make use of equations (2) and (3) to compute that the exterior derivative of a2
1 + a2

2

is equal to zero modulo the semi-basic one forms ωi, from which it follows that a2
1 + a2

2 is well
defined on M3. Similarly, if we differentiate both sides of equation (4) and then wedge with ω3,
we find that dK is equal to zero modulo ωi.

Recall that a local coframing η is 2-adapted to the sub-Riemannian manifold (M3, D, 〈 , 〉) if
η is the image of a local section of B2. A sub-Riemannian manifold will be said to be amenable
if the leaf space of the codimension 2 foliation defined by the equations η1 = η2 = 0 can be given
the structure of a smooth surface N in such a way that the natural projection πN : M3 → N is
a smooth submersion, for any (and hence every) 2-adapted coframing η = (η1, η2, η3).

Given an amenable sub-Riemannian manifold and any 2-adapted coframing η, the vector
field V defined by η3(V ) = 1 and V dη3 = 0 is vertical for πN : M3 → N . At each point
p ∈ M3, the vector Vp and the plane Dp span the tangent space TpM ; thus the derivative map
π′

N(p) : TpM → T[p]N restricts to be an isomorphism π′
N (p) : Dp → T[p]N . Let (〈 , 〉N )p denote

the induced inner product on the tangent space T[p]N .
Now as p varies in the fiber over [p], the inner product (〈 , 〉N )p varies in the space of positive

definite inner products on T[p]N . There is a canonical area form, namely ω1∧ω2 = η1∧η2, on
N , and by definition, for each p the inner product (〈 , 〉N )p has unit volume with respect to this
area form. So in fact as p moves along the fiber, (〈 , 〉N )p will define a curve in the space S[p]

of unit-volume positive definite inner products on T[p]N . This space S[p] is a two-dimensional
disk and has a natural metric on it that is isometric to the Poincaré metric on the disk. Now,
the fiber π−1

N [p] also has a natural metric, namely η3. We will show in Theorem 2.1 below that
if p moves along the fiber with unit speed, then (〈 , 〉N )p defines a curve in S[p] whose speed
is 2

√
a2

1+a2
2.

We first define a coordinate system adapted to the sub-Riemannian structure. Fix a point
q ∈ M3, and choose a neighborhood U ⊂ M3 of q and coordinates (x, y, z) : U → R

3 centered
at q such that the vector field V is given by ∂/∂z. Then V (ω1∧ω2)=0 implies that ω1 ∧
ω2=f(x, y) dx∧dy, and by absorbing in x and y we may assume that f(x, y)≡1 on U . In these
coordinates the quadratic form (ω1)2+(ω2)2 is equal to Edx2 + 2Fdxdy + Gdy2, where E, F, G
are functions on U that satisfy EG−F 2 = 1.

Theorem 2.1. Let (M3, D, 〈 , 〉) be an anemable sub-Riemannian manifold, and let [p] be a
point in the leaf space N . As p moves along the fiber π−1

N [p] with unit speed (with respect to
the metric ω3) the corresponding inner product (〈 , 〉N)p on T[p]N defines a curve in S[p] whose
speed is 2

√
a2

1 + a2
2 (with respect to the Poincaré metric).

Proof. Choose coordinates as above so that [p] = (0, 0). Now the fiber is the set {(0, 0, z) | z ∈
R} and the metric ω3 on the fiber is just dz. The curve in S[p] corresponding to the unit speed
curve γ(t) = (0, 0, t) in the fiber is

t �−→
[
E(0, 0, t) F (0, 0, t)
F (0, 0, t) G(0, 0, t)

]
.

The squared speed of this curve with respect to the Poincaré metric is equal to F 2
z − EzGz.
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The Lie derivative of (ω1)2+(ω2)2 in the V direction is easily seen to be equal to

a2(ω1)2 − a2(ω2)2 − 2a1ω
1ω2.

On the other hand, in adapted coordinates, the Lie derivative in the direction V =∂/∂z is equal
to Ezdx2+2Fzdxdy+Gzdy2. Because the area form ω1∧ω2 is equal to dx∧dy, it follows that

F 2
z − EzGz = (−2a1)2 − (2a2)(−2a2) = 4(a2

1 + a2
2),

and therefore the speed of the curve is equal to 2
√

a2
1+a2

2.

As a consequence of this theorem, if a2
1+a2

2=0 then the induced inner product (〈 , 〉N )p gives
a well defined metric on N . In this case the structure equations (1) become

dω1 = −α ∧ ω2

dω2 = α ∧ ω1

dω3 = ω1 ∧ ω2

dα = Kω1 ∧ ω2.

(6)

Differentiating the last equation, we find that dK is equal to zero modulo ω1, ω2 and therefore
K is well defined on N .

Proposition 2.2. Let (M3, D, 〈 , 〉) be amenable. The induced inner product (〈 , 〉N)p on T[p]N
gives a well defined metric on N if and only if a2

1 + a2
2 = 0. In this case, the Gauss curvature

of N is equal to K.

Proof. The first statement follows from Theorem 2.1. To compute the curvature of N with the
metric 〈 , 〉N , we choose a local section σ : W → M3 for some suitably small neighborhood
W ⊆ N , and consider the pull-back bundle σ−1B2 over W . If η = (η1, η2, η3) is any 2-adapted
coframing then (σ∗η1, σ∗η2) is an orthonormal coframing of W . Because η3 is uniquely deter-
mined, the bundle F0 of orthonormal coframes for W can be identified with σ−1B2.

With this identification, we let (σ, 1) be the map from F0 to B2 that sends a point ([p], ηp)
in F0 to the point (σ([p]), ηp) in σ−1B2. Unwinding definitions, it is clear that the pull-backs
(σ, 1)∗ω1 and (σ, 1)∗ω2 are the tautological one-forms on F0. The structure equations (6) now
imply that (σ, 1)∗α is the connection form on F0 and therefore (σ, 1)∗K = σ∗K is the Gauss
curvature of N .

If a2
1+a2

2 vanishes identically, then in adapted coordinates the sub-Riemannian metric has
the expression E(x, y)dx2+2F (x, y)dxdy+G(x, y)dy2 where EG−F 2=1. In fact we can always
choose geodesic normal coordinates on N to assume the metric has the expression

dx2 + dy2 − H(x, y)(xdy− ydx)2.

The contact form ω3 is then ω3=dz−e1dx−e2dy, where (e2)x−(e1)y=1. Note that if γ : [a, b] →
U is a D-curve that lies in an adapted coordinate neighborhood U with the property that the
projection πN◦γ is a closed curve on N , then Stokes’ Theorem implies z(b)−z(a) is equal to the
area enclosed by πN◦γ. Furthermore, the length of the D-curve γ is equal to the length of πN◦γ.
We can thus describe sub-Riemannian manifolds with a2

1+a2
2 identically zero as sub-Riemannian

manifolds of “areal type.”
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If (M3, D, 〈 , 〉) is not of areal type then K is not even well defined on N . To interpret K
in this case, we associate to the sub-Riemannian manifold the canonical Riemannian metric
(ω1)2+(ω2)2+(ω3)2. Let Θ̄LC denote the Levi-Civita connection of this Riemannian metric
restricted to the bundle B2: since a 2-adapted coframing (η1, η2, η3) is an orthonormal coframing
of M3 in this metric, we think of B2 as a sub-bundle of the SO(3)-bundle of orthonormal
coframes over M3, and then Θ̄LC is the pull-back by inclusion of the Levi-Civita connection.

