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1. Introduction

The shadowing lemma is one of the fundamental technical results used in the
study of axiom A dynamical systems and homoclinic phenomena. The idea first
appears in Anosov’s [1] studies of geodesic flows and was later formalized by
Bowen [2] for axiom A systems. These early results were established using
detailed information about the intersection of the stable and unstable manifolds
associated to hyperbolic sets. Robinson [7] gave a simple geometric proof of
this lemma along with a variety of interesting applications. The reader is referred
to Robinson’s paper for a more complete introduction and further references.

In this paper we shall give a simple analytic proof of this lemma along with
some applications. This simple proof facilitates a generalization of the shadowing
lemma to skew product flows which is given in section $¥mathrm{I}¥mathrm{V}$ . For discrete dynamical
systems the shadowing lemma is as follows. Let $f:M¥rightarrow M$ be a $C^{1}$ diffeomorphism
of a smooth manifold $M$ endowed with some Riemannian metric. An invariant
set $¥Lambda¥subset M$ for $f$ is called hyperbolic if there is a continuous splitting $TM|¥Lambda=E^{u}¥oplus E^{s}$

and constants $C>0,0<¥mu<1$ such that

(1) $||Df^{n}(x)(v)||¥leq C¥mu^{n}||v||$ and $||Df^{-n}(x)(u)||¥leq C¥mu^{n}||u||$

for all $x$ $¥in¥Lambda$ , $v¥in E_{X}^{s}$ , $u¥in E_{X}^{u}$ and $n¥geq 0$ . For $a>0$ an oc-pseudo-orbit for $ f|¥Lambda$ is a
bisequence $¥{x_{i}¥}_{i=}^{¥infty}¥_¥infty$ of points $ X_{i}¥in¥Lambda$ such that $d(f(x_{i-1}), x_{i})<a$ for all $i$ . One
says that a $¥mathrm{f}$-orbit $¥{f^{i}(y)¥}$ , $¥beta$-shadows $¥{x_{i}¥}$ if $ d(f^{i}(y), X_{i})<¥beta$ for all $i$ .

The Shadowing Lemma. If $¥Lambda$ is an compact, hyperbolic invariant set for
$f:M¥rightarrow M$ , then for every $¥beta>0$ there is an $a>0$ such that every $¥alpha-$pseudo-orbit
for $ f|¥Lambda$ is/3-shadowed by some $f$-orbit $¥{f^{i}(y)¥}$ . Moreover, there is a $¥beta_{0}>0$ such
that if $0<¥beta<¥beta_{0}$ the $f$-orbit given above is uniquely determined by the $¥alpha-$pseudo-
orbit.

This lemma will be proved in the next section. After a brief discussion of
some applications, it is generalized to almost periodic flows in section $¥mathrm{I}¥mathrm{V}$ .

This paper is dedicated to the memory of Lamont Cranston and the lovely
Margo Lane.
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II. Discrete flows

In order to present the idea of the proof $¥mathrm{v}/¥mathrm{i}¥mathrm{t}¥mathrm{h}¥mathrm{o}¥mathrm{u}¥mathrm{t}$ notational complexities we
shall assume that $M$ is $R^{n}$ . This allows us to work in a Banach space instead
of a Banach manifold. Since $¥Lambda¥subset M$ is compact and we are interested in behavior
near $¥Lambda$ , we may modify $f$ outside a neighborhood of $¥Lambda$ so that all orbits of $f$ are
bounded. By averaging the metric we may assume that the constant $C$ in (1) of
the introduction is 1, see [6] for proof. Moreover, there is a neighborhood $N$ of
$¥Lambda$ such that the invariant splitting and the asymptotic estimates extend to this
neighborhood, see [6]. Thus we shall assume that $f:R^{n}¥rightarrow R^{n}$ is a $C^{1}$ diffeo-
morphism such that for each $x¥in R^{n}$ the set $¥{f^{n}(x)¥}$ is bounded. Moreover, there
is a neighborhood $N$ of $¥Lambda$ with compact closure, a constant $0<¥mu<1$ and a con-
tinuous splitting $TR^{n}|¥overline{N}=E^{s}¥oplus E^{u}$ such that if $x$ and $f(x)¥in¥overline{N}$ then $||Df(x)(u)||<$

