
1. The incidence matrix, its kernel and cockerel.

The incidence matrix.
The entries of the incidence matrix are dia where i runs over an index set for the

vertices (could be the vertices themselves!) and a runs over an index set for the
edges. Thus the vertex set is

V (Γ) = {vi, i = 1, . . . , n}

while the edge set is
E(Γ) = {ea ∶ a = 1, . . . ,m}

To define the incidence matrix we choose an orientation for each edge, which
means a ‘positive’ end and a ‘negative’ end for each edge.

Then

dia =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

1, if vi = is the positive end of ea

−1, if if vi is the negative end of ea

0, if viis not incident to ea

.

Now recall that
C1(Γ) ≅ Rm; coordinates φ↦ φ(ea)

and
C0(Γ) ≅ Rn; coordinates f ↦ f(vi).

For φ ∈ C1(Γ) a function on edges we have

Dφ(vi) = Σdiaφ(ea)

while for f ∈ C0(Γ) a function on vertices we have:

df(ea) = Σdiaf(vi)

Then
D = dT

and they form a pair of linear operators: C0(Γ) C1(Γ)
d

D
In defining the

transpose LT of a linear operator L, we need an inner product on its domain and
range. In our case of D = dT , we need an inner product. For us, the transpose is
relative to the following natural inner products on the two spaces:

⟨f, g⟩ = Σn
i=1f(vi)g(vi)

⟨φ,ψ⟩ = Σm
i=1φ(ea)ψ(ea)

Exercise 1. Verify that these formulae for d,D are the same as the “intrinsic’
formula: If ea = (vivj) then

df(ea) = f(vj) − f(vi)

Notation: If the positive vertex is vj and the negative vertex is vi then we will also
write ea = vivj. And

Dφ(vi) = Σφ(vjvi) −Σφ(vivk)

where the first sum is over edges with positive end vi and the second sum is over
those edges whose negative end is vi.

Exercise 2. Verify that the graph’s Laplacian is given by ∆ =Dd.

Theorem 1. The kernel of d consists of the functions which are constant on each
connected component of Γ.
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Proof of theorem. IN CLASS.

Corollary 1. dim(ker(d)) = c is the number of connected components of Γ. The
dimension of the image of d is n− c. The dimension of kernel of D is m− (n− c) =
m − n + c

Proof of Cor. Use the rank plus nullity theorem: dim(im(L)) + dim(ker(L)) =
dim(dom(L) where dom(L) is the domain of L.

For the second statement use the fact that im(L)⊥ = ker(LT ) valid for any linear
operator between inner product spaces. Then use the rank plus nullity theorem.
QED

Corollary 2. The kernel of the Laplacian consists of the functions which are con-
stant on each connected component of Γ.

Proof. The Laplacian is dT d. It is a general fact that the kernel of LTL is equal
to the kernel of L, for any linear operator L between inner product spaces. QED

Cycle space. Take a cycle in our graph. Orient it as per the standard cycle
so the edges follow each other in a “circle”. Now, for our given orientation of Γ
and a given edge ea ∈ C, that edge’s orientation may or may not agree with the
orientation we gave to C. We want to make it agree by using a choice of signs for
a function supported on the edges of C. We call this the ‘cycle function’ of C and
write it ξC :

ξC(ea) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

1, if ea ∈ C and its orientation agrees with C

−1, if ea ∈ Cand its orientation is opposite of C

0, if ea ∉ C

.

Exercise. DξC = 0 for any ‘cycle function’ C.
Later, we will see that ker(D) is spanned by the cycle functions.
Cut space. Fix a partition of V (Γ) into two non-empty disjoint subsets, V1, V2.

Thus V = V1 ∪ V2 and consequently V2 = V ∖ V1. Let H ⊂ E(Γ) be the set of all
edges with one end in V1 and the other in V2. We call any such H a “cut set”. We
can choose an orientation for the edges of H by insisting that they ‘go’ from V1
to V2: so each e ∈ E has positive end in V2 and negative end in V1. We will call
this the “cut orientation” of the edges of H. We can now define the cut function
associated to H =H(V1, V2) by

χH(ea) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

1, if ea ∈H with cut-orientation agreeing with graph’s orientation

−1, if ea ∈Hwith cut-orientation opposite to graph’s orientation

0, if ea ∉H

.

Theorem 2. The image of d is spanned by cut functions χH . This image equals
the orthogonal complement of the kernel of D and is spanned by cut functions.

Proof of theorem. For the first statement, let fi denote the standard basis for
C0(Γ), so that fi(vj) = δij . Compute that dfi = −χHi where Hi is the partition
with V1 = {vi} and V2 = V ∖ {vi}.

For the second statement use that for any linear operator L ∶ X → Y between
inner product spaces we have im(L)⊥ = ker(LT ) or im(L) = ker(LT )⊥. Here
L = d,LT =D.

From these theorems we have
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dim(I ′md) = dim(cutspace) = n − c

where , we recall c is the number of components of the graph.
Thus

dim(kerD) = dim(cyclespace) =m − (n − c)

Spanning trees to get a basis for the cut and cycle space
Suppose now that Γ is connected so that c = 1. Let T ⊂ Γ be any spanning tree.

To form T we had to take out a number of edges out of Γ.

Exercise 3. If you add back to Γ any one of the edges you took away, the resulting
graph has exactly one cycle

Exercise 4. If you take away from T a single edge the result is disconnected.

Theorem 3. Fix a spanning tree. Write E(Γ)∖E(T ) for the edges we had to take
away from Γ to form T . For each edge ea ∈ E(Γ)∖E(T ) let φa be the cycle function
associated to the unique cycle we get by adding ea back to T . Then the φa form a
basis for the cycle space.

Dimension count check. As we saw just a bit earlier dim(cyclespace) =m−(n−1).
The number of edges of T is n − 1. Hence the number of edges of E(Γ) ∖E(T ) is
m − (n − 1), the correct number to form a basis for the cycle space.