Setting

Θ̄LC =

 0 α3 −α2

−α3 0 α1

α2 −α1 0


and comparing the structure equations dω = −Θ̄LC∧ω with (1), we find α1=(1/2−a1)ω1−a2ω

2,
α2= − a2ω

1+(a1+1/2)ω2, and α3= − 1/2ω3+α. We compute the entries of the curvature Ω =
dΘ̄LC + Θ̄LC ∧ Θ̄LC to be

Ω12 = (A2 − B1) ω2 ∧ ω3 + (A1 + B2) ω3 ∧ ω1

+ (a2
1 + a2

2 + K − 3
4
) ω1 ∧ ω2,

Ω13 = (A3 − a2) ω2 ∧ ω3 + (B3 + a2
1 + a2

2 + a1 −
1
4
) ω3 ∧ ω1

− (A1 + B2) ω1 ∧ ω2,

Ω23 = (B3 + a1 − a2
1 − a2

2 +
1
4
) ω2 ∧ ω3 + (−A3 + a2) ω3 ∧ ω1

+ (A2 − B1) ω1 ∧ ω2.

Thus, K+a2
1+a2

2− 3
4

is the sectional curvature of the plane D.

Remark 1. The sub-Riemannian structure (D, 〈 , 〉) produces a CR structure on the three-
manifold M3. The Webster curvature W ( [23], [5]) of a CR manifold is defined to be a certain
combination of the components of the curvature tensor of the (unique) Riemannian metric
inducing the CR structure (see [5] for the definition of a metric “inducing the CR structure” and
for the explicit formula for W . For a CR structure induced by a sub-Riemannian structure, this
Riemannian metric inducing the CR structure turns out to be (ω1)2+(ω2)2+4(ω3)2. Computing
the curvature tensor of this metric and substituting into the formula for W , we find

W =
K

4
.

2.5. Spin calculations. The geometric significance of some of the higher order derivatives
of the invariants will be illuminated in the next section. It will be necessary to determine the
combinations of the derivatives of the invariants that are well defined on M3. We now discuss
a procedure for doing this that makes use of the complex structure on D.

On an open set U ⊆ M3, we choose an orientation of D and consider the coframes in B2

that preserve this orientation. The set of such coframes forms an SO(2)-structure and we will
continue to use “the G2-structure B2 → M3” to denote this SO(2)-structure. We identify an
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element g ∈ G2 with the complex number eiθ, and set Ω = ω1+iω2. The equation R∗
g ω = g−1ω

implies R∗
eiθ Ω = e−iθ Ω, R∗

eiθ ω3 = ω3, and R∗
eiθ α = α. Furthermore, R∗

eiθ Ω = e−iθ Ω implies
R∗

eiθ Ω̄ = eiθ Ω̄. It follows that the pullback by Reiθ of any function ϕ appearing in the covariant
derivatives of any of these forms is equal to einθϕ for some integer n. This integer n is called
the spin of ϕ.

Note that a function ϕ on B2 is well defined on M3 if and only if it has spin zero, for
ϕ is constant on the fibers if and only if R∗

eiθ ϕ = ϕ. It is clear that spin(dϕ) = spin(ϕ),
spin(ϕ̄) = −spin(ϕ), and spin(ϕ ∧ ρ) = spin(ϕ)+spin(ρ). To find the spin of derivatives of the
invariants, we simply compute the structure equations in the basis {Ω, Ω̄, ω3, α}.

Set a = a1+ia2. The structure equations (1) are now

dΩ = iα ∧ Ω + iaΩ̄ ∧ ω3

dω3 =
i

2
Ω ∧ Ω̄,

and differentiating these equations gives

da = 2iaα + b1Ω + b2Ω̄ + b3ω3(7)

dα =
i

2
KΩ ∧ Ω̄ − (b1Ω̄ + b̄1Ω) ∧ ω3.(8)

Differentiating again, we get (after some simplification) in particular that

db1 = ib1α + b11Ω + b12Ω̄ + b13ω3(9)

db2 = 3ib2α + b21Ω + b22Ω̄ + b23ω3(10)

where b21 − b12 = aK − i
2
b3.

These equations allow us to easily read off the spin of each function. For example, because
Ω has spin 1 and ω3 has spin 0, the equation dΩ=iα∧Ω+iaΩ̄∧ω3 implies the spin of a is equal
to −2. This in turn allows us to read off the spin of the bi’s. In this way, we construct the
following table:

function a K b1 b2 b3 b11 b12 b13 b21 b22 b23

spin -2 0 -3 -1 -2 -4 -2 -3 -2 0 -1

For future reference we will now express each bi and bij in terms of the functions Ai, Bi, Aij,
and Bij , where

dAi = Ai0 α +
∑

Aijω
j and dBi = Bi0 α +

∑
Bijω

j.

Comparing (7) with (2) and (3), we find

2b1 = A1 + B2 + i(B1 − A2)(11)

2b2 = A1 − B2 + i(B1 + A2)(12)

b3 = A3 + iB3.(13)
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Now differentiating these equations and comparing with (9) and (10), we find

4b11 = (A11 − A22 + B12 + B21) + i(−A12 − A21 + B11 − B22)

4b12 = (A11 + A22 + B21 − B12) + i(A12 − A21 + B11 + B22)

4b21 = (A11 + A22 + B12 − B21) + i(A21 − A12 + B11 + B22)

4b22 = (A11 − A22 − B12 − B21) + i(A12 + A21 + B11 − B22).

(14)

Furthermore, we have the following relations:

A10 = A2 + 2B1, A20 = A1 − 2B2,(15)
B10 = 2A1 − B2, B20 = 2A2 + B1,(16)

B12 − B21 = 2a1K + B3, A21 − A12 = 2a2K − A3.(17)

3. The Geodesics

We now turn to the problem of computing the geodesics of (M3, D, 〈 , 〉). We use the Griffiths
formalism to compute the geodesic equations and we show that the curves that satisfy these
equations are precisely the extremals among D-curves of the length functional. We compute the
second variation of the length functional and show that the index is zero if and only if there are
no solutions of a certain fourth-order self-adjoint equation, defined in §3.2, that vanish to first
order. In particular, a geodesic is not length-minimizing beyond its first conjugate point. We
then obtain criterion on the invariants that allows us to estimate the maximum distance L to the
first conjugate point. As a consequence, if (M3, D, 〈 , 〉) is complete and the invariants satisfy
the criterion, then M3 is compact with diameter (with respect to the Carnot-Carathéodory
distance d) no greater than L. We define the sub-Riemannian exponential map expp and show
that unlike the Riemannian exponential map, expp is never a local diffeomorphism. We also
show that (M3, D, 〈 , 〉) is complete if and only if every geodesic can be extended indefinitely.
Finally, we discuss the geodesics of the homogeneous examples in some detail.

3.1. The geodesic equations. As in the last section, let us choose an orientation of D and
consider the SO(2)-structure consisting of the set of coframes in B2 that preserve the orientation.
We continue to use the notation “the G2-structure B2 → M3” to denote this SO(2)-structure.
Every D-curve has a canonical lift as an integral curve on B2 of the system S = {ω2, ω3} with
transversality condition ω1 �= 0. This lift just corresponds to choosing a 2-adapted coframing
η along the curve so that the framing (e1, e2, e3) dual to η has e1 in the same direction as the
tangent vector. Now the length of the D-curve is equal to the integral of ω1 along the lifted
integral curve of S. Thus our problem of finding the extremals of the length functional L among
D-curves is equivalent to finding the extremals of

L(γ) =
∫

γ

ω1
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among integral curves γ of S on B2.

Proposition 3.1. The extremals of L among integral curves of S = {ω2, ω3} on B2 are precisely
the projections of integral curves, with transversality condition ω1 �= 0, of the differential system
I = {ω2, ω3, α − λω1, dλ − a2ω

1} on the bundle Y = B2 × R, where λ is the coordinate of the
fiber R.

Proof. Following the Griffiths algorithm [8], we let Z be the affine subbundle Z = S +ω1 of the
cotangent bundle T ∗B2 and let ζ be the restriction to Z of the canonical one-form on T ∗B2:

ζ = ω1 + λ1ω
2 + λ2ω

3.

