

Figure III.4. An ε -pseudo orbit x (above) and a δ shadow orbit p for a sequence q (below).

III.2 The shadowing lemma

In the following, the shadowing lemma will be our main tool. If only an approximate orbit on a hyperbolic set is known, the shadowing lemma guarantees a real orbit nearby which shadows the approximate orbit. This way we shall construct orbits which are determined by their prescribed long-time behavior and not by their initial conditions. To formulate the shadowing lemma, we need some definitions.

Definition. Let $\varphi \colon \mathbb{R}^n \to \mathbb{R}^n$ be a diffeomorphism.

- (i) The sequence $(x_j)_{j\in\mathbb{Z}}$ in \mathbb{R}^n is an orbit of φ , if $x_{j+1}=\varphi(x_j)$ for $j\in\mathbb{Z}$.
- (ii) For a given real number $\varepsilon > 0$, the sequence $(x_j)_{j \in \mathbb{Z}}$ is called an ε -pseudo orbit of φ , if $|x_{j+1} \varphi(x_j)| \le \varepsilon$ for all $j \in \mathbb{Z}$.
- (iii) If $\delta > 0$ and $q = (q_j)_{j \in \mathbb{Z}}$ is a sequence in \mathbb{R}^n , then a δ -shadowing orbit of q is an orbit $p = (p_j)_{j \in \mathbb{Z}}$, satisfying $|p_j q_j| \le \delta$ for all $j \in \mathbb{Z}$.

The following theorem goes back to D. Anosov.

Theorem III.7 (Shadowing lemma). Let Λ be a hyperbolic set of the diffeomorphism φ . Then, there exists a constant $\delta_0 > 0$ such that for every $0 < \delta \leq \delta_0$ there exists an $\varepsilon = \varepsilon(\delta) > 0$ having the following property.

For every ε -pseudo orbit $q = (q_j)_{j \in \mathbb{Z}}$ of φ on the set Λ ,

$$q_j \in \Lambda$$
, $|q_{j+1} - \varphi(q_i)| \le \varepsilon$, $j \in \mathbb{Z}$,

there exists a unique δ -shadowing orbit $p = (p_j)_{j \in \mathbb{Z}}$ of the pseudo, orbit q (for φ) in a neighborhood of Λ .

Remark. (i) The bracket (for φ) can be replaced by the bracket (for ψ), if ψ is a diffeomorphism satisfying $|\varphi - \psi|_{C^1(U)} \le \mu$ on an open neighborhood U of Λ and if μ is sufficiently small.

(ii) The ε -pseudo orbit q does not have to lie on Λ , it is enough to require that $g = (q_i)_{i \in \mathbb{Z}}$ belongs to a sufficiently small neighborhood. (ii) The ε -pseudo orbit q does to a sufficiently small neighborhood $V(\Lambda)$ the pseudo orbit $q = (q_j)_j \in \mathbb{Z}$ belongs to a sufficiently small neighborhood $V(\Lambda)$ of the hyperbolic set Λ .

of the hyperconduction principle]. We make use of the adapted $n_{Orm_{\delta}}$ guaranteed by Proposition III.6.

aranteed by Proposition 111...

(1) Formulation of the problem. If the ε -pseudo orbit $q = (q_j)_{j \in \mathbb{Z}} \subset \Lambda_{j_0}$ (1) Formulation orbit $p = (p_i)_{i \in \mathbb{Z}}$ satisfying $|p_j - q_i| < \delta$ for all $i \in \mathbb{Z}$ (1) Formulation of the production $p = (p_j)_{j \in \mathbb{Z}}$ satisfying $|p_j - q_j| \le \delta$ for all $j \in \mathbb{Z}$ given, we look for an orbit $p = (p_j)_{j \in \mathbb{Z}}$ satisfying $|p_j - q_j| \le \delta$ for all $j \in \mathbb{Z}$ given, we look for all j for this purpose, we look for corrections $x = (x_j)_{j \in \mathbb{Z}}$, so that the sequence

$$p = q + x$$

is an orbit, hence satisfies

$$q_{j+1} + x_{j+1} = \varphi(q_j + x_j), \quad j \in \mathbb{Z}.$$

Rewriting this equation we look for a sequence $x = (x_j)_{j \in \mathbb{Z}}$ solving the equation

$$x_{j+1} - d\varphi(q_j)x_j = \varphi(q_j + x_j) - q_{j+1} - d\varphi(q_j)x_j =: f_j(x_j).$$

The right-hand side is *small*, if ε is small, and if $||x|| = \sup_{j \in \mathbb{Z}} |x_j|$ is small. Indeed, due to $f_j(0) = \varphi(q_j) - q_{j+1}$ we have, by assumption, $|f_j(0)| \le \varepsilon$. In addition, the derivative satisfies $df_j(0) = d\varphi(q_j) - d\varphi(q_j) = 0$ and $df_i(x_i) =$ $d\varphi(q_i + x_i) - d\varphi(q_i).$

We shall solve the equation $x_{j+1} - d\varphi(q_j)x_j = f_j(x_j)$ by means of the contraction principle.

