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Figure [11.4. An e-pseudo orbit x (above) and a § shadow orbit p for a sequence ¢ (below).

1.2 The shadowing lemma

Inthe following, the shadowing lemma will be our main tool. If only an approximate
orbit on a hyperbolic set 1s known, the shadowing lemma guarantees a real orbit
nearby which shadows the approximate orbit. This way we shall construct orbits
which are determined by their prescribed long-time behavior and not by their initial
conditions. To formulate the shadowing lemma, we need some definitions.

Definition. Let ¢ : R” — R” be a diffeomorphism.
(i) The sequence (x;)jez in R" is an orbit of ¢, if xj4+1 = ¢(x;) for j € Z.
(ii) For a given real number ¢ > 0, the sequence (x;);jez is called an &-pseudo
orbit of ¢, if |xj 11 — @(x;)| < eforall j € Z.
(iii) If 6 > 0 and ¢ = (g;);ez is a sequence in R”, then a §-shadowing orbit of q
is an orbit p = (p;);ez, satisfying |p; —q;| < S forall j € Z.

The following theorem goes back to D. Anosov.

Theorem I117 (Shadowing lemma). Let A be a hyperbolic set of the diffeomor-
p hfsm ¢. Then, there exists a constant 8¢ > 0 such that for every 0 < § < 8o there
sIs an e = g(§) > 0 having the following property.

For every g-pseudo orbit ¢ = (q;)jez of ¢ on the set A,

g €A, |gi+1—9@) <& JEL

Zhere eXists a unique §-shadowing orbit p = (pj)jez of the pseudo, orbit g (for ¢)
" aneighborhoog of A.

dRi(f%fmark. (i) The bracket (for ¢) can be replaced by the brack'et (for V), il;] V4 ;s /z:
ande'omo-rphism satisfying |¢ — ¥|c1() < n Onan open neighborhood U 0
If 4 is sufﬁciently small.
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u p Formulation of the problem. If the s.—pseudo orbit g = @) §
given, W€ Jook for an orbit p = (pj?jez satisfying | p; — q;| < 5Jfo]refz C A
For this purpose we look for corrections x = (x;)jez, s0 that the sequZi]] jeq
Ce
p=4q+Xx
is an orbit, hence satisfies

giv1 +xj+1 =9 + %), JELZ
Rewriting this equation we look for a sequence x = (x;);ez solving th
€ the equa.

tion
xj+1 — do(@)x; = 0(@j + %)) — dj+1 = de(g))x; =: fi(x))

The right-hand side is small, if ¢ is small, and if ||x|| = sup;cz |x;| is
Indc?gd, due to f‘}(O? = ¢(g;) — qj+1 we have, by assurnptionj E|Zf ((;)| <sma11‘
addition, the derivative satisfies df; (0) = do(q;) — de(g;) = ’0 ' d dfi( o
dolg + 37) = do(g;). 7= i

e shall solve the equation xj4+1 — d@(q;)x; = fj(x;) by means of the con

traction principle.
) :
Seqéeic?(e l.m.ear.prolr)llem. We abbreviate 4; := de(gj) € L(R"). Givend
8j)jez in R" we look for the sequence x = (x;);jez solving

X —_ LY. — ¢
jr1—Ajxj = gj+1, JE€LZ.

For this .
we define thglgpose, we introduce a sequence space. Setting Ej = Ty; n =R
anach space of bounded sequences by ’

E=4x =
{x = (xj)jez | x; € Ej, || x|l < 00}

equipped with the nory

) n _

by its restrictions AI(; ﬂleéll = ;:up iez |xj|. We define the linear map A € L(E)
A A Ejt,as

We want to 50 (AC))j+1 1= 4.
solv
© the operator equation (1 — A)x = g in the Banach spac® ™ ”
mat
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oof. We introduce the notation E; = E j OE; = PqJJC Eio qu E;. Given the
P nceg = (&) € E we 100]_( for a sequence x = (xj) € E solving the equation
seQule/ do(q))xj = 8i+1 for j € Z, or
Xj+ ‘

Xj+1=4deqj)x; + gj41, jez.
with respect to the above splitting we obtain the equivalent equations
i

_ p+
Pl X+ = P de(qi)x; + Pl g+,
* — — pa—
The splitting E;L ® E]_ is not invariant under the linearized map dy(qg;), since

is not an orbit. However, along the orbit we know from the definition of the
gyperbolicity of the set A that

+ ;
Poiand9(4i)x; = do(g))PEx;, jez.