$¥mu||u||$ for all $u¥in E_{x}^{s}$ , and if $x¥mathrm{a}¥mathrm{n}¥mathrm{d}.f^{-1}(x)¥in¥overline{N}$ then $||Df^{-1}(x)(v)||<¥mu||v||$ for all $v¥in E_{x}^{u}$ .
Let $¥ovalbox{¥tt¥small REJECT}=l_{¥infty}$ be the Banach space of bounded, bisequences $x=¥{x_{i}¥}=(¥cdots,$ $x¥_ 1$ ,

$x_{0}$ , $x_{1},¥cdots)$ , $x_{i}¥in R^{n}$ , with norm $||x||=¥sup_{i}||x_{i}||$ . Consider the map $¥swarrow¥varpi$ : $¥ovalbox{¥tt¥small REJECT}¥rightarrow¥ovalbox{¥tt¥small REJECT}$

defined by $(¥swarrow^{¥varpi}(x))_{i}=f(x_{i1}¥_)$ . Note, that the bisequence $x=¥{x_{i}¥}$ is an $¥mathrm{f}$-orbit if
and only if $¥swarrow^{¥varpi}(x)=x$ , because $¥swarrow^{¥varpi}(x)=¥mathrm{x}$ means $f(x_{i-1})=x_{i}$ for all $i$ . Let $¥ovalbox{¥tt¥small REJECT}=$

$¥{x ¥in M:x_{i}¥in¥Lambda¥}$ and $A^{¥wedge}=¥{x¥in M:x_{i}¥in N¥}$ . Thus $¥swarrow ¥mathrm{r}$ is a neighborhood of $¥ovalbox{¥tt¥small REJECT}$ in
$¥ovalbox{¥tt¥small REJECT}$ . Since $¥Lambda$ is compact there is a $¥delta_{0}>0$ such that the $¥delta_{0}$ -neighborhood of $¥Lambda$ lies
in $N$ . Even though it is not compact, the $¥delta_{0}$ neighborhood of $¥ovalbox{¥tt¥small REJECT}$ lies in $A^{¥nearrow}$ .

Also note that a bisequence $x=¥{x_{i}¥}$ is an a-pseudo-orbit for $f$ if and only if
$||¥swarrow^{¥varpi}(x)-x||<a$ and that $¥mathrm{y}=¥{¥mathrm{y}_{¥mathrm{i}}¥}¥beta$-shadows $x$ if and only if $¥swarrow^{¥varpi}(y)=y$ and $||y-x||<$

$¥beta$ . Thus, in this context the Shadowing Lemma says: For every $¥beta>0$ there is $a$

$a>0$ such that if $x¥in¥ovalbox{¥tt¥small REJECT}$ and $||¥swarrow^{¥varpi}(x)-x||<a$ then there is a $y¥in¥Lambda^{¥nearrow}such$ $that¥swarrow^{¥varpi}(y)=$

$y$ and $||x-y||<¥beta$ . In other words, if $||¥swarrow^{¥varpi}(x)-x||<a$ then $¥swarrow¥varpi$ has a fixed point $y$

in an a-neighborhood of $x$ . This formulation suggest the use of the inverse
function theorem with the standard estimate on the domain of the inverse function.

The function $¥swarrow¥varpi$ is differentiate with derivative given by

$(D¥swarrow^{¥varpi}(x)(w))_{i}=Df(x_{i-1})(w_{i-1})$ ,

where $x$ , $w¥in¥ovalbox{¥tt¥small REJECT}$ . Let $X¥in¥swarrow V$ and define $¥ovalbox{¥tt¥small REJECT}_{x}=¥times¥_¥infty¥infty E_{x_{i}}^{s}¥cap¥ovalbox{¥tt¥small REJECT}$, $¥%_{x}=¥mathrm{x}^{¥infty}¥_¥infty E_{x_{i}}^{u}¥cap¥ovalbox{¥tt¥small REJECT}$ .
Since the original splitting is continuous, both $p_{X}$ and $¥%_{X}$ are closed, linear
complimentary subspaces of $¥ovalbox{¥tt¥small REJECT}$ for each $X¥in¥swarrow ¥mathrm{r}$ , thus $¥ovalbox{¥tt¥small REJECT}=¥ovalbox{¥tt¥small REJECT}_{x}¥oplus¥%_{i¥mathrm{X}}$ . Also,
$D¥swarrow^{¥varpi}(x)$ maps $p_{x}$ into $¥ovalbox{¥tt¥small REJECT}_{ff(X)}$ and $¥%_{x}$ into %$F(x)$ .

