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Problem 1
Let P (x) be a polynomial with real coefficients. Determine the conditions for
the vector field

X = P (x)
∂

∂x

on the real line to be complete.

Solution
First we show that it is sufficient for deg(P (x)) ≤ 1. When the degree is 0 we
have a constant vector field so that the flow is linear, existing for all time. So
then let P (x) = ax + b, a 6= 0. Then

ẋ = ax + b.

We can easily see that x = − b
a is the unique equilibrium solution. Now after

separation of variables we get

x(t) = Ceat − b

a
. (1)

When a < 0 the solution curves converge to the equilibrium − b
a and when a > 0

diverge away. Either way, x(t) is defined for all t ∈ R.

We start running into problems when degP (x) > 1. For example, let P (x) =
x(x− 1). That is,

ẋ = x(x− 1).

After separation of variables we obtain the relation

x− 1

x
= Cet (2)

where C is an arbitrary constant. The equilibria are located at x = 0 (stable)
and x = 1 (unstable). In the limit as t→∞, the right hand side approaches ±∞
(depending on C) which implies that x(t)→ 0 from the right when the limit is
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−∞ and from the left when the limit is +∞. Of course this tells us no more than
we already know about solution curves with initial condition x(0) < 1 (drawing
the phase plot makes this easy to see). However, we made no assumption about
the initial condition in equation (2) when taking the limit t→∞. Consequently,
this shows that all the solution curves with initial condition x(0) > 1 blowup in
finite time, since if limt→∞ x(t) existed, then such a solution curve would have
to converge to 0 which requires passing through the equilibrium x = 1, which is
impossible.
We will see that deg(P (x)) = 0, 1 is also necessary for completeness.

Lemma 1 Suppose that g(x) > f(x) > 0 for all x ∈ R and that ẋ = f(x) and
ẏ = g(y) are two differntial equations on the real line so that x(0) = y(0). Then
for all t ≥ 0, we have y(t) ≥ x(t).

Proof
Let h(t) = y(t) − x(t). Now h(0) = 0 and h′(0) > 0 implies that, at least for
some possibly short time, y(t) is larger than x(t). If, contrary to the claim of
the lemma, x(t) is ever larger than y(t), then there is some time T at which
h(T ) = 0 and h′(T ) ≤ 0. In other words x(T ) = y(T ) = z ∈ R and h′(T ) =
g(y(T )) − f(x(T )) = g(z) − f(z) ≤ 0, a contradiction. Therefore no such time
exists, and y(t) ≥ x(t) for all t ≥ 0.
�

Proposition 2 The vector field X = ±xn+1 ∂
∂x , n ≥ −1 is complete if and only

if n is -1 or 0.

Proof
We already proved that n = −1, 0 is sufficient. To prove it is necessary suppose
that n ≥ 1 and suppose that

ẋ = xn+1.

Since this holds for all t, ∫ t

0

ẋ(s)

xn+1(s)
ds = t,

or

− 1

n
x−n +

1

n
x−n0 = t

where x0 := x(0).
After some rearrangement we get

xn =
xn
0

1− nxn
0 t

. (3)

The right hand side blows up at t = 1
nxn

0
, so x(t) cannot be defined for all t. Note

that the larger x0 is, the quicker the blowup. In the case that X = −xn+1 ∂
∂x ,

we obtain the expression
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xn =
xn
0

1 + nxn
0 t

. (4)

which clearly has a blowup at t = − 1
nxn

0
.

�

This is almost enough to show that deg(P (x)) > 1 has finite time blowups.
To see why, suppose that P (x) has degree n > 1 and with positive leading
coefficient. Then for some c ∈ (0, 1) and sufficiently large positive integer N ,
x > N implies that P (x) > cxn. Therefore if the initial condition is taken to be
large enough, e.g. x0 > N , it follows that for t ≥ 0,

ẋ(t) > cx(t)n (5)

By proposition 2, ẏ(t) = cy(t)n is not complete, so apply lemma 1 to deduce that
x(t) is not complete. If the leading coefficient is negative, then for N sufficiently
large, x < −N implies that

P (x) < −cxn

That is,

·x(t) < −cxn(t)

and again apply the proposition and lemma.
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