(2) The linear problem. We abbreviate $A_j := d\varphi(q_j) \in \mathcal{L}(\mathbb{R}^n)$. Given a sequence $(g_j)_{j\in\mathbb{Z}}$ in \mathbb{R}^n we look for the sequence $x=(x_j)_{j\in\mathbb{Z}}$ solving

$$x_{j+1} - A_j x_j = g_{j+1}, \quad j \in \mathbb{Z}.$$

For this purpose, we introduce a sequence space. Setting $E_j = T_{q_j} \mathbb{R}^n = \mathbb{R}^n$, we define the Banach space of bounded sequences by

$$E = \{ x = (x_j)_{j \in \mathbb{Z}} \mid x_j \in E_j, \ \|x\| < \infty \}$$

equipped with the norm $||x|| = \sup_{j \in \mathbb{Z}} |x_j|$. We define the linear map $A \in \mathcal{L}(E)$ by its restrictions $A|_{E_j} := A_j : E_j \to E_{j+1}$, as

$$(A(x))_{j+1} := A_j x_j.$$

We want to solve the operator equation (1 - A)x = g in the Banach space E.

Lemma III.8. If $(q_j)_{j\in\mathbb{Z}}$ is an ε -pseudo orbit on Λ , and if ε is sufficiently small. then the linear map $1 - A \in \mathcal{L}(E)$ is a continuous isomorphism whose inverse $\|L\| \leq \infty$. $L := (\mathbb{I} - A)^{-1} \in \mathcal{L}(E)$ is a continuous isomorphism whose $\|L\| \leq \infty$.

proof. We in sequence g = $x_{j+1} - d\varphi(q)$

With respect

The splitting a is not an o hyperbolicity

Thus, the (***),

 $(**) P_{q_{i+}}^+$

(***)

We introduce

 $\Phi \colon E \to \mathbb{R}$

where $P_{q_j}^+\Phi($. by the right-h is a fixed poir

Since A is

for a constant but uniformly that

 $\|P_{q_{j+1}}^{\pm}-P_{\varphi}^{\pm}$

proof. We introduce the notation $E_j = E_j^+ \oplus E_j^- = P_{q_j}^+ E_j \oplus P_{q_j}^- E_j$. Given the sequence $g = (g_j) \in E$ we look for a sequence $x = (x_j) \in E$ solving the equation $x_{j+1} - d\varphi(q_j)x_j = g_{j+1}$ for $j \in \mathbb{Z}$, or

$$x_{j+1} = d\varphi(q_j)x_j + g_{j+1}, \quad j \in \mathbb{Z}.$$

With respect to the above splitting we obtain the equivalent equations

(*)
$$\begin{cases} P_{q_{j+1}}^+ x_{j+1} = P_{q_{j+1}}^+ d\varphi(q_j) x_j + P_{q_{j+1}}^+ g_{j+1}, \\ P_{q_{j+1}}^- x_{j+1} = P_{q_{j+1}}^- d\varphi(q_j) x_j + P_{q_{j+1}}^- g_{j+1}. \end{cases}$$

The splitting $E_j^+ \oplus E_j^-$ is not invariant under the linearized map $d\varphi(q_j)$, since q is not an orbit. However, along the orbit we know from the definition of the hyperbolicity of the set Λ that

$$P_{\varphi(q_j)}^{\pm}d\varphi(q_j)x_j = d\varphi(q_j)P_{q_j}^{\pm}x_j, \quad j \in \mathbb{Z}.$$

Thus, the equation (*) is equivalent to the following two equations of (**) and (***),

$$(**) \quad P_{q_{j+1}}^+ x_{j+1} = d\varphi(q_j) P_{q_j}^+ x_j + P_{q_{j+1}}^+ g_{j+1} + [P_{q_{j+1}}^+ - P_{\varphi(q_j)}^+] d\varphi(q_j) x_j,$$

$$P_{q_{j}}^{-}x_{j} = d\varphi(q_{j})^{-1}P_{\varphi(q_{j})}^{-}x_{j+1} - d\varphi(q_{j})^{-1}P_{q_{j+1}}^{-}g_{j+1}$$
$$+ d\varphi(q_{j})^{-1}[P_{q_{j+1}}^{-} - P_{\varphi(q_{j})}^{-}](x_{j+1} - d\varphi(q_{j})x_{j}).$$