Thus, the equation () is equivalent to the following two equations of (**) and
(k%%),

+ o, +  _p+ p
() Py, Xien = do(g))Plxj + PY . givy + [PF Pa)d9(a))x;,

(o) Py%i = d9(gj) ™ Py yXj+1 = do(g)) ' Py g
+de(@)) 7 [Py, = Pog))(xj41 — do(g))x;)).
We introduce the map

B ESE x=(x)m (), (k) = P ox); + Py o),

where Pq'*; ®(x); is defined by the right-hand side of the equation (**) and Pq‘j ®(x);

by the right-hand side of the equation (**%). By construction the desired sequence
is a fixed point of this map

b

D(x) =x <= xj+1 —do(q;)x; = gj+1-

Since A is compact,

sup |de(q)|l < K, sup ||de(g)~ || < K
qgeA geA

fora constant K and the mappings g > P;F: A — L(R") are not only continuous,
Wuniformly continy

; - h
th ous. Hence, for every given ¢’ > 0 there exists an & > 0 suc
at
P

94 ‘P@i(qj)ll <& forall j €Z, if |gj+1—¢(g;)| <¢ foralljeZ,
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is an g_pseudo orbit. Since A is hyperbolic W
» WEe ha\/e

Sequence q )
g) the estimates

adap[ed nOfm +
do(a)) Papxil < 01%il,

Id‘p(qj)_-lP;jxj-H' < Olxj41],

Using this, we shall estimate the Lipsch;t
1tz ¢

efinition of the norms and using the notagj, Onstapy o

with aconstantO << 1.
Navy.

the map P- Recalling the d
max{a, b}, W€ have

16(x) — @) = S 1B(x); — P05
j€

= Prd ._pt : -
sup [| P ©(s = Py SOUIY 1P, 00 = Fay
J Jl).

The stable part is estimated as
+ _pt
1P (x); — Pgy @il = |do(a;) Py (xj = ¥))
+[Pf —PF
[ 4j+1 P‘p(Qj)]d(p(qj)(Xj ‘yj)\
< Oxj — y;| + &' Klxj — ;.

For the unstable part we get

= y)-|=|d =1 p—
; PO); 007 Pty Xy 41 = ¥j41)

Nl p-
+delg) [Py, — Poa)]

(X4 = yie1 — do(g) () - y}')]\

< ¥lx;
- i1 — Y; / ‘
Taking the supremup over j € Z i1l + e Klxj — y;l + &' K2|xj - il

1D (x) —
forall x, D=0O) = (@ + K + K2 x -y

€
the map .- EE - I we choose ¢/ » 0
> 80 small that (19 + &K + SIKZ)

of the m Eisa
the map satigac < . COriracti .
estimate fies, in viey of thelzgl'l Ff_he unique fixed point x = (xj)jeL .
ations (), ( 3, the
, (**x) and of Lemma LB

= Ol* <l

S d(x) —
X) = ®(0)|| + @) <a*|x|l + K'lgll:

and therefore

/

x| < K
= 1o lell.
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ewof x = (1~ A)~lg, we have verified the estimate
i
) (1—4)7Y < K’ |
T
ond Lemma 1118 is proved. D

The nonlinear problem. Let r > 0. We denote the closed balls of radius r in
(3) Ihe

dinEby Bj(r) :=xj € Ej | |xj| < r}andby B(r) := {x € E | lxll < r}.
\i’ga\;lant to solve the equations

Xi+1— Ajx; = fi(x;),

for a sequence X = (xj) jez satisfying xj € Ej, while the sequence of maps
ore .11 18 gi ing the mappin
fi: Bi(r) CEj — Ej+1 is given. Introducing pping

FB(r)CE—>E by F(X)j_{_l:]{J(x]),
our equation can be written as (1 — A)x = F(x) or as
x=LF(x), xe€ B(r),

with the continuous linear map L = (1 — A)~!. In the following, we write | - |

instead of || - || for the norm on E and reserve the notation || - || for the operator
norm.

Lemma II19. Let F: B(r) C E — E be a map. Assume that the reglanlb)tcm-b;rl
0(>0issosmallthat(x||L|| = 1/2. [f|[F0)| = ar and |F(x)=F(y)| =

. : e B(r).
forallx,y e B(r), then the equation x = L F(x) has a unique solution x r)
This solution satisfies the estimate

x| < 2|L|[|F(0)I.

Proof. Set G(x) := LF(x). We claim that
W) G: B(r) - B(r), and
) 1G(x) - 6(y)| < 3lx — y| forall x, y € B(r).

