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* Use of the Poincaré map (1880) to get a homoclinic

tangle: excellent way to view for periodic systems.
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* Poincaré’s homoclinic tangle corresponds to transient
chaos—dynamic events over intermediate time scales.

* Infinite time notions like strange attractors, inertial
manifolds, etc are not relevant in this context

* First, a bit more about the tangle
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Smale Horseshoe

» Smale abstracted what was going on in the tangle
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* Proved lots of nice things—eg, an invariant Cantor set.
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Look at lobes, mixing, dynamically




