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Problem 1
Let P (x) be a polynomial with real coefficients. Determine the conditions for
the vector field

X = P (x)
∂

∂x

on the real line to be complete.

Solution
First we show that it is sufficient for deg(P (x)) ≤ 1. When the degree is 0 we
have a constant vector field so that the flow is linear, existing for all time. So
then let P (x) = ax+ b, a 6= 0. Then

ẋ = ax+ b.

We can easily see that x = − b
a is the unique equilibrium solution. Now after

separation of variables we get

x(t) = Ceat − b

a
. (1)

When a < 0 the solution curves converge to the equilibrium − b
a and when a > 0

diverge away. Either way, x(t) is defined for all t ∈ R.

We start running into problems when degP (x) > 1. For example, let P (x) =
x(x− 1). That is,

ẋ = x(x− 1).

After separation of variables we obtain the relation

x− 1

x
= Cet (2)

where C is an arbitrary constant. The equilibria are located at x = 0 (stable)
and x = 1 (unstable). In the limit as t→∞, the right hand side approaches ±∞
(depending on C) which implies that x(t)→ 0 from the right when the limit is
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−∞ and from the left when the limit is +∞. Of course this tells us no more than
we already know about solution curves with initial condition x(0) < 1 (drawing
the phase plot makes this easy to see). However, we made no assumption about
the initial condition in equation (2) when taking the limit t→∞. Consequently,
this shows that all the solution curves with initial condition x(0) > 1 blowup in
finite time, since if limt→∞ x(t) existed, then such a solution curve would have
to converge to 0 which requires passing through the equilibrium x = 1, which is
impossible.
We will see that deg(P (x)) = 0, 1 is also necessary for completeness.

Proposition 1 The vector field X = xn+1 ∂
∂x , n ≥ −1 is complete if and only

if n is -1 or 0.

Proof
We already proved that n = −1, 0 is sufficient. To prove it is necessary we will
prove a slightly modified statement: suppose that n ≥ 1 and suppose that

ẋ ≥ xn+1.

Since this holds for all t, ∫ t

0

ẋ

xn+1
dt ≥ t,

or

− 1

n
x−n +

1

n
x−n0 ≥ t

where x0 := x(0).
After some rearrangement we get

xn ≥ xn0
1− nxn0 t

. (3)

The right hand side blows up at t = 1
nxn

0
, so x(t) cannot be defined for all t.

Note that the larger x0 is, the quicker the blowup.
�

This is almost enough to show that deg(P (x)) > 1 has finite time blowups.
To see why, suppose that P (x) has degree n > 1 and with positive leading
coefficient. Then for some c ∈ (0, 1) and sufficiently large positive integer N ,
x > N implies that P (x) > cxn. Therefore if the initial condition is taken to be
large enough, e.g. x0 > N , it follows that for t ≥ 0,

ẋ(t) > cx(t)n

and apply the method in the proof of proposition 1. If the leading coefficient is
negative, then an analogous argument holds with negative initial conditions.
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Problem 2
Suppose P (x) is a polynomial of degree n all of whose roots lie in [−1, 1] (Leg-
endre polynomials, for example).

1. Sketch a phase portrait of the system θ̇ = P (cos θ) on the standard unit
circle, parameterized by θ ∈ [0, 2π].

2. Suppose you start off with θ(0) = θ∗ such that cos(θ∗) lies between con-
secutive zeroes of P (x), say xi < cos(θ∗) < xi+1. Show that, as t → ∞,
we have θ(t)→ θ∞, where cos(θ∞) equals either xi or xi+1. How can you
know which angle θ(t) tends to, the angle corresponding to xi or xi+1.

Solution

Suppose P (x) = 1
2 (3x2 − 1). The phase portrait looks like

where the points A and B are the roots of P (x) on the real line, − 1√
3

and 1√
3
, respectively; the points A′, B′, A′′, B′′ correspond to the zeros

of P (cos θ). To determine the direction of the arrows, one can use local
stability criterion: let Q(θ) = P (cos θ). Then the differential equation can
be written as

θ̇ = Q(θ).

By local stability criterion, a critical point θ is stable if d
dθQ(θ) < 0 and

unstable if d
dθQ(θ) > 0. Now

d

dθ
Q(cos θ) = − sin θP ′(cos θ) = −3 sin θ cos θ. (4)
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The sign of −3 sin θ cos θ alternates with the quadrants in the order -+-+.
That is, going clockwise starting at θ = 0, B′ is stable, A′ unstable, A′′

stable, and B′ unstable. Doing so tells us the direction of the flow off of
the critical points. This gives a general procedure. And, the flows exist
for all time since θ̇ is bounded above and below by a constant (in our
example −5/2 ≤ θ ≤ 5/2). This answers 2.
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