1. HW FOR THE WEEK OF FEB 19-21; DUE FEB 26

Exercise 1. The harmonic oscillator is the system & = —w?x withw # 0 a constant

called the frequency. Verify that H = %dcz + “’;xQ is constant along solutions by

a) plugging the general solution (z(t) = acos(wt — ¢g) with a, Py constants) into
H and verifying using trig identities that the result is independent of t.

b) B differentiating H along the corresponding 1st orderized system, using the
chain rule.

¢) Draw the phase portrait of the flow in the (x,&) plane, indicating several
solutions and the fized point.

Exercise 2. Repeat Exer. 1 (b) above for the general ‘conservative force’ 1 degree
of freedom system: & = —V'(x), the prime denoting d/dx. That is: prove that the
energy H = 1% + V(z) = (kinetic) + (potential). is constant.

b) Relate the critical points of the potential V' to the critical points (zeros) of the
corresponding vector field in the (z,Z) plane.

¢). Draw the phase portrait for the ‘Mexican hat ~ potential V(z) = (1 — x

making sure to indicate the fized points and the homoclinic orbits.
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Exercise 3. (a) Draw the phase portrait in the (0,v)-plane, (v = 0) for the
pendulum 6 = —sin(f). Do so with the help of the energy H(0,v) = 102 4+ V(0)
which will require you to find the potential energy V(0). [0 is the angle that the
pendulum bob makes with the vertical. |

(b) Find the two critical points of the resulting vector field (f1(z,v), fa(z,v)) of
4(9,v) = (fi(z,v), f2(z,v)). What is the linearized vector field at the fized points?
(The answer will be a 2 by 2 matriz associated to each fized point.) What are the
associated eigenvalues? Which fized point is stable ¢ Which is unstable? Draw a
‘physical picture’ of the pendulum with an arrow ‘Down’ for gravity, and the angle
0 indicated in your picture. Indicate the two fized points in your picture (One
corresponds to 8 = 0. ) Indicate the homoclinic orbit on your phase portrait from
part (a), and describe it in words, based on your physical picture.

(¢)] EXTRA CREDIT] FINDING THE HOMOCLINIC: If P, = (2y,v,) is
the unstable fixed point, solve the equation H(x,v) = H(P,) to get a differential
expression of the form f(0)df = dt where f(0) is free of square roots. Integrate
the expression. Invert it to get an explicit formula 8 = 0(t) which desribes the
homoclinic orbit (with v(t) = df/dt).

Exercise 4. Add damping. Consider the damped pendulum 6 = — sin(f) — ué, I
small, positive.

a) Draw the phase portrait.

b) Verify that the critical points of the previous exercise did not move. Their
linearizations do change. How? (Write down 2 by 2 matrices with p’s somewhere
in them.) How does the stability change? What happened to the homoclinic orbit?

Exercise 5. Now add forcing: consider the damped driven pendulum is the 6 =
—sin(0) — pb + ef(t) Here f(t) is a periodic function of time called the forcing
function, for example f(t) = cos(wt). This is now a non-autonomous system since
time explicitly occurs on the r.h.s of the differential equation.
a) turn the system into an autonomous vector field in 3 dimensions by the fol-
lowing trick. Introduce a variable T to play the role of t. (Set v = 0 as per usual.)
1



Write out the expression G explicitly:
T=1
=0
0=G(0,y,T) ="

Exercise 6 (EXTRA CREDIT). Do the n-dimensional version of exer. 2 above:
for ¥ € R",V : R" — R smooth, consider the 2nd order ODE [Newton’s eq.]:

I = —VV(Z). Define the associated energy H. Show your H is constant along
solutions.

Exercise 7 (EXTRA CREDIT: Gradient flows). Again: € R",V : R" — R
smooth. But now look at the 1st order gradient system: T= —VV(Z) Prove that if
Z(t) is a solution then V(Z(t)) is strictly monotonically decreasing, unless Z(t) is
constant.