Using these facts we shall show that there is a constant $K$ such that

(2) $||D¥swarrow^{¥varpi}(x)-I||¥leq K$ and $||(D¥swarrow^{¥varpi}(x)-I)^{-1}||¥leq K$

for all $x¥in¥Lambda^{¥prime}$ . The first estimate follows the fact that $Df$ is uniformly bounded
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on the compact set $¥overline{N}$ . Because of linearity, the second estimate needs only be
proved on the two complimentary subspaces $p_{x}$ and $¥%_{X}$ . For $u¥in_{¥epsilon}r_{X}$ we have

$||D¥swarrow^{¥varpi}(x)(u)-u||¥geq||u||-||D¥swarrow^{¥varpi}(x)(u)||$

$¥geq||u||-¥mu||u||=(1-¥mu)||u||$

Hence $||D¥swarrow^{¥varpi}(x)-I)|_{¥ovalbox{¥tt¥small REJECT}_{¥chi}}^{-1}||¥leq(1-¥mu)^{-1}$ .

Since $Df$ is invertible on the compact set $¥overline{N}$ there is a constant $K_{3}>0$ such
that $||D.f(x)(w)||¥geq K_{3}||w||$ for all $x¥in¥overline{N}$ and $w¥in R^{n}$ . In particular this implies that
$||D¥swarrow^{¥varpi}(x)(v)||¥geq K_{3}||v||$ for all $x¥in N$ and $v¥in¥%_{x}$ . Let $v¥in¥%_{¥mathrm{X}}$ , then

$||D¥swarrow^{¥varpi}(x)(v)-v||=||D¥swarrow^{¥varpi}(x)¥{v-¥swarrow^{¥varpi-1}(x)(v)¥}||$

$¥geq K_{3}(||v||-¥mu||v||)=K_{3}(1-¥mu)||v||$

Hence $||(D¥swarrow^{¥varpi}(x)-I)|_{¥ovalbox{¥tt¥small REJECT}_{¥mathrm{X}}}^{-1}||¥leq K_{3}^{-1}(1-¥mu)^{-1}$ , which implies the second estimate in (2).
The following version of the inverse function theorem with estimate can be

found in [4]. Let $¥ovalbox{¥tt¥small REJECT}$ be a Banach space, $B_{¥delta}(x)$ the ball of radius $¥delta$ about $x¥in¥ovalbox{¥tt¥small REJECT}$ ,
$¥ovalbox{¥tt¥small REJECT}:B_{¥delta}(x)¥rightarrow¥ovalbox{¥tt¥small REJECT}$ a $C^{1}$ function and $y_{0}=¥ovalbox{¥tt¥small REJECT}(x_{0})$ .

Theorem. Assume $D¥ovalbox{¥tt¥small REJECT}(x)$ has a bounded inverse for all $x¥in B_{¥delta}(x_{0})$ and

$||D¥not¥in(x)||¥leq K$ and $||De^{-l}(x)||¥leq K$

for all $x¥in B_{¥delta}(x_{0})$ where $K$ is a constant. Let $p=¥delta/K^{2}$ and $q=¥delta/K$ , then there
exists a domain $¥Omega$ , $B_{p}(x_{0})¥subset¥Omega¥subset B_{¥delta}(x_{0})$ such that $¥ovalbox{¥tt¥small REJECT}$ is one-to-one on $¥Omega$ . Moreover,
$B_{q}(y_{0})¥subset¥ovalbox{¥tt¥small REJECT}(B_{¥delta}(y_{0}))$ .