; : tions,
orderto prove the claim we take x, y € B(r) and estimate, using the assumption
1
— —|x =yl
609~ G(y)| < L] |F()— F)| < allLlllx—yl = Zlx—y
Servi btain
Serving that 1GO)| = |LF(0)| < IL|I|F@©)| < ||Lller <7/2,weo0

1 r
GO <16(x) = GO +160)] < Sll +5 =
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and the claim is proved. Since the. me'tric Space B(r) ig Com
a unique fixed point x = Cl;(x) satistying |x| < , and dy l()P/we, ther,
1G(x) — G(0)] + |G(0)] < §|x| + |G(0)[, we arrive at the de%iredw = ‘(l-‘(m.r.
$ estj x) -
x| = 21GO) < 2||L|||F(0),

My

This concludes the proof of Lemma II1.9.

~

Finally, we apply the lemma to our situation and co

mplet
shadowing lemma. We recall that Pete the Proof s ,

the

Uig

|F(0)| = sup | f;(0)] = sup |p(q;) ~gj+1| <
J J -

We choose o so small that a[| L|| < 3. Since A is compact ang df; (0) -

aradius ro = 8¢ such that || df; (x;)|| < « for every Xj € Bj(ry) I;nd all\ 0. wegy
the mean value theorem we conclude | F(x) — F(y )| < af o ¥l for { :Z b
If now r < o and if & < ar, we conclude from Lemma [1].9 that the ;{HIQPB“‘“
the shadowing lemma holds true with the constant § = r. Thjs completes [hi;n

of Theorem III.7. )

Proof of the remark following the shadowing lemma. Let|p—y/| Clw) < ier
U is a neighborhood of A. Replacing the maps f;(x;) in the above proof by t:
maps
Ji () = ¥ (q; — xj) — qj+1 — dv(g))x;.

we can argue as above, if u is sufficiently small. As for the second parof
remark, we choose n > 0 such that the &-pseudo orbit ¢ = (g;)jez }ies m
n-neighborhood of A. Choosing a sequence g’ on A satisfying |g; —¢; <™
all j € Z, it follows that

N —¢lg)
)41 = 9G] < 1gj11 — g1l + g1 — @(g)] + lolg) ¢

<n+ &+ nsup |dex)]
xX€EA
= g,

R ) we can ol
so that ¢’ is an e-pseudo orbit on A. If 7, & are sufficiently Srrln :l(lé 4 p)shad®
first part of the theorem to the pseudo orbit g’ C A to obtal ‘
orbit for the pseudo orbit g.

ing ™

: ove the clos
As a first application of the shadowing lemma, W€ shall pr

of Anosov.

Theorem III.10 (Closing lemma of Anos y
the diffeomorphism ¢ and let €, § be as in the shado
point x € A and an integer N > 1 satisfying

A
¢

‘ bﬂli‘n St v.
ov). We C"”vilii;rlemma. jfi"

¥ (x) — x| =&

then

More
the s¢
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(4))je

so that
o-shad
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Jhere exists @ point y in a8 neighborhood Us(A) of A satisfying
then e

wN(y)==y.

L . ' 5 o
\oreover, the periodic A([)rblt y.o(¥)..... e (V) = v lies in a $-neighborhood of
e set {89 97 (O}

progf [Uniqueness of the §-shadowing orbit]. We define the

. g ) . £-pseudo orbit q =
4))ieZ by the N -periodic continuation of the finite piece of the orbit
)i

X oox) @*(x) ... oN-l(y
[ | [

qO ql q2 R QN—I s

sothat ¢j+N = 4j forall j € Z. By the shadowing lemma there exists a unique
§-shadowing orbit p = (pj);ez of the pseudo orbit q and we claim that

Pi+N = pj, je€Z.

A

To prove the claim, we introduce the shifted orbit sequence P = (p,
pj = pj+N- Then, also p is a §-shadowing orbit of the pseudo orbit q,

)jez by
since

18i =il = |pj+N — il = |pj+n —qj+n]| < 6

holds true for all j € Z. From the uniqueness of the d-shadowing orbit which

shadows the pseudo orbit ¢, we conclude that P = p, so that the orbit p is indeed
the desired periodic orbit, as claimed in the theorem. O

IIL3 Orbit structure near a homoclinic orbit, chaos

Inthe following we consider a transversal homoclinic point v at which, by definition,
the stable and unstable invariant manifolds issuing form a hyperbolic fixed point of

the diffeomorphism ¢ intersect transversally. Assuming as before the fixed point to
be the origin 0 we denote by

A=0@0) = L @/ v u {0} = 0w) U O(©)
JjeZ

the_ closure of the homoclinic orbit which consists of two orbits. The compact set
" @ hyperbolic set of the diffeomorphism @ in view of Proposition I11.5 and so

we i " |
e can use the Shadowmg lemma in order to prove first that the homoclinic point
Sacluster pojng of ot

also her homoclinic points belonging to 0 and at the same time
@ cluster point of periodic points.