We introduce the map

$$\Phi: E \to E, \quad x = (x_j) \mapsto (\Phi(x)_j), \quad \Phi(x)_j := P_{q_j}^+ \Phi(x)_j + P_{q_j}^- \Phi(x)_j,$$

where $P_{q_j}^+\Phi(x)_j$ is defined by the right-hand side of the equation (**) and $P_{q_j}^-\Phi(x)_j$ by the right-hand side of the equation (***). By construction the desired sequence is a fixed point of this map.

$$\Phi(x) = x \iff x_{j+1} - d\varphi(q_j)x_j = g_{j+1}.$$

Since Λ is compact,

$$\sup_{q \in \Lambda} \|d\varphi(q)\| \le K, \quad \sup_{q \in \Lambda} \|d\varphi(q)^{-1}\| \le K$$

for a constant K and the mappings $q\mapsto P_q^{\pm}\colon \Lambda\to \mathcal{L}(\mathbb{R}^n)$ are not only continuous, but *uniformly continuous*. Hence, for every given $\varepsilon'>0$ there exists an $\varepsilon>0$ such that

$$\|P_{q_{j+1}}^{\pm} - P_{\varphi(q_j)}^{\pm}\| \leq \varepsilon' \quad \text{for all } j \in \mathbb{Z}, \quad \text{if} \quad |q_{j+1} - \varphi(q_j)| \leq \varepsilon \quad \text{for all } j \in \mathbb{Z},$$

92 i.e., if the sequence q is an ε -pseudo orbit. Since Λ is hyperbolic, we have (in the sequence) the estimates adapted norms) the estimates $|d\varphi(q_j)P_{q_i}^+x_j|\leq \vartheta|x_i|,$

$$|d\varphi(q_j)P_{q_j}^+x_j| \le \vartheta |x_j|,$$

$$|d\varphi(q_j)^{-1}P_{q_j}^-x_{j+1}| \le \vartheta |x_{j+1}|,$$

with a constant $0 \le \vartheta < 1$. Using this, we shall estimate the Lipschitz constant $0 \le \vartheta < 1$. Using the definition of the norms and using the notation with a constant $0 \le v \le 1$. Solution of the norms and using the notation $a \lor b = 1$ the map Φ . Recalling the definition of the norms and using the notation $a \lor b = 1$ $\max\{a,b\}$, we have

$$\begin{aligned} \|\Phi(x) - \Phi(y)\| &= \sup_{j \in \mathbb{Z}} |\Phi(x)_j - \Phi(y)_j| \\ &= \sup_{j \in \mathbb{Z}} \left[|P_{q_j}^+ \Phi(x)_j - P_{q_j}^+ \Phi(y)_j| \vee |P_{q_j}^- \Phi(x)_j - P_{q_j}^- \Phi(y)_j| \right]. \end{aligned}$$

The stable part is estimated as

$$|P_{q_{j}}^{+}\Phi(x)_{j} - P_{q_{j}}^{+}\Phi(y)_{j}| = |d\varphi(q_{j})P_{q_{j}}^{+}(x_{j} - y_{j}) + [P_{q_{j+1}}^{+} - P_{\varphi(q_{j})}^{+}]d\varphi(q_{j})(x_{j} - y_{j})|$$

$$\leq \vartheta|x_{j} - y_{j}| + \varepsilon' K|x_{j} - y_{j}|.$$

For the unstable part we get

$$\begin{aligned} |P_{q_{j}}^{-}\Phi(x)_{j} - P_{q_{j}}^{-}\Phi(y)_{j}| &= \left| d\varphi(q_{j})^{-1} P_{\varphi(q_{j})}^{-}(x_{j+1} - y_{j+1}) \right. \\ &+ d\varphi(q_{j})^{-1} [P_{q_{j+1}}^{-} - P_{\varphi(q_{j})}^{-}] \\ &\cdot \left[x_{j+1} - y_{j+1} - d\varphi(q_{j})(x_{j} - y_{j}) \right] \Big| \\ &\leq \vartheta |x_{j+1} - y_{j+1}| + \varepsilon' K |x_{j} - y_{j}| + \varepsilon' K^{2} |x_{j} - y_{j}|. \end{aligned}$$