Apply this form of the inverse function theorem to the function $¥ovalbox{¥tt¥small REJECT}=¥swarrow^{¥varpi}-I$ where
I is the idenity map of $¥ovalbox{¥tt¥small REJECT}$ . As remarked before there is a $¥delta_{0}>0$ such that $B_{¥delta_{0}}(x)¥subset N$

for all $x¥in¥ovalbox{¥tt¥small REJECT}$ . Let $¥alpha<¥delta_{0}$ and so the estimates (1) on the derivative of $¥swarrow¥varpi$ hold
on $B_{¥alpha}(x)$ for $x¥in¥ovalbox{¥tt¥small REJECT}$ . Define $¥beta=a/K$ . Then the inverse function theorem gives
$¥ovalbox{¥tt¥small REJECT}(B_{a}(x))¥subset B_{¥beta}(¥ovalbox{¥tt¥small REJECT}(x))$ . So, if $||g(x)||=||¥nu^{¥varpi}(x)-x||<¥beta$ then $¥mathrm{O}¥in B_{¥beta}(¥ovalbox{¥tt¥small REJECT}(x))$ or
$¥mathrm{O}¥in¥ovalbox{¥tt¥small REJECT}(B_{¥alpha}(x))$ . Thus there is a $y¥in B_{a}(x)$ such that $¥ovalbox{¥tt¥small REJECT}(y)=¥swarrow^{¥varpi}(y)-y=0$ . Thus $y$

is an $f$ orbit that $¥mathrm{o}¥mathrm{c}$-shadows the $¥beta$-pseudo-orbit $x$ .

If we take $¥beta_{0}=¥delta_{0}/K^{2}$ then the inverse function theorem yields that $¥ovalbox{¥tt¥small REJECT}$ is
one-to-one on $B_{¥beta_{0}}(x)$ for $x¥in¥ovalbox{¥tt¥small REJECT}$ . Thus the distance between zeros of $g$ is at
least $¥beta_{0}$ and this proves the uniqueness part of the Shadowing Lemma.

In the general case when $M$ is a differentiable manifold of dimension $n$ , the
space $¥ovalbox{¥tt¥small REJECT}$ is a Banach manifold modeled on the Banach space of bounded
bisequences in $R^{n}$ with $¥sup$ norm. The estimates given above hold uniformly
in each coordinate patch. Consequently the proof carries over with little or no
change.
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III. Remarks

From the uniqueness part ofthe above proof it follows that $g$ is one-to-one on
$B_{¥beta_{0}}$ for all $x¥in¥ovalbox{¥tt¥small REJECT}$ . That means that if $x$ , $y¥in¥ovalbox{¥tt¥small REJECT}$ and $x¥neq y$ , $¥swarrow^{¥varpi}(x)=x$, $¥swarrow^{¥varpi}(y)=y$

then $||x-y||>¥beta_{0}$ or if $x_{0}$ , $¥mathcal{Y}¥mathrm{o}¥in¥Lambda$ and $x_{0}¥neq y_{0}$ then for some $n$ , $||f^{n}(x_{0})-f^{n}(y_{0})||>$

$¥beta_{0}$ . Thus $ f|¥Lambda$ is expansive with expansive constant $¥beta_{0}$ .

The original proof [1] of the structural stability of Anosov diffeomorphisms
used the local geometry of the stable and unstable manifolds to establish the shadow-
ing lemma and the shadowing lemma was used to construct the homeomorphism.

Subsequently more analytic proofs were found [5].
The simplified proof above gives an alternate short proof of the structural

stability theorem for Anosov diffeomorphisms. Recall that an Anosov diffeo-
morphism is a smooth diffeomorphism $f$ of a compact manifold $M$ which has a
hyperbolic structure on all of $M$ . An outline of the proof of the structural
stability of Anosov diffeomorphism based on the shadowing lemma is as follows:
The proof of the shadowing lemma given above depends entirely on the estimates
on the derivatives of the associated map $¥swarrow^{¥lrcorner}’$ : $¥ovalbox{¥tt¥small REJECT}¥rightarrow¥ovalbox{¥tt¥small REJECT}$ given above. By continuity
considerations if $g$ is a diffeomorphism that is $C^{1}$ close to $f$ then similar estimates
hold for $¥ovalbox{¥tt¥small REJECT}$ (the lift of $g$ to $¥ovalbox{¥tt¥small REJECT}$ ) and so $g$ has the shadowing property also. If $g$ is
within $a$ of $f$ in the $C^{1}$ topology then for each $x¥in M$ , $¥{f^{n}(x)¥}$ is a oc-pseudo-orbit
for $g$ and so by the shadowing lemma there is a unique $y=h(x)¥in M$ such that
$ d(f^{n}(x), g^{n}(y))<¥beta$ for all $n$ . Since the shadowing lemma was established using
the implicit function theorem, $y=h(x)$ depends continuously on $x$ for all $x¥in M$ .

