
HW 1.

1.

1. Background. A “Cantor set” is a compact set which is totally disconnected
and such that there are no isolated points. The standard “throw away the middle
thirds”’ Cantor set was the first example. Any countable product of finite sets
Πi∈IFi of finite sets Fi, is another class of examples. It is a theorem that any two
Cantor sets are homeomorphic.

For our “standard Cantor set ” we take all the FI = Z2 = {0, 1}.

Σ = ZZ
2

which we can view as the space of bi-infinite sequences of 0’s and 1’s. So an element
of Σ is a sequence ω = (ωi)i∈Z with each ωi being 0 or 1.

Define the “shift map”’ F : Σ→ Σ by

F (ω)i = ωi+1.

Define a measure on Σ by declaring that, for each i ∈ Z

µ({ω : ωi = 1}) =
1

2
= µ(({ω : ωi = 0})

This is the “coin flip” measure of probability theory.
a) Show that F is a homeomorphism
b) Show that µ is a Borel measure
c) Show that F is measure preserving
d) Prove that F is ergodic.
e) Prove that F is mixing

Cantor set to be the product space ZN+

2 , ( N+ is the set of all positive integers)
endowed with the product topology. An element of the Cantor set is then an infinite
sequence (σi)i∈N of 1’s and 0’s; σi ∈ {0, 1}. the sequence labelled by the positive
integers. Consider the map F whcih sends to

;2 : C2 → [0, 1];F2(σ) = Σi∈N+
σi2
−i

a) Show that F2 is continous and onto.
b) If we give Z2 the “coin-flip” measure (each element has probability 1/2) then

the Cantor set inherits a probability measure. (The product of probability spaces
is a probability space, so that the Cantor set has a probability measure on it. )
Show that F2 is an isomorphism in the sense of measure theory: it is onto, and the
map is measure preserving: µ(F−12 (I) = |I| for any interval I.

hint: consider dyadic intervals.
d)Show that F2 is a measure preserving semi-conjugacy between the Bernoulli

shift on the Cantor set and the doubling map (mod 1) on the interval.

e) Repeat (a)-(c) for FN : ZN+

N → I.

f) Use the fact that there is a bijective map from two disjoint copies of N+ to
N+ to define an onto map C → I × I. Repeat, to establish the existence of an onto
map from the Cantor set ONTO the n-cube. Onto any compact n-manifold.

1. A gradient flow. Let T be the flat torus with standard coordinates θ1, θ2 mod
2π. Let V = − cos(θ1)cos(θ2). Locate the equilibria. Describe each type (source,
saddle, sink). Sketch the flow lines .
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2. Hamiltonian flows. For M = T ∗R = R× R let H = (1/2)p2 + P (x) where P
is a polynomial. Sketch the phase portraits in case

a) P is linear
b) P is homogeneous quadratic.
c) P is cubic. Do a few cases.
d) P = (x− 1)2(x+ 1)2.

3. Again as in 2. Again P is polynomial. Is the flow complete? Find a proof or
a counterexample.

4. N-dimensional oscillator. This has for its Hamiltonian H(q, p) = (1/2)〈p, p〉2+
〈q, Aq〉 where p, q ∈ Rn, where we use the standard inner product 〈·, ·〉 to identify
Rn with its dual, and where A is a positive definite symmetric matrix. Prove that
the closure of the typical orbit is a k-torus, for some k ≤ N . Describe the maximal
k in terms of the eigenvalues of A.

5. Guckenheimer-Holmes. Exer. 5.1.2 and 5.1.3 of p. 234.
These exercises are on the Smale Horseshoe and are best solved using symbolic

dynamics. Let Γ ⊂ I2 be the subset of the square S = I2 which never leaves the
square in forward or backward time.

5.1.2. Show that all the periodic orbits are of saddle type. Locate the periodic
orbits with period 4 or less and write out their symbol sequence. Show that Λ
contains a countable infinity of heteroclinic and homoclinic orbits. Show that Λ
contains an uncountable number of orbits which are not periodic.

5.1.3 Show that Λ contains a dense orbit.

6. A gradient system in Rn is given by ẋ = −∇V (x), x ∈ Rn where V is a
smooth function. What is special about the linearization of a gradient system at
an equilibrium, in comparison to a general linear system ẋ = Ax with A a general
n by n matrix.

7. Newton’s equations on Rn are equations of the form ẍ = −∇V (x), x ∈ Rn

where V is a smooth function, called the potential.
a) First orderize the system by introducing v = ẋ so as to make it an ODE on

Rn × Rn = TRn.
b. What is special about the linearization of Newton’s equations at an equilib-

rium in in comparison to a general linear system ẋ = Ax with A a general 2nby2n
matrix.

8. Take the Cantor set to be the product space ZN+

2 , ( N+ is the set of all positive
integers) endowed with the product topology. An element of the Cantor set is then
an infinite sequence (σi)i∈N of 1’s and 0’s; σi ∈ {0, 1}. the sequence labelled by the
positive integers. Consider the map F whcih sends to

;2 : C2 → [0, 1];F2(σ) = Σi∈N+
σi2
−i

a) Show that F2 is continous and onto.
b) If we give Z2 the “coin-flip” measure (each element has probability 1/2) then

the Cantor set inherits a probability measure. (The product of probability spaces
is a probability space, so that the Cantor set has a probability measure on it. )
Show that F2 is an isomorphism in the sense of measure theory: it is onto, and the
map is measure preserving: µ(F−12 (I) = |I| for any interval I.

hint: consider dyadic intervals.
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d)Show that F2 is a measure preserving semi-conjugacy between the Bernoulli
shift on the Cantor set and the doubling map (mod 1) on the interval.

e) Repeat (a)-(c) for FN : ZN+

N → I.

f) Use the fact that there is a bijective map from two disjoint copies of N+ to
N+ to define an onto map C → I × I. Repeat, to establish the existence of an onto
map from the Cantor set ONTO the n-cube. Onto any compact n-manifold.

9. Show that the doubling map S1 → S1 is measure preserving.

10. Prove that rotation of the circle is NOT mixing.

11. Prove that the suspension of a map is NOT a mixing flow.

12. Construct a homeomorphism of the plane R2 = C which maps the spiral
exp(1 + i)t), t ∈ R to the ray y = 0, x > 0.