By the general theory, the extremals of the functional

L̃(γ) =
∫

γ

ζ

among unconstrained curves on Z project to be extremals of L among integral curves of S on B2.
The curve γ is an extremal of L̃ among unconstrained curves on Z if and only if γ ′(t) dζ|γ(t) = 0.

We compute dζ modulo ω2∧ω3:

dζ ≡ −α ∧ ω2 + λ1α ∧ ω1 + (a2 − λ1a1)ω3 ∧ ω1 + λ2ω
1 ∧ ω2 + dλ1 ∧ ω2 + dλ2 ∧ ω3.

We contract dζ with the vector fields dual to the coframing (ω1, ω2, ω3, α, dλ1, dλ2) on Z and
find that subject to γ∗ω1 �= 0, the condition γ ′ dζ = 0 is equivalent to the condition that γ
is an integral curve of the system {ω2, ω3, α − λ2ω

1, dλ2 − a2ω
1}, and that γ lies on the locus

Y ⊂ Z defined by λ1 = 0. Thus the integral curves of I on Y project to be extremals of L
among integral curves of S.

To show that all the extremals of L arise this way, we need to show that every extremal
among integral curves of S on B2 can be lifted to an integral curve of I on Y . Because D is
a contact distribution every integral curve of S on B2 is regular. By a result of Hsu [13] it
follows that every extremal of (B2, S,L) lifts to a unique extremal of (Y, {0}, L̃), i.e., it lifts to
an integral curve of I .

We will say that a D-curve γ : [a, b] → M3 parametrized with unit speed is a geodesic if
it lifts to an integral curve of the system I on Y . By the previous proposition, a geodesic
γ is necessarily an extremal of the length functional L(γ) and conversely every extremal is
necessarily a geodesic. Consequently, every length-minimizing D-curve is in fact a geodesic.

Under the assumption that γ has unit speed, the condition that it lifts to an integral curve
of I is

ω1 = ds, ω2 = 0, ω3 = 0, α = λ ds, dλ = a2 ds.(18)

We will refer to these equations as the geodesic equations.
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Remark 2. The I-lift γ̄ of the geodesic γ pulls back the forms α1=( 1
2
−a1) ω1−a2ω

2, α2= −
a2ω

1+(a1+1
2
) ω2, and α3= − 1

2
ω3+α in the Levi-Civita connection

Θ̄LC =
[ 0 α3 −α2
−α3 0 α1
α2 −α1 0

]
to be

γ̄∗α1 = (
1
2
− a1) ds

γ̄∗α2 = −a2 ds

γ̄∗α3 = λ ds.

The curvature of γ is equal to
√

λ2+a2
2. Thus, if a2

1+a2
2 = 0, the curvature of the geodesic γ is

equal to λ and is constant, and the torsion τ defined by γ̄∗α1=τds is equal to 1/2.

As a consequence of this remark, we shall refer to the function λ along the lifted geodesic γ̄
as the sub-Riemannian curvature of γ.

3.2. The Jacobi operator. We compute the second variation of the length functional and
interpret the Jacobi operator as a scalar, fourth-order self-adjoint linear operator along each
geodesic. We show that the index of the Hessian of the length functional is equal to the number
of conjugate points.

Because the geodesic equations are defined there, it is convenient to work up on the bundle
Y . Set ω4=α−λω1 and ω5=dλ−a2ω

1. Every integral curve of the system {ω2, ω3} on B2 has
a canonical lift as an integral curve of the system I ′ = {ω2, ω3, ω4} ⊂ I on Y . Therefore we
identify D-curves with integral curves of I ′, with transversality condition ω1 �= 0, on Y . The
length of the D-curve is equal to the integral of ω1 along the lifted integral curve of I ′.

Let γ : [0, l] → M3 be a D-curve joining p to q and let γ̄ be its lift as integral curve of
I ′. If γt is a fixed endpoint variation of γ through D-curves, then γt lifts to be a variation
γ̄t of γ̄ through integral curves of I ′ which does not necessarily fix the endpoints, but satisfies
π ◦ γ̄t(0) = p, π ◦ γ̄t(l) = q where π is the standard projection π : Y → M . A variation γ̄t

through integral curves of I ′ on Y which satisfies π ◦ γ̄t(0) = p, π ◦ γ̄t(l) = q will be said to be
an admissable variation of γ̄ and its variational vector field ∂γ̄t/∂t at t = 0 will be said to be
an infinitesimal admissable variation along γ̄.

Now suppose the I ′-curve γ̄ is the lift of a geodesic, so that γ̄ is an integral curve of I with
γ̄∗ω1 �= 0. Let γ̄t,u be a 2-parameter variation of γ̄ with infinitesimal admissable variations

X =
∂

∂t
γ̄t,u

∣∣∣∣
t=u=0

and W =
∂

∂u
γ̄t,u

∣∣∣∣
t=u=0

.

The hessian L∗∗(X, W ) of the length functional L is

L∗∗(X, W ) =
∂2

∂t∂u
L(γ̄t,u)

∣∣∣∣
t=u=0

.

Let (e1, . . . , e5) be the framing dual to the coframing (ω1, . . . , ω5) on Y , and write X =
∑

i Xiei

and W =
∑

i Wiei.
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We define the Jacobi operator along the lifted geodesic γ̄ to be the following fourth-order
differential operator on the space of smooth functions on [0, l]:

Ju =
....
u +

d

ds
(pu̇) + q,

where p and q are given by the following expressions along γ̄:

p = −3a1 + K + λ2(19)

q = 2a2
1 + 4a2

2 − 2a1K + B12 − 2A11 − 2B21 + 6a1λ
2 + 6B1λ.(20)

This definition is motivated by the following proposition.

Proposition 3.2. Let γ̄ : [0, l] → Y be a lifted geodesic with 2-parameter admissable variation
γ̄t,u. The hessian of the length functional evaluated at the infinitesimal admissable variations
X =

∑
i Xiei and W =

∑
i Wiei of γ̄t,u is

L∗∗(X, W ) =
∫ l

0

W3 JX3 ds.

Proof. A straightforward computation shows the hessian L∗∗(X, W ) is equal to the integral∫
γ̄ W d(X dζ), where ζ = ω1+λω3 (see [8]). Now we compute that W d(X dζ) is equivalent,

modulo I , to

[
W2

(
Ẋ4 +

d

ds
(a1X3) − X5 − X2(a1 + K + λ2) + X3(B2 + a2λ)

)
+ W3

(
a1X4 −

d

ds
(a1X2 + X5) + X2(A1 + B2 − a2λ) + X3(B3 + a2

1 + a2
2)
)

+ W4

(
−X4 + a1X3 − Ẋ2

)
+ W5

(
Ẋ3 − X2

)]
ω1.

(21)

Set Γ(t, u, s) = γ̄t,u(s). We have

Γ∗


ω1

ω2

ω3

ω4

ω5

 =


X1(t, u, s)dt + W1(t, u, s)du + Y1(t, u, s)ds
X2(t, u, s)dt + W2(t, u, s)du
X3(t, u, s)dt + W3(t, u, s)du
X4(t, u, s)dt + W4(t, u, s)du
X5(t, u, s)dt + W5(t, u, s)du + Y5(t, u, s)ds


where Xi(0, 0, s) = Xi and Wi(0, 0, s) = Wi. Because γ̄ is the lift of a geodesic, we also have
Y1(0, 0, s) = 1, ∂Y1/∂t(0, 0, s) = ∂Y1/∂u(0, 0, s) = 0, and Y5(0, 0, s) = 0. Now the structure
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equations for the coframing (ω1, . . . , ω5) on Y are easily computed to be

dω1 = ω2∧ω4 − λω1∧ω2 + a1ω
2∧ω3 + a2ω

3∧ω1

dω2 = −ω1∧ω4 + a2ω
2∧ω3 − a1ω

3∧ω1

dω3 = ω1∧ω2

dω4 = ω1∧ω5 − λω2∧ω4 + (A2 − B1 − a1λ)ω2∧ω3

+ (A1 + B2 − a2λ)ω3∧ω1 + (K + λ2)ω1∧ω2

dω5 = 2a1ω
1∧ω4 − a2ω

2∧ω4 − a1a2ω
2∧ω3

− (B3 + a2
2)ω

3∧ω1 + (B2 + a2λ)ω1∧ω2.