Taking the supremum over $j \in \mathbb{Z}$,

$$\|\Phi(x) - \Phi(y)\| \le (\vartheta + \varepsilon' K + \varepsilon' K^2) \|x - y\|$$

for all $x, y \in E$. If we choose $\varepsilon' > 0$ so small that $(\vartheta + \varepsilon' K + \varepsilon' K^2) =: \alpha^* < 1$. the map $\Phi : F \to E$: the map $\Phi: E \to E$ is a contraction. The unique fixed point $x = (x_j)_{j \in \mathbb{Z}} \in E$ of the map satisfies in vita. of the map satisfies, in view of the equations (**), (***) and of Lemma III.3, the estimate

$$||x|| = ||\Phi(x)|| \le ||\Phi(x) - \Phi(0)|| + ||\Phi(0)|| \le \alpha^* ||x|| + K' ||g||,$$
 with a constant $K' > 0$ and therefore,

$$||x|| \leq \frac{K'}{1 - \alpha^*} ||g||.$$

In view of $x = (1 - A)^{-1}g$, we have verified the estimate

$$\|(\mathbb{1}-A)^{-1}\| \le \frac{K'}{1-\alpha^*},$$

and Lemma III.8 is proved.

(3) The nonlinear problem. Let r > 0. We denote the closed balls of radius r in E_j and in E by $B_j(r) := \{x_j \in E_j \mid |x_j| \le r\}$ and by $B(r) := \{x \in E \mid ||x|| \le r\}$. We want to solve the equations

$$x_{j+1} - A_j x_j = f_j(x_j),$$

for a sequence $x = (x_j)_{j \in \mathbb{Z}}$ satisfying $x_j \in E_j$, while the sequence of maps $f_j : B_j(r) \subset E_j \to E_{j+1}$ is given. Introducing the mapping

$$F: B(r) \subset E \to E$$
 by $F(x)_{j+1} = f_j(x_j)$,

our equation can be written as (1 - A)x = F(x) or as

$$x = LF(x), \quad x \in B(r),$$

with the continuous linear map $L = (1 - A)^{-1}$. In the following, we write $|\cdot|$ instead of $||\cdot||$ for the norm on E and reserve the notation $||\cdot||$ for the operator norm,

Lemma III.9. Let $F: B(r) \subset E \to E$ be a map. Assume that the real number $\alpha > 0$ is so small that $\alpha \|L\| \le 1/2$. If $|F(0)| \le \alpha r$ and $|F(x) - F(y)| \le \alpha |x - y|$ for all $x, y \in B(r)$, then the equation x = LF(x) has a **unique** solution $x \in B(r)$. This solution satisfies the estimate

$$|x| \le 2||L|||F(0)|.$$

Proof. Set G(x) := LF(x). We claim that

- (i) $G: B(r) \rightarrow B(r)$, and
- $|G(x) G(y)| \le \frac{1}{2}|x y| \text{ for all } x, y \in B(r).$

In order to prove the claim we take $x, y \in B(r)$ and estimate, using the assumptions,

$$|G(x) - G(y)| \le ||L|| |F(x) - F(y)| \le \alpha ||L|| |x - y| \le \frac{1}{2} |x - y|.$$

Observing that $|G(0)| = |LF(0)| \le ||L|| |F(0)| \le ||L|| \alpha r \le r/2$, we obtain

$$|G(x)| \le |G(x) - G(0)| + |G(0)| \le \frac{1}{2}|x| + \frac{r}{2} \le r,$$

and the claim is proved. Since the metric space B(r) is complete, there exists a = a + b + c and a = a + c and a = aand the claim is proved. Since a unique fixed point x = G(x) satisfying $|x| \le r$ and due to $|x| \le \frac{r}{|G(x)|} \le \frac{r}{|G($ a unique fixed point $x = \frac{1}{2}|x| + |G(0)|$, we arrive at the desired estimate

$$|x| \le 2|G(0)| \le 2||L|| |F(0)|.$$

This concludes the proof of Lemma III.9.

Finally, we apply the lemma to our situation and complete the proof of the shadowing lemma. We recall that

$$|F(0)| = \sup_{j} |f_{j}(0)| = \sup_{j} |\varphi(q_{j}) - q_{j+1}| \le \varepsilon.$$

We choose α so small that $\alpha \|L\| \leq \frac{1}{2}$. Since Λ is compact and $df_j(0) = 0$, we find a radius $r_0 = \delta_0$ such that $\|df_j(x_j)\| \le \alpha$ for every $x_j \in B_j(r_0)$ and all $j \in \mathbb{Z}$ by the mean value theorem we conclude $|F(x) - F(y)| \le \alpha |x - y|$ for $x, y \in B(r_0)$ If now $r \leq \delta_0$ and if $\varepsilon \leq \alpha r$, we conclude from Lemma III.9 that the statement of the shadowing lemma holds true with the constant $\delta = r$. This completes the proof of Theorem III.7.

