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1 Matrix-Tree Theorem

1.1 Undirected Graphs

Let G = (V,E) be a connected, undirected graph with n vertices, and let x(G) be the
number of spanning trees of G.

Definition 1 (Laplacian matrix of undirected graph) The Laplacian matriz L of G

is equal to D — A, where
dy 0

D p— . .
0 dn

such that d; is the degree of vertex i, i.e. the number of edges incident to vertex i, and A is
the adjacency matriz of G such that

A = (aij),

{1 if (i,5) € E
aij =
0 else.
Theorem 2 (Matrix-Tree Theorem, Version 1)
1
H(G) = E)\l)\g Ce )\nfl,

where A1, A2, ..., Ap—1 are non-zero eigenvalues of the Laplacian matrix L of G.

1.2 Directed Graphs

We can give another version of the Matrix-Tree Theorem for directed graphs. First, we
need to define spanning trees and Laplacian matrices for directed graphs. Let I' = (V, E)
be a directed graph.
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Definition 3 (Oriented spanning tree) An oriented spanning tree of I rooted at r € V
is a spanning subgraph T = (V, A) such that

1. FEvery vertex v # r has out degree 1.
2. r has out degree 0.

3. T has no oriented cycles.

Example 4 Consider the following directed graph:
1 ﬁj =4
2 3

10——0 r=4

It has three oriented spanning trees:

QL—OS’

1%7“:4
20 3

Definition 5 (Laplacian matrix of directed graph) The Laplacian matriz L of T is
equal to D — A, where
dy 0

D= .
0 dnp

such that d; is the out degree of vertex i, i.e. #{j € V|(i,j) € E}, and A is the adjacency
matriz of T".

Theorem 6 (Matrix-Tree Theorem, Version 2) Let

k(T',r) = #{oriented spanning trees of I" rooted at r}
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and L, be the Laplacian matriz of I' with the row and column corresponding to vertex r
crossed out. Then

k(T,r) = det L,
where L, is the Laplacian matriz L with row and column r removed.
Example 7 Consider the directed graph from the previous example:
1 r=4
N

Then we see that

O O O N
O O = O
o N OO
— o O O

and

— =0 O
SO O
—_ O = O
O = O O

SO

and

Then
detL,=2-1-24+-1--1-—-1=3

which matches what we found in the previous example.

We will prove this version of the Matrix-Tree Theorem and then show that it implies the
version for undirected graphs.

Proof: Reorder the vertices of I' so that r is the nth vertex. Then det L, = dids ... d,—1 —
(other terms), since L, has the d;’s on the diagonal and either —1 or 0 for the off-diagonal
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entries. dids...d,_1 counts the number of subgraphs H of I" such that each vertex v # r
has out-degree 1. So we have that

H=TUC,U---UC},
where T is an oriented tree rooted at r and each Cj is an oriented cycle.

Then
det LT = Z Sgn(O’)LLJ(l) e Lnfl,cr(nfl)'

0ESn—1
Let fix(o) = {i | o(i) = i}. Then we have
det L, = Z sgn(o) H d; H L o(i)-
0ESn—_1 iefix(o)  i¢fix(o)

[Ti¢tix(o) Lio(i) 18 only non-zero when (i,0(i)) € E for all i ¢ fix(c). In this case,

IT Liww = (1) 1@l
1¢fix(o)

We wish to write

det L, = E Cy,
subgraphs H C I"

where Cpy is 1 if H is an oriented spanning tree and 0 otherwise. Any permutation o consists
of fixed points and cycles. A subgraph H = T UCy U --- U} arises from ¢ if and only if
the union of all cycles C; of H contains all vertices not fixed by H, which, in turn, is true
if and only if T C fix(0).

We can then conclude that
Cy = Z sgn(o)(—1)" 1 lx(@)],
{c€Sn_1 | TCfix(o)}

Our goal is then to show that C'y is 1 when H is a tree and 0 otherwise. When H is a
tree, H = T and there are no cycles. Then all vertices are in |fix(c)| and o is the identity
permutation. The sign of the identity permutation is 1 and n—1 points are fixed, so Ciy = 1.