(22)

These equations, when pulled back by Γ, imply that Xi and Wi satisfy the following system of
differential equations:

Ẋ1 = −λX2 − a2X3

Ẋ2 = −X4 + a1X3

Ẋ3 = X2

Ẋ4 = X5 − (A1 + B2 − a2λ)X3 + (K + λ2)X2,

(23)

where Ẋi denotes the derivative of Xi with respect to s. The first equation may be integrated
to give X1 = −λX3 + X1(0); because X =

∑
i Xiei is an infinitesimal admissable variation,

X1, X2, X3 must vanish at the endpoints, so that X1 = −λX3. Thus, we may rewrite the above
equations as

X1 = −λX3

X2 = Ẋ3

X4 = a1X3 − Ẍ3

X5 = −
...
X3 + (a1 − K − λ2)Ẋ3 + (ȧ1 + A1 + B2 − a2λ)X3.

(24)

Now if we substitute these formulas into the expression (21) and integrate by parts several
times, we find that the integral

∫
γ̄ W d(X dζ) is equal to∫ l

0

W3

(....
X 3 + (−3a1 + K + λ2)Ẍ3 + (4a2λ + K̇ − 2ȧ1 − A1)Ẋ3

+ (2a2
1 + 2a2

2 + B3 + ȧ2λ − ä1 − Ȧ1 − Ḃ2)X3

)
ds.

(25)

The geodesic γ̄ pulls back α to be λds; thus equation (2) implies that along γ̄, ȧ1=−2a2λ+A1.
This together with a2=λ̇ implies that the derivative of p= − 3a1+K+λ2 with respect to s is

ṗ = −3ȧ1 + K̇ + 2λλ̇ = 4a2λ + K̇ − 2ȧ1 − A1.

Finally, we need to show that we can rewrite the expression

2a2
1 + 2a2

2 + B3 + ȧ2λ − ä1 − Ȧ1 − Ḃ2(26)
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as q, where q is given by equation (20). We first use equations (2), (3), (15), and (16) to rewrite
(26) without the “dots.” Equations (2) and (3) imply ȧ1 = −2a2λ + A1 and ȧ2 = 2a1λ + B1,
and equations (15) and (16) imply Ȧ1 = −λ(A2 + 2B1) + A11 and Ḃ2 = λ(2A2 + B1) + B21.
Using these equations, the expression (26) becomes

2a2
1 + 4a2

2 + B3 − 2A11 − B21 + 6a1λ
2 + 6B1λ.

Now we use (17) to get rid of B3, and this expression becomes the right-hand side of equation
(20).

Therefore (25) is equal to the integral along γ̄ of the product of W3 and JX3, where J is the
Jacobi operator, and the proposition is proved.

We see in the proof of Proposition 3.2 that any infinitesimal admissable variationX =
∑

i Xiei

satisfies Ẋ3 = X2 and that X1, X2, X3 vanish at the endpoints 0 and l. In particular, X3 vanishes
to first order at 0 and l. Let C∞

0 [0, l] denote the space of smooth functions on the interval [0, l]
that vanish to first order at 0 and l. Note that the Jacobi operator J is formally self-adjoint on
C∞

0 [0, l].
We denote the quadratic form L∗∗(u, u) by Q(u). Recall the index of Q(u) is the dimension

of the largest subspace of C∞
0 [0, l] on which Q(u) is negative definite. Because J is self-adjoint

on C∞
0 [0, l] the eigenvalues λi are real and constitute a countable set with the point at infinity

the only possible cluster point. Thus the eigenvalues can be arranged

λ1 ≤ λ2 ≤ · · · ≤ λn < 0 ≤ λn+1 ≤ · · ·

in ascending order. Furthermore, the index of Q(u) is equal to the number of negative eigen-
values λ1 ≤ · · · ≤ λn < 0 of J. In particular, the index of Q(u) is finite.

It turns out that the number of negative eigenvalues of J is intimately related to the number
of zeroes of solutions of the Jacobi equation

Ju = 0, u(0) = u̇(0) = 0.(27)

This will be made more precise in the following theorem. A point c ∈ (0, l) is a conjugate point
of J with multiplicity m if the space of solutions of (27) which vanish to first order at c has
dimension m > 0. Of course, the multiplicity of a conjugate point of J is either 1 or 2 since J
is a fourth-order operator.

Theorem 3.1. The index of Q(u) is equal to the number of conjugate points of J counted with
multiplicity.

Proof. Suppose the index of Q(u) is n, and let

λ1 ≤ · · · ≤ λn < 0

be the negative eigenvalues of J. For each x ∈ (0, l], let Λ1(x) ≤ Λ2(x) ≤ · · · denote the
eigenvalues, in ascending order, of the operator J on the space C∞

0 [0, x]. Note that Λi(l) = λi

for each 1 ≤ i ≤ n. It follows from general theory that each Λi(x) is a strictly decreasing
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continuous function on (0, l] with limx→0+ Λi(x) = ∞ (see [14], for example). Therefore, each
Λi(x) has exactly one root ci. We claim these roots

0 < c1 ≤ c2 ≤ · · · ≤ cn < l

are precisely the conjugate points of J between 0 and l. To see this, note that Λi(ci) = 0 by
definition implies there exists a ui ∈ C∞

0 [0, ci] satisfying Jui = 0. By extending ui to a solution
of Ju = 0 on [0, l] we get a solution of (27) vanishing to first order at ci. Conversely, if c ∈ (0, l)
is a conjugate point, then 0 is an eigenvalue of J on C∞

0 [0, c] and so Λj(c) = 0 for some positive
integer j. Because Λj(x) strictly decreases, it follows that Λj(l) is equal to one of the negative
eigenvalues, say λj, of J, and therefore c = cj.

The point γ(c) along a geodesic γ is a conjugate point of γ if c is a conjugate point of the
corresponding Jacobi operator J.

Corollary 3.1. A geodesic no longer minimizes length beyond its first conjugate point.

Proof. Suppose γ(c) is the first conjugate point of the geodesic γ. By Theroem 3.1, for every
l > c the index of Q(u) on the space C∞

0 [0, l] is positive and so there is a function u ∈ C∞
0 [0, l]

for which Q(u) < 0. Setting X3 = u and defining X1, X2, X4, X5 by equations (24) gives a
direction X =

∑
i Xiei along which the length functional L decreases.

3.3. A Bonnet-Myers-type theorem. We now seek sufficient conditions on the invariants
to guarantee every geodesic reaches a conjugate point in finite time. We first formulate a
comparison result that will allow us to estimate the maximum distance to the first conjugate
point.

Proposition 3.3. If the operator J1 = d4

ds4 + d
ds

(p1
d
ds

)+q1 has a conjugate point on the interval
(0, l] and if p2 ≥ p1 and q2 ≤ q1, then the operator J2 = d4

ds4 + d
ds

(p2
d
ds

) + q2 also has a conjugate
point on the interval (0, l].

Proof. It follows from Theorem 3.1 that J has a conjugate point in the interval (0, l] if and only
if there is a function u ∈ C∞

0 [0, l] for which Q(u) ≤ 0. The proposition now follows immediately
from the observation

Q(u) =
∫ l

0

u
....
u + u

d

ds
(pu̇) + uquds =

∫ l

0

ü2 − pu̇2 + qu2 ds.