To assure that $h$ is one-to-one let $¥beta<¥beta_{0}/3$ . Let $x_{1}¥neq x_{2}$ , $y_{1}=h(x_{1})$ , $y_{2}=h(x_{2})$ .

By the expansive property discussed above there is an $N$ such that $d(f^{N}(x_{1})$ ,
$f^{N}(x_{2}))>¥beta_{0}$ , but $d(f^{N}(x_{i}), g^{N}(y_{i}))<¥beta_{0}/3$ so $d(g^{N}(y_{1}), g^{N}(y_{2}))>¥beta_{0}/3$ or $y_{1}¥neq y_{2}$ .

Thus $h:M¥rightarrow M$ is a continuous, one-to-one mapping of a compact Hausdorff
space and so is a homeomorphism into M. $k(M)$ is closed in $M$ and from general
topology $h$ is a local homeomorphism so $h(M)$ is open in $M$ . Thus $h$ is onto and
hence a homeomorphism. Since $y=h(x)$ and $ d(f^{n}(x), g^{n}(y))<¥alpha$ for all $n$ , we
have

$d(f^{n-1}(f(x)), g^{n-1}(g(y)))=d(f^{n}(x), g^{n}(x))<a¥leq¥beta_{0}$

Thus, the $f$ orbit through $f(x)$ is $¥beta_{0}$-shadowed by the $¥mathrm{g}$ -orbit through $g(y)$ , so by
the uniqueness $h(f(x))=g(y)=g(h(x))$. This means $h¥circ f=g¥circ h$ or $h$ carries /-orbits
into $¥mathrm{g}$ -orbits.

IV. Non-autonomous differential equations

Let $¥ovalbox{¥tt¥small REJECT}=¥ovalbox{¥tt¥small REJECT}(R^{1}¥times R^{n}, R^{n})$ be the space of all continuous functions $¥grave{¥mathrm{f}}¥mathrm{r}¥mathrm{o}¥mathrm{m}$ $¥mathrm{R}^{1}¥times$
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$R^{n}$ into $R^{n}$ endowed with the topology of uniform convergence on compact sets
(the compact open topology). Let $¥tau$ be a real number, then the $¥mathrm{x}$ -translate of $J¥in¥ovalbox{¥tt¥small REJECT}$

is the function $J_{¥tau}¥in¥ovalbox{¥tt¥small REJECT}$ defined by $J_{¥tau}(t, x)=J(t+¥tau, x)$ . The function $¥pi:R¥times¥%^{7}$

$¥rightarrow e$ : $(¥tau, J)¥rightarrow J_{¥tau}$ defines a flow on $¥ovalbox{¥tt¥small REJECT}$ , see [9]. Let $N¥subset¥ovalbox{¥tt¥small REJECT}$ be a compact invariant
set in $c¥ovalbox{¥tt¥small REJECT}$ . By Ascoli’s theorem, a subset of $c¥ovalbox{¥tt¥small REJECT}$ is compact if it is closed and the
members are uniformly bounded and equi-continuous on compact subsets of $ R^{1}¥times$

$R^{n}$ . An important special case is the hull of $J¥in¥ovalbox{¥tt¥small REJECT}$ where the hull of $J$ , denoted
by $H=H(J)$ , is the orbit closure of $J$ under the flow defined by $¥pi$ . The hull of $J$

is compact if and only if $J$ is bounded and uniformly continuous on sets of the
form $R^{1}¥times K$ where $K$ is compact in $R^{n}$ .

Our first basic assumptions about $N$ are:
i) for each $f¥in N$ , $D_{2}f$ is continuous and uniformly bounded on sets of the form

$R^{1}¥times K$ where $K$ is compact in $R^{n}$

$¥mathrm{i}¥mathrm{i})$ for each $f¥in N$ , all solutions of the equation

(1) $¥dot{X}=f(t, x)$

are bounded for all $t$ . Again this is just a technical assumption.
As a simple example consider the linear equation $¥ddot{¥xi}+4¥xi=¥sin t+¥sin¥mathit{2}-t$

written as a system $¥dot{¥xi}_{1}=¥xi_{2},¥dot{¥xi}_{2}=-4¥xi_{1}+¥sin t+¥sin¥overline{2}t$ . Here we take $F(t, ¥xi_{1}, ¥xi_{2})$

$=(¥xi_{2}, -4¥xi_{1}+¥sin t+¥sin¥sqrt{2}t)$ and $N$ the hull of $F$ . It is easy to see that the hull
of $F$ is { $G=(¥xi_{2},$ $-4¥xi_{1}+¥sin(t+a)+¥sin$ $(¥sqrt{2}t+¥beta)$ where $a$ and $¥beta$ are real constants
defined inod $ 2¥pi$ } and thus the hull is homeomorphic to $T^{2}$ .