Lastly, we need to show that Cy = 0 if £ > 1, i.e. if H has a cycle. For each C;, we can
either choose C; C fix(o) or C; to be a cycle of o. Let ij,...,7 be the indices of the C;’s
that are formed from vertices in cycles of o. All other points must be fixed by o, so

sgn(o) = (—1)(\01'1 [=1)+...4+(1C4 [=1)

This means that

Cy = Z (=1)(Ca [=1)+4(Cq [=1) (1) ICoy [+ +ICiy |
{il,...,il}e[k}
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So,

Cu= Y (-1)F

SCIk]
k
=S (M)a-vr
l
=0ifk>1

1.3 Proof of the Matrix Tree Theorem, Version 1

Now we will show that Version 2 of the Matrix Tree Theorem implies the version for undi-
rected graphs.

Proof: Given undirected graph G, let I' be the directed graph with edges (,7) and (j,1%)
for every edge of G. We first observe that there is a bijection between the set of oriented
spanning trees of I" rooted at r and the set of spanning trees of G. We can take any oriented
spanning tree of I' rooted at r and get a spanning tree of G by disregarding the root and
the orientation of the edges. For any spanning tree T of G, we can get an oriented spanning
tree of I' by orienting edges along the unique path from each vertex to r. Such a path exists
because T is connected and is unique because 71" has no cycles. Then

nk(G) = i/{(l“, ).
r=1
Let L be the Laplacian matrix of I'. Then the characteristic polynomial of L is
x(t) =det (tI — L).
It is true that

Z det L, = (—1)n_1 [t]X(t)v
r=1

where [t]x(¢) is the coefficient of ¢ in x(t).
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So, we have that
ZdetL = (=1 ()
n
H — i), where the \;’s are eigenvalues of L and A\, =0

— (1) <_>”1A1

Therefore,

2 Cayley’s Theorem

Theorem 8 (Cayley’s Theorem) The number of trees on n labeled vertices is n" 2.

Example 9 Consider trees containing 4 vertices. There are 16 = 412 total, 4 of the form

1
3 2 4
and 12 of the form
O O O O
1 2 3 4

Proof: Any tree on n vertices is a spanning tree of the complete graph K,,, so we can apply
Version 2 of the Matrix-Tree Theorem. So,

where
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are the non-zero eigenvalues of the Laplacian matrix

n-1 -1 ... -1
-1 n-1 - -1

where J is the n X n matrix of ones.

J has the ones vector as one of its eigenvectors. The remaining n — 1 eigenvectors are of
the form

so J has eigenvalues n,0,...,0, with 0 having multiplicity n — 1. This implies that L has

eigenvalues 0, n, ..., n, with n having multiplicity n — 1.
So,
nn—l
K(K,) = S
(Kn) ="
O

3 Eigenvalues of the Adjacency Matrix

Let G be an undirected, connected graph with n vertices. Let P, be the number of closed
paths in G of length I:

Py = #{(vo,v1,...,v—1,vy = vo) | (vi,viy1) € Efori=0,1,...,1 -1}
Theorem 10
Pi=g¢h+-+ 6y,

where ¢1,...,¢, are the eigenvalues of the adjacency matriz A of G.

Proof: We observe that

(A");; = #{paths of length [ from i to j}.

So,
Pr= (AN + (Ao + - + (A pn = Tr(AD).
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Note that this holds for both directed and undirected graphs.

Since G is undirected, A is symmetric, which means that A is diagonalizable so there exists
some S such that

o1 0 -~ 0
o0
SAS = @ o
0 0 Pn
So,
Pl:Tr(Al)
= Tr(SA'S™)
= Tr((SAS™1))
¢11 0o --- 0
0 Lo
=Tr| . ¢.2 _ )
0 0 @
= b+t
O
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