In the case where p and q are constant, the solution to the Jacobi equation (27) may be
computed explicitly. The proof of the following proposition makes use of the fact that c is a
conjugate point of the Jacobi operator if and only if the wronskian of two independent solutions
of the Jacobi equation vanishes at c.
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Proposition 3.4. Suppose p = p0 > 0 and q = q0 ≥ 0 are constant. The Jacobi operator J
has a conjugate point if and only if 4q0 < p2

0. In this case, the first conjugate point occurs no
later than 2π/

√
p0 − 2

√
q0. Furthermore, if q0 = 0, then the first conjugate point is precisely

2π/
√

p0.

Proof. If 4q0=p2
0, then two independent solutions of the Jacobi equation (27) are µ(s) =

−κs cos(κs)+ sin(κs) and ν=s sin(κs), where κ=
√

p0/2. We compute the wronskian to be
κ2s2 + cos2(κs) − 1, which is equal to 0 if and only if κs=0, i.e., only at s=0.

It follows from Proposition 3.3 that there is also no conjugate point if 4q0>p2
0.

However, if q0=0, then two independent solutions of (27) are µ(s)=1− cos(
√

p0s) and ν(s) =
sin(

√
p0s)−

√
p0s. We compute the wronskian to be

−
√

p0(
√

p0s sin(
√

p0s) + 2 cos(
√

p0s) − 2).

The first positive root is seen to be 2π/
√

p0.
Finally, if 4q0<p2

0, but q0 �=0, then two independent solutions of (27) are µ(s) = cos(κ1s) −
cos(κ2s) and ν(s)=κ2 sin(κ1s)−κ1 sin(κ2s), where p0=κ2

1+κ2
2 and q0=κ2

1κ
2
2. The wronskian is

now
w(s) = (κ2

1 + κ2
2) sin(κ1a) sin(κ2s) + 2κ1κ2 cos(κ1s) cos(κ2s) − 2κ1κ2.

Using a few trig identities, it can be shown that w vanishes at c if and only if the function

W (s) = (κ2 − κ1)2 sin2

(
(κ2 + κ1)

s

2

)
− (κ2 + κ1)2 sin2

(
(κ2 − κ1)

s

2

)
vanishes at c. We may assume κ2>κ1, and let τ=(κ1+κ2)c/2 and ρ=(κ2−κ1)/(κ2+κ1). Now
W vanishes at c if and only if sin(τ)= ± sin(ρτ)/ρ. Because 0<ρ<1 it is clear that the first
positive τ for which sin(τ)=±sin(ρτ)/ρ is less than or equal to the first root π/ρ of the function
sin(ρτ). It follows that the first conjugate point c is less than or equal to 2π/

√
p0−2

√
q0.

As a consequence of the previous two propositions, if p0>0 and q0≥0 are any pair of constants
that satisfy p0−2

√
q0>0, then every geodesic for which p≥p0 and q≤q0 reaches a conjugate point

no later than 2π/
√

p0−2
√

q0.
For instance, if (M, D, 〈 , 〉) is a sub-Riemannian manifold for which a2

1+a2
2 = 0, then λ = λ0

is constant and the functions p and q are p = K+λ2
0 and q = 0. If K is bounded below by a

positive constant, say K ≥ K0 > 0, then p is bounded below by K0+λ2
0. It follows that every

geodesic whose I-lift has initial curvature λ0 has a conjugate point no later than 2π/
√

K0+λ2
0

and therefore every geodesic reaches a conjugate point no later than 2π/
√

K0.
Unfortunately, in the case a2

1 +a2
2 > 0, q is quadratic in λ and will grow larger than any fixed

constant as λ gets larger. What we need is an estimate for λ which will allow us to find a lower
bound on p and an upper bound on q.

A somewhat crude estimate is obtained by noting that λ̇ = a2; if the function ϕ1 =
√

a2
1+a2

2

is bounded above by a positive constant c1, then |λ̇| ≤ c1 implies λ0−c1l≤λ≤λ0+c1l on the
interval [0, l]. Let Ψ be the function

Ψ =
{

(λ0 − c1l)2 if λ0 ≥ c1l
0 if λ0 ≤ c1l

,
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and assume K is bounded below, say K ≥ K0 > 0. We have the following bound on p along
every geodesic of length l whose I-lift has initial curvature λ0:

p ≥ K0 − 3c1 + Ψ.(28)

If K is at least as big as 2ϕ1, then K(a1+ϕ1)−a2
2 is at least as big as 2ϕ1(a1+ϕ1)−(ϕ2

1−a2
1),

which is equal to (a1+ϕ1)2 and therefore is non-negative. In particular, if K0 ≥ 2c1, then the
term 2a2

1 +4a2
2−2a1K in q is bounded above by 2c2

1 +2c1K0. If also |B1| and |B12−2A11−2B21|
are bounded above by positive constants c2 and c3, respectively, then we have the following
bound on q along every geodesic of length l whose I-lift has initial curvature λ0:

q ≤ 2c2
1 + 2c1K0 + c3 + 6c1(λ0 + c1l)2 + 6c2(λ0 + c1l).(29)

Now the functions B1 and B12−2A1−2B21 are functions on the bundle B2. A quick inspection
of the structure equations da2=2a1+

∑
Biω

i, dAi=Ai0α+
∑

Aijω
j, and dBi=Bi0α+

∑
Bijω

j

reveals that these functions are not well defined on the base manifold M . Referring back to
the spin calculations of §2.5, equations (11 and (12) imply that B1 is the sum B1=b1

I+b2
I of the

imaginary parts of b1 and b2. It follows that |B1| is bounded from above by the well defined
function on M

ϕ2 =
√

2(b1b̄1 + b2b̄2).(30)

Similarly, equations (14) imply B12−2A11−2B21= − 3b11
R −5b12

R +b21
R −b22

R , and therefore |B12 −
2A11 − 2B21| is bounded from above by the well defined function on M

ϕ3 = −3b11
R +

√
2(25b12b̄12 + b21b̄21 + b22b̄22 − b21b̄22 − b̄21b22).(31)

Thus the inequality (29) holds if ϕ2 ≤ c2 and ϕ ≤ c3.
Set

p0 = K0 − 3c1 + Ψ

and
q0 = 2c2

1 + 2c1K0 + c3 + 6c1(λ0 + c1l)2 + 6c2(λ0 + c1l).

If there is a value for l, say L, for which the function p0−2
√

q0 is bounded below by the
constant 4π2/L2, for all positive λ0, then Propositions 3.3 and 3.4 imply that every geodesic
has a conjugate point on the interval [0, L].

Theorem 3.2. Let (M3, D, 〈 , 〉) be a sub-Riemannian manifold whose invariants ϕ1, ϕ2, and
ϕ3 are bounded above by positive constants c1, c2, and c3, respectively, and K is bounded below
by the constant K0, where

K0 ≥ max

{
38c1 + 2

√
74c2

1 + c3 ,
3
4

(
c2

c1

)2

− c3

2c1

− c1

}
.

Then every geodesic has a conjugate point on the interval [0, L], where

L =
3π√

K0 − 9c1 − 2
√

2c2
1 + 2c1K0 + c3

.
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Proof. By the discussion immediately preceding the theorem, it suffices to show that the hy-
pothesis implies that for all positive λ0 the function p0−2

√
q0 is bounded below by 4π2/L2.

For notational convenience, set y=c1l, x=λ0, p′
0=K0−3c1, q′

0=2c2
1+2c1K0+c3, and

F (x, y) = 4π2c2
1 − p0y

2 + 2
√

q0 y2

= 4π2c2
1 + 2y2

√
q′
0 + 6c1(x + y)2 + 6c2(x + y)− y2p′

0 − Ψy2.

Now L = 3π/
√

p′
0−6c1−2

√
q′
0 and we need to show that F (x, c1L) ≤ 0 for all x.

Along each ray x = µy, 0≤µ≤1, the function F is

F = 4π2c2
1 + 2y2

√
q′
0 + 6c1(µ + 1)2y2 + 6c2(µ + 1)y − y2p′

0.

