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the region of interest. Most importantly, we also assume that g is periodic
in t with period T = 2π/ω.

We referred to (28.1.1) with ε = 0 as the unperturbed system

ẋ =
∂H

∂y
(x, y),

ẏ = −∂H

∂x
(x, y), (28.1.3)

or, in vector form,
q̇ = JDH(q), (28.1.4)

and we had the following assumptions on the structure of the phase space
of the unperturbed system (see Figure 28.1.1).

Assumption 1. The unperturbed system possesses a hyperbolic fixed point,
p0, connected to itself by a homoclinic orbit q0(t) ≡ (x0(t), y0(t)).

Assumption 2. Let Γp0 = {q ∈ R
2 | q = q0(t), t ∈ R} ∪ {p0} = W s(p0) ∩

Wu(p0) ∪ {p0}. The interior of Γp0 is filled with a continuous family of
periodic orbits qα(t) with period Tα, α ∈ (−1, 0). We assume that
limα→0 qα(t) = q0(t), and limα→0 Tα = ∞.

FIGURE 28.1.1.

The subharmonic Melnikov theory enabled us to understand how the pe-
riodic orbits qα(t) were affected by the perturbation; now we will develop a
technique to see how the homoclinic orbit, Γp0 , is so affected. Geometrically,
the homoclinic Melnikov method is a bit different from the subharmonic
Melnikov method. However, there is an important relationship between the
two as α → 0 (i.e., as the periodic orbits limit on the homoclinic orbit) that
we want to point out later on in this section. We remark that it is possi-
ble to develop the homoclinic Melnikov method for a more general class of
two-dimensional, time-periodic systems than (28.1.1); in particular, we do
not have to assume that the unperturbed system is Hamiltonian. We will
deal with these generalizations in the exercises.



690 28. Melnikov’s Method

γ(t) = (p0, φ(t) = ωt + φ0). (28.1.8)

We denote the two-dimensional stable and unstable manifolds of γ(t) by
W s(γ(t)) and Wu(γ(t)), respectively. Because of Assumption 1 above,
W s(γ(t)) and Wu(γ(t)) coincide along a two-dimensional homoclinic man-
ifold. We denote this homoclinic manifold by Γγ ; see Figure 28.1.2. We
remark that the structure of this figure should not be surprising; it reflects
the fact that the unperturbed phase space is independent of time (φ).

FIGURE 28.1.2. The homoclinic manifold, Γγ . The lines on Γγ represent a typical
trajectory.

Our goal is to determine how Γγ “breaks up” under the influence of the
perturbation. We now want to describe what we mean by this statement,
which will serve to motivate the following discussion.

The homoclinic manifold Γγ is formed by the coincidence of two two-
dimensional surfaces, a branch of W s(γ(t)) and a branch of Wu(γ(t)). In
three dimensions, one would not expect two two-dimensional surfaces to
coincide in this manner but, rather, one would expect them to intersect
in one-dimensional curves as shown in Figure 28.1.3. (Note: as mentioned
in Chapter 12, if two invariant manifolds of a vector field intersect, they
must intersect along (at least) a one-dimensional trajectory of the vector
field if we have uniqueness of solutions; we will explore this in more detail
later.) Figure 28.1.3 illustrates what we mean by the term “break up” of
Γγ . Now we want to analytically quantify Figure 28.1.3. In order to do this
we will develop a measurement of the deviation of the perturbed stable
and unstable manifolds of γ(t) from Γγ . This will consist of measuring
the distance between the perturbed stable and unstable manifolds along
the direction normal to Γγ . Evidently, this measurement will vary from
point-to-point on Γγ so we first need to describe a parametrization of Γγ .
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remedy this situation later on when we consider a Poincaré map constructed
from the flow generated by the perturbed vector field; see Figures 28.1.7 and
28.1.8 for an illustration of the geometry behind the projections (28.1.19)
and (28.1.20).

FIGURE 28.1.7.

We are now at the point where we can define the splitting of W s(γε(t))
and Wu(γε(t)). Choose any point p ∈ Γγ . Then W s(γ(t)) and Wu(γ(t))
intersect πp transversely at p. Hence, by the persistence of transversal in-
tersections and the fact that W s(γε(t)) and Wu(γε(t)) are Cr in ε, for ε
sufficiently small W s(γε(t)) and Wu(γε(t)) intersect πp transversely in the
points ps

ε and pu
ε , respectively. It is therefore natural to define the distance

between W s(γε(t)) and Wu(γε(t)) at the point p, denoted d(p, ε), to be

d(p, ε) ≡ |pu
ε − ps

ε|; (28.1.21)

see Figure 28.1.9. We will find it convenient in the next step to redefine
(28.1.21) in an equivalent, but slightly less natural manner as follows

d(p, ε) =
(pu

ε − ps
ε) · (DH(q0(−t0)), 0)
‖DH(q0(−t0))‖

(28.1.22)
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FIGURE 28.1.3.

Parametrization of Γγ : Homoclinic Coordinates. Every point on Γγ can be
represented by

(q0(−t0), φ0) ∈ Γγ (28.1.9)

for t0 ∈ R
1, φ0 ∈ (0, 2π]. The interpretation of t0 is the time of flight from

the point q0(−t0) to the point q0(0) along the unperturbed homoclinic
trajectory q0(t). Since the time of flight from q0(−t0) to q0(0) is unique,
the map

(t0, φ0) �−→ (q0(−t0), φ0) (28.1.10)

is one-to-one so that for a given (t0, φ0) ∈ R
1×S1, (q0(−t0), φ0) corresponds

to a unique point on Γγ (see Exercise 1). Hence, we have

Γγ =
{
(q, φ) ∈ R

2 × S1 | q = q0(−t0), t0 ∈ R
1; φ = φ0 ∈ (0, 2π]

}
. (28.1.11)

The geometrical meaning of the parameters t0 and φ0 should be clear from
Figure 28.1.2.

At each point p ≡ (q0(−t0), φ0) ∈ Γγ we construct a vector, πp, normal
to Γγ that is defined as follows

πp =
(

∂H

∂x
(x0(−t0), y0(−t0)),

∂H

∂y
(x0(−t0), y0(−t0)), 0

)
(28.1.12)

or, in vector form,
πp ≡ (DH(q0(−t0)), 0). (28.1.13)

Thus, varying t0 and φ0 serves to move πp to every point on Γγ ; see Figure
28.1.4. We make the important remark that at each point p ∈ Γγ , W s(γ(t))
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FIGURE 28.1.8.

FIGURE 28.1.9.



28.1 The General Theory 697

where “·” denotes the vector scalar product and

‖DH(q0(−t0))‖ =

√(∂H

∂x
(q0(−t0))

)2 +
(∂H

∂y
(q0(−t0))

)2
.

Because pu
ε and ps

ε are chosen to lie on the vector (DH(q0(−t0)), 0), it
should be clear that the magnitude of (28.1.22) is equal to the magnitude
of (28.1.21). However, (28.1.22) is a signed measure of the distance and
reflects the relative orientations of W s(γε(t)) and Wu(γε(t)) near p; see
Figure 28.1.10. Note that since pu

ε and ps
ε lie on πp, we can write

FIGURE 28.1.10.

pu
ε = (qu

ε , φ0) (28.1.23)

and
ps

ε = (qs
ε , φ0), (28.1.24)

i.e., pu
ε and ps

ε have the same φ0 coordinate. Thus, (28.1.22) is the same as

d(t0, φ0, ε) =
DH(q0(−t0)) · (qu

ε − qs
ε)

‖DH(q0(−t0))‖
, (28.1.25)