For $f¥in N$ , let $¥phi(t, x_{0}, f)$ be the solution of (1) which satisfies $¥phi(0, x_{0},f)=x_{0}$

then $¥pi:R^{1}¥times R^{n}¥times N¥rightarrow R^{2}¥ell¥times N:(t, x_{0}, f)¥rightarrow(¥phi(t, x_{0},f),f_{t})$ defines a flow, see [9].
Let $M¥subset R^{n}$ be compact and such that $M¥times N$ is invariant under $¥pi$ . We say that
$M¥times N$ has a hyperbolic structure (normal to $N$) if for each $(x_{0}, f)¥in M¥times N$ the
variational equation of (1) along the solution $¥phi(t, x_{0}, f)$ has an exponential
dichotomy which is uniform on $M¥times N$ . The precise meaning of the above is as
follows.

The variational equation of (1) along $¥phi(t, x_{0},f)$ is

(2) $¥dot{y}=A(t)y$

where $A(t)=D_{2}f(t, ¥phi(t, x_{0},f))$ . Let $¥mathrm{Y}(t)=¥mathrm{Y}(t, x_{0},f)$ be the fundamental matrix
solution of (2) that satisfies $¥mathrm{Y}(0)=L$ Then (2) has an exponential dichotomy
at $(x_{0},f)$ if there exists a projection matrix $P$ and positive constants $K$ and $a$

such that

(3) $|¥mathrm{Y}(t)PY^{-1}(s)|¥leq Ke^{-¥alpha(t-s)}$ for $t¥geq s$

$|¥mathrm{Y}(t)(I-P)Y^{-1}(s)||¥leq Ke^{-a(t-s)}$ for $s¥geq t$ .

The matrix $A$ and hence $¥mathrm{F}$, $P$ , $K$ and $a$ depend on $(x_{0},f)¥in M¥times N$. It is known [8]
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that $P$ depends continuously on $(x_{0},f)$ . A simple uniformity argument shows
that $K$ and $a$ can be chosen independently of $(x_{0},f)$ provided $(x_{0},f)$ remains in
a compact set.

As an example consider $¥dot{¥xi}_{1}=¥xi_{2},¥dot{¥xi}_{2}=-¥xi_{2}+(-4+¥epsilon¥sin(t+a)+¥epsilon¥sin$ $(¥overline{2}-t+$

$¥beta))¥xi_{1}$ where $a$ and $¥beta$ are constants defined $¥mathrm{m}¥mathrm{o}¥mathrm{d}2¥pi$ and $¥epsilon$ is a small parameter. The
origin is a solution and for $¥epsilon$ sufficiently small the origin is uniformly exponentially
stable. In this case $P=I$ and $M=¥{0¥}$ . Of course all solutions of the above
equations may not be bounded for all $t$ . Since we are interested in a neighborhood
of $M¥times N$ we can modify the equation in this example outside a large sphere so
that the solutions are bounded for all time.

We will next show how the shadowing lemma applies to (1). Let $¥ovalbox{¥tt¥small REJECT}¥ovalbox{¥tt¥small REJECT}^{k}=$