This function strictly increases in µ; thus it suffices to consider F on the region x ≥ y.
On the region x ≥ y, we have

F (x, y) = 4π2c2
1 + 2y2

√
q′
0 + 6c1(x + y)2 + 6c2(x + y)− y2p′

0 − (x − y)2y2.

The inequality

K0 ≥
3
4

(
c2

c1

)2

− c3

2c1

− c1

is equivalent to the condition 9c2
2 ≤ 6c1q

′
0. Under this condition,

F (x, y) ≤ 4π2c2
1 + 2y2

(√
6c1(x + y) +

√
q′
0

)
− y2p′

0 − (x − y)2y2.

For each fixed y this function has a maximum at x=y+
√

6c1. Along the line x=y+
√

6c1, the
function F is

F = 3
√

6c1y
3 − (p′

0 − 2
√

q′
0 − 6c1)y2 + 4π2c2

1.

We find this cubic is negative at y = c1L if and only if

p′
0 − 2

√
q′
0 ≥ 6c1 +

(
81

√
6π

5

)2/3

c1.

It remains only to show that this condition is guaranteed by the inequality

K0 ≥ 38c1+2
√

74c2
1+c3

in the hypothesis of the theorem.
The condition p′

0−2
√

q0 ≥ 6c1+(81
√

6π/5)2/3c1 is implied by p′
0−2

√
q′
0 ≥ 31c1, which is

equivalent to 2
√

2c2
1 + 2c1K0 + c3 ≤ K0−34c1. Squaring both sides and collecting terms, this

inequality becomes 0 ≤ K2
0−76c1K0+1148c2

1−4c3, and finally by the quadratic formula, this is
implied by K0 ≥ 38c1+2

√
74c2

1+c3.

If the sub-Riemannian manifold (M3, D, 〈 , 〉) is complete, so that every pair of points can
be joined by a minimizing sub-Riemannian geodesic, then we have the following corollary:
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Corollary 3.2. Let (M3, D, 〈 , 〉) be a complete sub-Riemannian manifold. Under the hypoth-
esis of the Theorem 3.2, M is compact, and in fact the sub-Riemannian diameter is no greater
than

L =
3π√

K0 − 9c1 − 2
√

2c2
1 + 2c1K0 + c3

.

Proof. Every pair of points can be joined by a minimizing geodesic; on the other hand, by the
theorem, no geodesic of length greater than L is length-minimizing. Therefore every pair of
points must be within this distance of each other.

In the case a2
1+a2

2 = 0, this result may be slightly improved by the discussion following
Proposition 3.4:

Proposition 3.5. If (M3, D, 〈 , 〉) is a complete sub-Riemannian manifold with a2
1 + a2

2 = 0
and K ≥ K0 > 0, then M is compact with sub-Riemannian diameter no greater than 2π/

√
K0.

3.4. The exponential map. The solutions to the geodesic equations (18) are completely
determined by specifying an initial point p ∈ M3 and an initial value (θ0, λ0) in the fiber S1×R

over p. We denote by γθ0,λ0(s) the unique geodesic whose I-lift has initial point (p, θ0, λ0) ∈ Y .
The (sub-Riemannian) exponential map

expp : R × S1 × R −→ M3

is defined by expp(s, θ0, λ0) = γθ0,λ0(s).
The next proposition shows that expp is never a local diffeomorphism at any point p.

Proposition 3.6. For every p ∈ M3, the differential d expp is singular at each of the points
(0, θ0, λ0) in the cylinder {0} × S1 × R.

Proof. The exponential map expp lifts in an obvious way to a map Expp : R × S1 × R −→ Y
defined by Expp(s, θ0, λ0) = (γθ0,λ0(s), θ(s), λ(s)), the unique solution to the geodesic equations
(18) with initial conditions θ(0) = θ0, λ(0) = λ0, and γθ0,λ0(0) = p. Let Xi and Wi be the
functions on R × S1 × R defined by

Exp∗
p


ω1

ω2

ω3

ω4

ω5

 =


ds + X1dθ0 + W1dλ0

X2dθ0 + W2dλ0

X3dθ0 + W3dλ0

X4dθ0 + W4dλ0

X5dθ0 + W5dλ0

 .(32)

By definition of Expp, these functions satisfy the initial conditions

Xi(0, θ0, λ0) = Wi(0, θ0, λ0) = 0 for i = 1, 2, 3
−X4(0, θ0, λ0) = W5(0, θ0, λ0) = 1

X5(0, θ0, λ0) = W4(0, θ0, λ0) = 0.

(33)
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Note that Expp pulls back the form ω1∧ω2∧ω3 to be (X2W3−X3W2) ds∧dθ0∧dλ0. On the other
hand, this is equal to the pull-back by expp of the volume form η1∧η2∧η3 on M . Therefore
d(expp) is singular at (c, θ0, λ0) if and only if X2W3−X3W2 vanishes at (c, θ0, λ0).

By a similar computation to the one in the proof of Proposition 3.2, the structure equa-
tions (22) imply that Xi and Wi satisfy the system of differential equations (23) together with
the additional equation Ẋ5=2a1X4+(B3+a2

2)X3+(B2+a2λ)X2. Expanding the solution to this
system of o.d.e.’s with the initial conditions (33) in a power series, we find

X2W3 − X3W2 = − 1
12

s4 +
1

180
(−3a1(0) + K(0) + λ2

0)s
6 + O(s7),

and therefore d expp is singular at every point (0, θ0, λ0).

In analogy with Riemannian geometry, we say the point (c, θ0, λ0) ∈ R×S1×R is a conjugate
point of p if the differential d(expp) is singular there.

By varying θ0 and λ0, Expp can be thought of as a two-parameter admissable variation of
the lifted geodesic Expp(s, θ0, λ0) with infinitesimal admissable variations, say, X =

∑
Xiei and

W =
∑

Wiei. This variation Expp is actually a variation through integral curves of I , and thus
the hessian L∗∗(X, W ) is a priori zero. Therefore X3(s, θ0, λ0) and W3(s, θ0, λ0) are solutions of
the Jacobi equation (27). Furthermore, the initial conditions (33) imply they are independent
solutions. Because X2=Ẋ3 and W2=Ẇ3, the function X2W3−X3W2 is the wronskian of the
independent solutions X3 and W3. Thus, the point (c, θ0, λ0) is a conjugate point of p if and
only if γθ0,λ0(c) is a conjugate point of the geodesic γθ0,λ0 .

Because the exponential map is never a local diffeomorphism there is no “totally normal
neighborhood” around any point in M . Consequently, we shouldn’t expect there to be a
neighborhood U of p with the property that for every point q in U there is a unique length-
minimizing geodesic joining p to q. Indeed, we will show such a neighborhood U does not exist.
This result is a consequence of the following proposition.

Proposition 3.7. For each r > 0, there is a positive Λ0 with the property that for all θ0 and
all |λ0| ≥ Λ0 the geodesic γθ0,λ0 does not minimize length beyond r.

Proof. We will show for each r, there is a Λ0 with the property that if |λ0| ≥ Λ0 then the Jacobi
operator along the geodesic γθ0,λ0 has a conjugate point on the interval (0, r].

It suffices to prove this proposition for small r, for if γθ0,λ0 does not minimize length on the
interval [0, r], then it obviously does not minimize length on [0, r′] for any r′≥r. Assume r is
small enough so that the closed ball Br(p) is compact. There exists positive constants K0, c1, c2,
and c3 so that |K| ≤ K0 and ϕi ≤ ci on Br(p). Furthermore, the estimate λ0−c1r≤λ≤λ0+c1r
holds on the interval [0, r]. Set

p0 = −K0 − 3c1 + (λ0 − c1r)2

q0 = 4c2
1 + 2c1K0 + c3 + 6c1(λ0 + c1r)2 + 6c2(λ0 + c1r).

