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Problem 1
Let P(x) be a polynomial with real coefficients. Determine the conditions for
the vector field

on the real line to be complete.

Solution

First we show that it is sufficient for deg(P(x)) < 1. When the degree is 0 we
have a constant vector field so that the flow is linear, existing for all time. So
then let P(z) = ax + b, a # 0. Then

T =ax+b.
We can easily see that ©z = —g is the unique equilibrium solution. Now after
separation of variables we get
at b
x(t) = Ce* — —. (1)
a

When a < 0 the solution curves converge to the equilibrium f% and when a > 0
diverge away. Either way, z(t) is defined for all ¢ € R.

We start running into problems when deg P(z) > 1. For example, let P(x) =
x(z —1). That is,

& =uaz(x—1).
After separation of variables we obtain the relation
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where C' is an arbitrary constant. The equilibria are located at x = 0 (stable)
and x = 1 (unstable). In the limit as ¢ — oo, the right hand side approaches +oo
(depending on C') which implies that x(¢) — 0 from the right when the limit is



—oo and from the left when the limit is +00. Of course this tells us no more than
we already know about solution curves with initial condition z(0) < 1 (drawing
the phase plot makes this easy to see). However, we made no assumption about
the initial condition in equation (2) when taking the limit ¢ — co. Consequently,
this shows that all the solution curves with initial condition x(0) > 1 blowup in
finite time, since if lim;_, o, 2(t) existed, then such a solution curve would have
to converge to 0 which requires passing through the equilibrium z = 1, which is
impossible.

We will see that deg(P(z)) = 0,1 is also necessary for completeness.

Proposition 1 The vector field X = x”‘“%, n > —1 is complete if and only
ifn is -1 or 0.

Proof
We already proved that n = —1,0 is sufficient. To prove it is necessary we will
prove a slightly modified statement: suppose that n > 1 and suppose that

i > x’nr‘rl

Since this holds for all ¢,
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where zo := z(0).
After some rearrangement we get
n i)

2t > —— (3)

n
1 —nxg

The right hand side blows up at t = #, so z(t) cannot be defined for all ¢.

Note that the larger xg is, the quicker the blowup.
[ |

This is almost enough to show that deg(P(x)) > 1 has finite time blowups.
To see why, suppose that P(z) has degree n > 1 and with positive leading
coefficient. Then for some ¢ € (0,1) and sufficiently large positive integer N,
x > N implies that P(z) > ca™. Therefore if the initial condition is taken to be
large enough, e.g. xg > N, it follows that for ¢ > 0,

(t) > cx(t)"

and apply the method in the proof of proposition 1. If the leading coefficient is
negative, then an analogous argument holds with negative initial conditions.



Problem 2
Suppose P(z) is a polynomial of degree n all of whose roots lie in [—1, 1] (Leg-
endre polynomials, for example).

1. Sketch a phase portrait of the system 6 = P(cos®) on the standard unit
circle, parameterized by 6 € [0, 27].

2. Suppose you start off with 6(0) = 6, such that cos(6,) lies between con-
secutive zeroes of P(z), say z; < cos(f.) < x;+1. Show that, as ¢ — oo,
we have 0(t) — 0, where cos(f) equals either x; or z;;1. How can you
know which angle 6(¢) tends to, the angle corresponding to x; or x;;1.

Solution

Suppose P(z) = 3(3z? — 1). The phase portrait looks like

where the points A and B are the roots of P(z) on the real line,

1
V3
and %, respectively; the points A’, B, A”, B” correspond to the zeros

of P(cos6). To determine the direction of the arrows, one can use local
stability criterion: let Q(0) = P(cos®). Then the differential equation can
be written as

0=Q(@).

By local stability criterion, a critical point 6 is stable if %Q(@) < 0 and
unstable if £Q(#) > 0. Now

C%Q(cos 0) = —sin@P'(cos ) = —3sin 6 cosb. (4)



The sign of —3sin 6 cos # alternates with the quadrants in the order -+-+.
That is, going clockwise starting at 6 = 0, B’ is stable, A’ unstable, A”
stable, and B’ unstable. Doing so tells us the direction of the flow off of
the critical points. This gives a general procedure. And, the flows exist
for all time since 0 is bounded above and below by a constant (in our
example —5/2 < § < 5/2). This answers 2.