$¥ovalbox{¥tt¥small REJECT}¥ovalbox{¥tt¥small REJECT}^{k}(R^{1}, R^{n})$ denote the space of functions $f:R^{l}R^{n}$ with $k$ continuous and
bounded derivatives with norm defined by $||f||_{k}=¥sup_{0¥leq s¥leq k}¥sup_{t¥in R}||D^{s}f(t)||$ .
Define $¥swarrow^{¥sigma^{-}}:¥ovalbox{¥tt¥small REJECT}¥ovalbox{¥tt¥small REJECT}^{1}¥times N¥rightarrow¥ovalbox{¥tt¥small REJECT}¥ovalbox{¥tt¥small REJECT}^{0}$ : $(¥phi,f)¥rightarrow¥dot{¥phi}-f¥circ¥emptyset$ . The function $¥phi¥in¥ovalbox{¥tt¥small REJECT}¥ovalbox{¥tt¥small REJECT}^{1}$ is a
solution of (1) if and only if $¥swarrow^{¥varpi}(¥phi,f)=0$ . In this case $(¥phi(t),f_{t})$ is an orbit of $¥pi$ .
The function $¥swarrow¥varpi$ is differential with respect to the first argument and $D_{1}¥swarrow^{¥varpi}(¥phi,f)(¥psi)$

$=¥dot{¥psi}-(Df¥circ¥phi)¥psi$ .
For $a>0$ an a-pseudo-orbit is a pair $(¥psi, g)¥in¥ovalbox{¥tt¥small REJECT}¥ovalbox{¥tt¥small REJECT}^{1}¥times N$ such that $||¥swarrow^{¥varpi}(¥psi, g)||_{0}$

$<a$ . For $¥beta>0$ we say that an orbit $(¥phi, f)$ , $¥beta$-shadows the pseudo-orbit $(¥psi,f)$ if
$||¥phi-¥psi||_{1}<¥beta$ (Note that both the oribt and the pseudo-orbit have the same second
argument. This means $¥phi$ and $¥psi$ are solutions of the same differential equation).

The Shadowing Lemma. Let $M$ be a compact, hyperbolic invariant set for
$¥pi$ . Then for every $¥beta>0$ there is an $a>0$ such that every a-pseudo-orbit in $M$ is
$fi$-shadowed by an orbit in M. Moreover, there is a $¥beta_{0}>0$ such that if $0<¥beta<¥beta_{0}$

the orbit given above is uniquely determined by the pseudo-orbit.

The proof of this variation of the shadowing lemma follows the same outline
as the proof of the shadowing lemma for diffeomorphisms with some minor
modifications. First the $¥swarrow¥propto$ for diffeomorphisms in section 2 had fixed points for $f$

orbits whereas the $¥swarrow¥varpi$ in this section has zeros for orbits. Thus here we will have
to estimate $ D_{1}¥swarrow¥varpi$ and its inverse. The estimation of $ D_{1}¥swarrow¥varpi$ is straightforward and
the estimation of $D_{1}¥swarrow¥varpi-1$ follows from

Theorem. Let $A(t)$ be a continuous and bounded $n¥times n$ matrix for all $t$ and
$p¥in¥ovalbox{¥tt¥small REJECT}¥ovalbox{¥tt¥small REJECT}^{0}$ , then the equation

(4) $¥dot{y}=A(t)y+p(t)$

has a unique solution in $c¥ovalbox{¥tt¥small REJECT}¥ovalbox{¥tt¥small REJECT}^{1}$ if and only if the homogeneous equation $¥dot{y}=A(t)y$

has an exponential dichotomy. Moreover, if we denote this solution by $Lp$ then
$L$ is a bounded linear operator from $¥ovalbox{¥tt¥small REJECT}¥ovalbox{¥tt¥small REJECT}^{0}$ to $¥ovalbox{¥tt¥small REJECT}¥ovalbox{¥tt¥small REJECT}^{1}$ with norm which can be
estimated in terms of $a$ and $K$ only (See Coppel [3]. Prop. 3.2.).
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Solving the differential equation (4) with $p¥in¥#¥ovalbox{¥tt¥small REJECT}^{0}$ for a solution in $c¥ovalbox{¥tt¥small REJECT}¥ovalbox{¥tt¥small REJECT}^{1}$ is
the same as solving $D_{1}¥swarrow^{¥varpi}(y)=p$ . Thus, this classical theorem states that $L=$

$(D_{1}¥nu^{¥varpi})^{-1}$ exists as a bounded linear operator for all $(¥phi, f)¥in M¥times N$ and has a
uniform estimate.

This is not quite enough to use the inverse function theorem. We need that
$L$ is continuous, but this follows from the roughness of exponential dichotomies,
see Coppel [3] Prop. 4.1. This theorem also shows that the estimates can be
extended to a full neighborhood of $M¥times N$ in $R^{n}¥times N$ .
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