If λ0≥c1r, then equations (19) and (20) imply that along the interval [0, r],

p ≥ p0 and q ≤ q0.
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Because p0 and q0 are quadratic in λ0, it is clear that for each r there is a Λ0 with the property
that if λ0 ≥ Λ0 then p0−2

√
q0 is bounded below by 4π2/r2 on the interval [0, r]. Propositions

3.3 and 3.4 imply that if λ0 ≥ Λ0, then γθ0,λ0 reaches a conjugate point by r, and hence does
not minimize length beyond r.

Fix a point p in M3. For each positive r, let Ar(p) be the subset of the cylinder {r}×S1×R

Ar(p) = {(r, θ0, λ0) | γθ0,λ0 is length-minimizing on the interval [0, r] } .

This set Ar(p) is clearly closed, and by the proposition above it is also bounded and is therefore
compact.

Let Sr(p) denote the sphere of radius r about p. It is clear that the image expp(Ar(p)) is
contained in Sr(p) for every r. Choose r small enough so that Sr(p) is contained in a coordinate
neighborhood of M . Then Sr(p) is compact, and every point in Sr(p) can be joined to p by a
length-minimizing geodesic. It follows that the map expp : Ar(p) → Sr(p) is surjective. Now if
this map were also injective, then it would in fact be a homeomorphism, which is impossible.
Consequently, for small enough r there is at least one point q on the sphere Sr(p) with the
property that there is more than one length-minimizing geodesic joining p to q.

As in Riemannian geometry, we define the cut locus C(p) of p to be the set of points q for
which there exists a geodesic starting at p and passing through q with the property that q is the
first point along the geodesic where the geodesic ceases to minimize length. By the definition
of Ar(p), it is clear that the exponential image of the boundary ∂Ar(p) is contained in the cut
locus of p. In particular, every sphere Sr(p) contains at least one cut point of p.

We say (M3, D, 〈 , 〉) is geodesically complete if every geodesic can be extended indefinitely,
i.e., if the exponential map is defined on all of R×S1×R. The following theorem is the analog
of the Hopf-Rinow Theorem in Riemannian geometry.

Theorem 3.3. The sub-Riemannian manifold (M3, D, 〈 , 〉) is complete if and only if it is
geodesically complete. In this case, every pair of points may be joined by a length-minimizing
geodesic.

Proof. Assume (M3, D, 〈 , 〉) is complete, and let γ be a geodesic that is defined for 0≤s<σ. Let
{sn} be a convergent sequence, converging to σ, with sn<σ. Since d(γ(sn), γ(sm)) ≤ |sn−sm|,
it follows that the sequence {γ(sn)} is Cauchy, and hence converges to some p ∈ M3. We need
only show the curvature λ remains bounded as s→σ. Consider the closed ball Bσ(p) of radius
σ centered at p. By the completeness assumption, closed balls are compact. Thus the function√

a2
1+a2

2 is bounded on Bσ(p) by a non-negative constant c1. The equation λ̇ = a2 now implies

λ0−c1σ≤λ≤λ0+c1σ

on the interval [0, σ], and so λ(σ) is bounded.
Conversely, if (M3, D, 〈 , 〉) is geodesically complete, then every pair of points may be joined

by a length-minimizing geodesic. The proof of this statement is essentially the same as de
Rahm’s proof of the statement in the Riemannian case (see for example [4]), and will be omitted.
Consider the closed ball Br(p) of radius r. If Br(p) is compact for every r, then by Proposition
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1.1 (M3, D, 〈 , 〉) is complete. Since every point in Br(p) may be joined to p by a length-
minimizing geodesic, there is a set A ⊂ [0, r]×S1×R satisfying Br(p) ⊂ expp(A). By Proposition
3.7 we may assume A is bounded and hence has compact closure. Therefore the closed ball
Br(p), being contained in the compact set expp(Ā), is compact.

3.5. Geodesics on homogeneous manifolds. We now describe the geodesics of the homo-
geneous manifolds (M3, D, 〈 , 〉) in some detail. Here M is a Lie group and 〈 , 〉 is a positive
definite inner product on a Lie subalgebra D.

For homogeneous manifolds with a2
1+a2

2 = 0, we may choose a basis {ξ1, ξ2, ξ3} of the Lie
algebra g with bracket relations

(
[ξ2, ξ3] [ξ3, ξ1] [ξ1, ξ2]

)
=
(
ξ1 ξ2 ξ3

)K0 0 0
0 K0 0
0 0 1


that induces the sub-Riemannian structure, i.e., {ξ1, ξ2} forms an orthonormal basis of D. With
this basis the geodesic equations (18) can be written

γ̇ = L′
γ(s)(cos θ ξ1 + sin θ ξ2), θ̇ = −λ, λ̇ = 0,

where Lp denotes left multiplication by p. Note that cos θξ1+ sin θξ2 is a periodic curve on g

with period 2π/λ0.
Consider the Heisenberg group equipped with the sub-Riemannian structure for which a2

1+a2
2

and K0 are both zero. The geodesic equations may be explicitly integrated, and we find the
geodesic γθ0,λ0(s) starting at (0, 0, 0) is given in coordinates by

x(s) =
sin θ0 − sin(θ0 − λ0s)

λ0

, y(s) =
cos(θ0 − λ0s) − cos θ0

λ0

, z(s) =
λ0s − sin λ0s

2λ2
0

.

The Jacobian of the exponential map expp is computed to be

(λ0s sinλ0s + 2 cosλ0s − 2)/λ4
0.

Thus the first conjugate point along γθ0,λ0(s) occurs at 2π/λ0. Since x(2π/λ0) = y(2π/λ0) = 0
and z(2π/λ0) = π/λ2

0, we see that the first conjugate locus of (0, 0, 0) is the entire z-axis. This
is precisely the cut locus of (0,0,0); after all, every circle in the plane ceases to minimize length
among curves enclosing a fixed area immediately after it first closes up.

Thus in the Heisenberg case the conjugate locus and the cut locus coincide. Furthermore,
there are precisely two cut points of (0,0,0) on every sphere Sr(0, 0, 0), at (0, 0,±r).

We now look more closely at the sphere Sr(0, 0, 0) of radius r:

Sr(0, 0, 0) =
{

γθ0,λ0(r) | 0 ≤ θ0 ≤ 2π, −2π

r
≤ λ0 ≤

2π

r

}
.

The distance from (0,0,0) to a point (x, y, 0) in the xy-plane is equal to
√

x2+y2, however the
distance from (0,0,0) to a point (0, 0, z) along the z-axis is equal to

√
4πz. Therefore Sr(0, 0, 0)

intersects the xy-plane in a circle of radius r and it intersects the z-axis at ±r2/4π.
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The following is a picture of the upper half of the sphere S1(0, 0, 0). Note the singularity at
the z-axis:
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Consider now the group SO(3) equipped with the sub-Riemannian structure for which
a2

1+a2
2 = 0 and K0 = 1. We identify SO(3) with the bundle FS2 of oriented orthonormal frames

of S2. The sub-Riemannian structure is the one induced by the unique coframing (ω1, ω2, ρ) on
FS2 where ρ is the connection form for FS2 → S2 and (ω1, ω2) is the tautological one-form.

Every D-curve γ on SO(3) is the lift of a regular curve γ̄ on S2 by parallel transport:
γ(s) = (γ̄(s); e1(s)), where e1(s) is the parallel transport of the initial vector e1(0) along γ̄.
Note that the geodesics on SO(3) are the lifts of circular arcs on S2.

Because K≡1 and a2
1+a2

2=0, we see the Jacobi operator along a geodesic γ with curvature
λ0 has its first conjugate point at 2π/

√
1+λ2

0. This is precisely where the projected curve γ̄
first closes up. Therefore the conjugate locus of (p̄, e1) consists of the S1 fiber over p̄. It can
also be shown that the cut locus of (p̄; e1) consists of the S1 fiber over p̄, the S1 fiber over the
antipodal point of p̄, and the set of (q̄; e′1) such that the angle formed by the parallel transport
of e1 along the great circle joining p̄ to q̄ and the vector e′1 is equal to π.