Proof of the remark following the shadowing lemma. Let $|\varphi-\psi|_{C^1(U)} \le \mu$ where U is a neighborhood of Λ . Replacing the maps $f_j(x_j)$ in the above proof by the maps

$$f'_j(x_j) = \psi(q_j - x_j) - q_{j+1} - d\psi(q_j)x_j,$$

we can argue as above, if μ is sufficiently small. As for the second part of the remark, we choose $\eta > 0$ such that the $\hat{\varepsilon}$ -pseudo orbit $q = (q_i)_{i \in \mathbb{Z}}$ lies in the η -neighborhood of Λ . Choosing a sequence q' on Λ satisfying $|q_j - q_j'| \le \eta^{\frac{1}{2}}$ all $j \in \mathbb{Z}$, it follows that

$$|q'_{j+1} - \varphi(q'_j)| \le |q'_{j+1} - q_{j+1}| + |q_{j+1} - \varphi(q_j)| + |\varphi(q_j) - \varphi(q'_j)|$$

$$\le \eta + \hat{\varepsilon} + \eta \sup_{x \in \Lambda} ||d\varphi(x)||$$

$$=: \varepsilon,$$

so that q' is an ε -pseudo orbit on Λ . If η , $\hat{\varepsilon}$ are sufficiently small, we can apply first near $\alpha \in \mathbb{R}^n$. first part of the theorem to the pseudo orbit $q' \subset \Lambda$ to obtain a $(\delta + \eta)$ -shadow orbit for the orbit for the pseudo orbit q.

As a first application of the shadowing lemma, we shall prove the closing lemma.

Theorem III.10 (Closing lemma of Anosov). We consider the hyperbolic set the diffeomorphism of the diffeomorph the diffeomorphism φ and let ε , δ be as in the shadowing lemma. If there expoint $x \in \Lambda$ and an interval δ

$$|\varphi^N(x) - x| \le \varepsilon,$$

then i

More the se

Proof $(q_i)_{i \in I}$

so that δ-shad

To pro $\hat{p}_j = j$

holds to shadow the desi

III.3

In the fol the stabl the diffe be the or

the closu Λ is a hy we can us v is a clus also a clus then there exists a point y in a δ neighborhood $U_{\delta}(\Lambda)$ of Λ satisfying

$$\varphi^N(y) = y.$$

Moreover, the periodic orbit $y, \varphi(y), \dots, \varphi^N(y) = y$ lies in a δ -neighborhood of the set $\{x, \varphi(x), \dots, \varphi^N(x)\}$.

proof [Uniqueness of the δ -shadowing orbit]. We define the ε -pseudo orbit $q=(q_j)_{j\in\mathbb{Z}}$ by the N-periodic continuation of the finite piece of the orbit

so that $q_{j+N} = q_j$ for all $j \in \mathbb{Z}$. By the shadowing lemma there exists a unique δ -shadowing orbit $p = (p_j)_{j \in \mathbb{Z}}$ of the pseudo orbit q and we claim that

$$p_{j+N} = p_j, \quad j \in \mathbb{Z}.$$

To prove the claim, we introduce the shifted orbit sequence $\hat{p} = (\hat{p}_j)_{j \in \mathbb{Z}}$ by $\hat{p}_j = p_{j+N}$. Then, also \hat{p} is a δ -shadowing orbit of the pseudo orbit q, since

$$|\hat{p}_j - q_j| = |p_{j+N} - q_j| = |p_{j+N} - q_{j+N}| \le \delta$$

holds true for all $j \in \mathbb{Z}$. From the uniqueness of the δ -shadowing orbit which shadows the pseudo orbit q, we conclude that $\hat{p} = p$, so that the orbit p is indeed the desired periodic orbit, as claimed in the theorem.

III.3 Orbit structure near a homoclinic orbit, chaos

In the following we consider a transversal homoclinic point ν at which, by definition, the stable and unstable invariant manifolds issuing form a hyperbolic fixed point of the diffeomorphism φ intersect transversally. Assuming as before the fixed point to be the origin 0 we denote by

$$\Lambda = \overline{\mathbb{O}(\nu)} = \bigcup_{j \in \mathbb{Z}} \varphi^j(\nu) \cup \{0\} = \mathbb{O}(\nu) \cup \mathbb{O}(0)$$

the closure of the homoclinic orbit which consists of two orbits. The compact set Λ is a hyperbolic set of the diffeomorphism φ in view of Proposition III.5 and so we can use the shadowing lemma in order to prove first that the homoclinic point ν is a cluster point of other homoclinic points belonging to 0 and at the same time also a cluster point of periodic points.