
1. HW for the week of Feb 19-21; due Feb 26

Exercise 1. The harmonic oscillator is the system ẍ = −ω2x with ω 6= 0 a constant
called the frequency. Verify that H = 1
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2 is constant along solutions by

a) plugging the general solution (x(t) = a cos(ωt− φ0) with a, φ0 constants) into
H and verifying using trig identities that the result is independent of t.

b) B differentiating H along the corresponding 1st orderized system, using the
chain rule.

c) Draw the phase portrait of the flow in the (x, ẋ) plane, indicating several
solutions and the fixed point.

Exercise 2. Repeat Exer. 1 (b) above for the general ‘conservative force’ 1 degree
of freedom system: ẍ = −V ′(x), the prime denoting d/dx. That is: prove that the
energy H = 1
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2 + V (x) = (kinetic) + (potential). is constant.

b) Relate the critical points of the potential V to the critical points (zeros) of the
corresponding vector field in the (x, ẋ) plane.

c). Draw the phase portrait for the ‘Mexican hat ’ potential V (x) = (1 − x2)2

making sure to indicate the fixed points and the homoclinic orbits.

Exercise 3. (a) Draw the phase portrait in the (θ, v)-plane, ( v = θ̇) for the
pendulum θ̈ = − sin(θ). Do so with the help of the energy H(θ, v) = 1
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which will require you to find the potential energy V (θ). [ θ is the angle that the
pendulum bob makes with the vertical. ]

(b) Find the two critical points of the resulting vector field (f1(x, v), f2(x, v)) of
d
dt (θ, v) = (f1(x, v), f2(x, v)). What is the linearized vector field at the fixed points?
(The answer will be a 2 by 2 matrix associated to each fixed point.) What are the
associated eigenvalues? Which fixed point is stable ? Which is unstable? Draw a
‘physical picture’ of the pendulum with an arrow ‘Down’ for gravity, and the angle
θ indicated in your picture. Indicate the two fixed points in your picture (One
corresponds to θ = 0. ) Indicate the homoclinic orbit on your phase portrait from
part (a), and describe it in words, based on your physical picture.

(c)[ EXTRA CREDIT] FINDING THE HOMOCLINIC: If Pu = (xu, vu) is
the unstable fixed point, solve the equation H(x, v) = H(Pu) to get a differential
expression of the form f(θ)dθ = dt where f(θ) is free of square roots. Integrate
the expression. Invert it to get an explicit formula θ = θ(t) which desribes the
homoclinic orbit (with v(t) = dθ/dt).

Exercise 4. Add damping. Consider the damped pendulum θ̈ = − sin(θ) − µθ̇, µ
small, positive.

a) Draw the phase portrait.
b) Verify that the critical points of the previous exercise did not move. Their

linearizations do change. How? (Write down 2 by 2 matrices with µ’s somewhere
in them.) How does the stability change? What happened to the homoclinic orbit?

Exercise 5. Now add forcing: consider the damped driven pendulum is the θ̈ =
− sin(θ) − µθ̇ + εf(t) Here f(t) is a periodic function of time called the forcing
function, for example f(t) = cos(ωt). This is now a non-autonomous system since
time explicitly occurs on the r.h.s of the differential equation.

a) turn the system into an autonomous vector field in 3 dimensions by the fol-
lowing trick. Introduce a variable τ to play the role of t. (Set v = θ̇ as per usual.)
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Write out the expression G explicitly:

τ̇ = 1

θ̇ = v

v̇ = G(θ, y, τ) =?

Exercise 6 (EXTRA CREDIT). Do the n-dimensional version of exer. 2 above:
for ~x ∈ Rn, V : Rn → R smooth, consider the 2nd order ODE [Newton’s eq.]:
~̈x = −∇V (~x). Define the associated energy H. Show your H is constant along
solutions.

Exercise 7 (EXTRA CREDIT: Gradient flows). Again: x ∈ Rn, V : Rn → R
smooth. But now look at the 1st order gradient system: ~̇x = −∇V (~x) Prove that if
~x(t) is a solution then V (~x(t)) is strictly monotonically decreasing, unless ~x(t) is
constant.