For homogeneous manifolds with a2
1+a2

2 �=0, we may choose a basis {ξ1, ξ2, ξ3} of the Lie
algebra g with bracket relations

(
[ξ2, ξ3] [ξ3, ξ1] [ξ1, ξ2]

)
=
(
ξ1 ξ2 ξ3

)λ3 + ϕ1 0 −λ1

0 λ3 − ϕ1 −λ2

0 0 1


that induces the sub-Riemannian structure. With this basis the geodesic equations (18) can be
written

γ̇ = L′
γ(s)(cos θ ξ1 + sin θ ξ2), θ̇ = λ1 cos θ + λ2 sin θ − λ, λ̇ = −ϕ1 sin 2θ.

Consider the group E(2) of rigid motions of the Euclidean plane equipped with the sub-
Riemannian structure for which ϕ1=λ3=1/2 and λ1=λ2=0. This is case 1 b) of §2.3; identifying
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E(2) with R
2 × S1, with coordinates (x, y, φ), the geodesic equations can be written

ẋ = cos θ cos φ, ẏ = cos θ sinφ, φ̇ = − sin θ, θ̇ = −λ, λ̇ = −1
2

sin 2θ.

The last two equations imply λ2=c−1
2
cos 2θ, where c≥ − 1/2; the phase portrait is shown in

the following diagram:

θ=πθ=π/2θ=0

θ

λ

Plotted below are three solutions (x(t), y(t)) of the geodesic equations with θ0 = π/2. The
curve on the left has 0<λ0<1 (so that (θ, λ) lies inside the separatrix), the middle curve has
λ0=1 (so that (θ, λ) lies on the separatrix), and the curve on the right has λ0>1 (so that (θ, λ)
lies outside the separatrix):
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Remark 3. Note that these curves have kinks; this should be compared with the minimizing
curves of the functional

∫
κ2. Curves that minimize this functional are known to be regular [2].

It is surprising that the minimizing curves for these two functionals behave so differently.

By examining the Jacobi operator, it can be shown that for λ0 very near zero, the geodesic
γπ/2,λ0 has no conjugate points. It can also be shown that for λ0 bigger than about 16, the
geodesic γπ/2,λ0 has a conjugate point no later than 2π/(

√
λ0−2−2

√
3λ0).

4. Some Remarks on the Higher Dimensional Case

In this section, we discuss possible generalizations to higher dimensions and the difficulties
encountered there due to the presence of non-regular curves and abnormal minimizers. Let
(M, D, 〈 , 〉) be a sub-Riemannian manifold, where M has dimension n and D has rank m > 0.
Denote by ΩD(p, q) the space of D-curves joining p to q.

4.1. Non-regular curves. It is a fundamental problem to determine the topology of ΩD(p, q).
This problem is complicated by the presence of so-called “non-regular” curves. These are the
curves at which “the natural candidate” for the tangent space TγΩD(p, q) fails to be the true
tangent space [3]. Consequently, one needs to be careful when applying the techniques of the
calculus of variations to find the extremals of the length functional L defined on ΩD(p, q).

Recall as in the proof of Proposition 3.1 that associated to the variational problem (M, D,L)
there is a variational problem (Z, {0}, L̃) with the property that extremals of (Z, {0}, L̃) project
to be extremals of (M, D,L) [8]. The extremals of (Z, {0}, L̃) are precisely the integral curves
of the Euler-Lagrange system on Z. The D-curves that are the projections of integral curves
of the Euler-Lagrange system will be said to be geodesics. Every geodesic is an extremal, but
the converse need not be true. In [13], Hsu shows that every regular extremal is a geodesic.
For strongly bracket generating distributions (defined in §1.2 above), it can be shown that
every D-curve is regular. For instance, contact distributions are strongly bracket generating.
Distributions that are strongly bracket generating are rare, however: if D is strongly bracket
generating of rank m �=n−1, then m must be a multiple of 4 and also must be less than n(n−1)/2.
Furthermore, if D is not strongly bracket generating, then there are always non-regular curves
[3]. If one of these non-regular curves happens to be an extremal of (M, D,L), there is no
guarantee that it is a geodesic.

In [15], Liu and Sussman give an example of a length-minimizing curve on a sub-Riemannian
Engel manifold that is not a geodesic. This curve is rigid, i.e., it is isolated in the space ΩD(p, q)
with the C1-topology. Because rigid curves have no compact variations they are trivially local
extremals of (M, D,L); it is somewhat surprising that rigid curves can be global extremals.
Generalizations of Theorem 3.2 to the higher dimensional case will thus require an estimate of
how far one can take one of these abnormal minimizers before it is no longer minimizing. This
is an interesting problem in itself, and is closely related to the problem of determining how far
one can take a rigid curve and still have a rigid curve (see Bryant and Hsu [3]). Note that
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the length-minimizing D-curve given in the third example of §1.1 is also rigid. However, it is
possible to show this rigid curve does satisfy the geodesic equations.

4.2. Smoothness of minimizers and completeness issues. Because the length-minimizing
curves need not lift to solutions of the Euler-Lagrange equations, it is natural to ask if all the
extremals of (M, D,L) are smooth. If γ is a regular extremal, then it is a consequence of
Pontryagin’s Maximum Principle (see Strichartz [21], for example) that γ is smooth. If γ is a
non-regular extremal however, then it need not be smooth. In fact, in [15] Liu and Sussman
give an example of an abnormal extremal that is not even C1. It is not known at this time
whether this curve is locally optimal. See Montgomery [17] for an interesting discussion on a
sufficient condition to guarantee smoothness of sub-Riemannian minimizers.

It may be more natural in the higher dimensional case to define a D-curve as a Lipschitz
curve, rather than smooth curve, whose derivative lies in D (wherever it exists). Now the
Carnot-Carathéodory distance d(p, q) between two points p and q is the infimum of the lengths
of Lipschitz curves tangent to D joining p to q. If p and q are contained in a neighborhood
that has compact closure, then it follows that there is a length-minimizing D-curve joining p
to q [21]. Thus, if (M, D, 〈 , 〉) is complete, then Proposition 1.1 implies that every pair of
points may be joined by a length-minimizing D-curve. This length-minimizing D-curve need
not be a geodesic. Referring to the proof of Theorem 3.3 it seems likely then that (M, D, 〈 , 〉)
geodesically complete does not imply every pair of points may be joined by a length-minimizing
geodesic or even by a length-minimizing D-curve. Consequently, it seems likely that geodesic
completeness need not imply completeness.

Finally, it will be interesting to investigate the relation between cut points and conjugate
points in the higher dimensional case. It is well known in Riemannian geometry that if γ(t0) is
the cut point of p = γ(0) along γ, then either a) γ(t0) is the first conjugate point of γ(0) along
γ or b) there exists a different geodesic α from p to γ(t0) such that the length of α equals the
length of γ; conversely, if a) or b) is satisfied, then there exists t1 in (0, t0] such that γ(t1) is
the cut point of p along γ. This is probably not true in sub-Riemannian geometry. Certainly
a) implies that γ reaches a cut point before t0, but the proofs of the other implications in
Riemannian geometry won’t carry over to sub-Riemannian geometry because of the presence
of abnormal minimizers.
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(1990), 819-850.
12. Hermann R.: Geodesics of singular Riemannian metrics, Bull. AMS 79 (1973), 780-782.
13. Hsu, L.: Calculus of Variations via the Griffiths formalism, J. Diff. Geom. 36 (1992), 551-589.
14. Kato, T.: “Perturbation Theory for Linear Operators,” Springer-Verlag, Berlin, 1966.
15. Liu, W-S. and Sussman, H.: Abnormal sub-Riemannian minimizers, preprint.
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