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RICHARD MONTGOMERY

Abstract. Working out the incidence matrix and Laplacian in terms of the

differential on a graph.

1. Spectral Theory of Graphs.

References. The best source for this material, out of the texts we have listed, is
chapter 4 of Biggs. Some of the material can also be found in ch. 12 of the online
Murty and towards the end of ch 3 of Bollabas.

Write C0(Γ) for the vector space of all real-valued functions on the vertices of
Γ. Several authors call this space “the vertex space”. I will call it the space of
functions on the graph. C0(Γ) is a real vector space of dimension ∣V ∣ = n:

C0
(Γ) = RV (Γ)

= real valued functions on V

It has for a canonical basis, the “delta functions” (following Dirac), which are the
functions δv ∶ V → R which are one on v and 0 off of the vertex v: in symbols:

(1) δv(w) ∶= δvw =

⎧⎪⎪
⎨
⎪⎪⎩

1, if v = w

0, if v ≠ w
.

We sometimes just write v instead of δv.
Exercise. Show that any f ∈ C0(Γ) can be expressed uniquely as f = Σv∈V f(v)δv.

1.1. Laplacian on a graph. Define

∆ ∶ C0
(Γ)→ C0

(Γ)

by

(∆f)(v) = Σe=vw an edge incident to v(f(v) − f(w)).

Exercise 1. Show that relative to the canonical basis δv, v ∈ V we have that

∆ =DEG −A

where DEG is the diagonal matrix whose vv entry is deg(v), and where A = A(Γ)
is the adjacency matrix of last week.

WARNING: Biggs writes Q for our ∆ and ∆ for our DEG.

Definition 1. The ‘tree number” of a graph Γ is the number of spanning trees of
Γ.
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Example: If Γ is disconnected then its tree number is zero since it has no spanning
trees.

Example. If Γ is the cyclic graph on n vertices then its tree number equals to n.
Example. If Γ is a tree then its tree number equals 1.
Recall the cofactor of an n × n matrix M . Cij = (−1)i+jdet(M̂)ij) where M̂)ij

is the n − 1 × n − 1 matrix we get by deleting the ith row and jth column of M .

Theorem 1. Every cofactor of ∆ is the same and equals to the tree number of Γ.

APPLICATION. Cayley’s formula. Since the complete graph on n vertices con-
tains every labelled tree, its tree number is the total number of labelled trees on n
vertices - the number Cayler counted and Prüfer proved is correct.

A) Write out the matrix ∆n for Laplacian for the complete graph on n vertices
(in terms of the standard basis!).

B) Let Jn be the n by n matrix all of whose entries are 1. Show that ∆n = nIn−Jn
where Jn.

C) Show that the ij = 1,1cofactor of ∆n is det(nIn−1 − Jn−1).
D) Compute det(nIn−1 − Jn−1) by completing the following exercises which will

allow us to compute det(λIk − Jk) the characteristic polynomial of Jk, for k a
positive integer.

D1) Show that the rank of Jk is 1 and its nullity is k − 1.
D2) Show that the only nonzero eigenvalue of Jk is k.
D3) Conclude that det(λI − Jk) = λ

k−1(λ − 1).
D4) Now set λ = n, k = n − 1 to finish off the computation of the cofactor.

1.2. Proof of tree number formula; more Laplacian facts.

Proposition 1. (1) The constant functions are in the kernel of ∆.
(2) The nullity of ∆ equals the number of connected components of Γ.

Corollary 1. If Γ is connected then the kernel of ∆ is one-dimensional and consists
of the constant functions.

Recall: the cofactor of a matrix. Recall the cofactor formula for the inverse of
a matrix. Recall that the product of a square matrix M and its cofactor matrix is
equal to det(M)Id

....

Remark. It is really not so important that the functions are real-valued. They
just need to take values in some field. It could be C,Q or even the field with two
elements. For definiteness, think of them as real valued.

We define a differential by

df(vw) = f(w) − f(v); vw ∈ E.

so that
d ∶ C0

(Γ)→ C1
(Γ) ∶= functions on the edges.

Oop! We have a problem here. Which comes first v or w? The edges, as we
defined them, are unoriented: vw = wv. But for the differential to be defined we
need to order them.

Definition 2. An orientation of an edge is an answer to the question: does e go
from v to w or from w to v? If the edge goes from v to w then the orientation
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is (v,w) and we call v the “positive end” and w the ‘negative end. We write
e+ = w, e− = v. If the edge goes from w to v then the orientation is (w, v). The two
orientations are formal negatives: −(v,w) = (w, v): reversing the pair, reverses the
arrow , switches signs.

An orientation of a simple graph is a choice of orientation for each edge. We
write such a choice by putting a tilde over E: Ẽ(Γ)

Bollabas, p. 6, calls these “oriented graphs”. So his “oriented graph” is a directed
graph arising by choosing an orientation for a simple graph.

There are 2∣E∣ orientations of the graph. Fix one. By abuse of notation, continue
to write E for Ẽ.

Definition 3. C1(Γ) is the space of real-valued function on the oriented edges of
the graph Γ and is called the “edge space”.

. Bollabas around p. 38. Biggs, p. 24.
Now we have a well defined differential

d ∶ C0
(Γ)→ C1

(Γ)

df(e) = f(e+) − f(e−)

CF: Murty, p. 212. Eq (12.2). Murty write δ for d and calls the oriented edges
“arcs”.

Now C0(Γ) and C1(Γ) have a canonical basis, the vertices and edges respectively.
Relative to this basis the matrix of the differential is an m by n matrix whose entries
are all 0,1 or −1. Show that relative to this basis, the matrix of d is

for e ∈ Ẽ, v ∈ V ∶Me,v =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

1, if e+ = v

−1, if e− = v

0, else

.

TEXTS: this is the matrix BT of p. 38 of Bollabas. The matrix B is called
the “incidence matrix”. This is the matrix DT of Biggs, DEf. 4.2, again called
the “incidence matrix” for the digraph. This matrix is NOT QUITE the matrix
M(G)T from p. 7 of Murty. What is the difference between Murty’s incidence
matrix M(G) and our MT ?

Exercise. Use the basis ... Write out the matrix for the differential on K3 and
K4 as indicated.

Now, if V is finite, then C0(V ) inherits a canonical inner product for which the
δv’s are orthonormal: Namely:

⟨f, g⟩ = Σv∈V f(v)g(v)

Similarly C1(E) has a canonical inner product:

⟨α,β⟩ = Σe∈Ẽα(e)β(e)

We can then compute the dual of d by:

⟨df,α⟩ = ⟨f, d∗α⟩.

EXERCISE
Show that

(d∗α)(v) = Σe∶e+=vα(e) −Σe∶e−=vα(e).

Alternatively
(d∗α)(v) = Σe∈ẼMe,vα(e).



4 RICHARD MONTGOMERY

with M as above.
Exercise. Verify that the matrix D of d∗ and the matrix M of d are related by

M =DT .

Definition 4. The Laplacian on the graph is the linear map

∆ = d∗d ∶ C0
(Γ)→ C0

(Γ).

Exercise. Let DEG be the diagonal matrix whose entries are the degrees of the
vertices: DEGvv = deg(v);DEGvw = 0, v ≠ w. Show that

∆ =DEG −A(Γ)

where A(Γ) is the adjacency matrix described earlier.
TEXTS: prop 4.8, p. 27, Biggs. Bollabas, Theorem 6, p. 38. Biggs writes ∆ for

our DEG.

(Montgomery) Mathematics Department, University of California
E-mail address: rmont@ucsc.edu


