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This is a report of my attempts to verify some facts that appear in the
Nurowski-An paper on twistor space for rolling and what Pawel N. told me:

1. For each pseudo-riemanian oriented 4-manifold M of signature (2, 2)
Nurowski-An define TM as the set seld-dual null 2-planes in TM . It
is a 5-manifold, in fact a bundle of real projective lines p : TM ! M .

2. A rank-2 distribution D is defined on TM as follows: a point x̃ 2 TM
stands for a null 2-plane Nx ⇢ TxM where x = p(x̃). Then Dx̃ ⇢ Tx̃TM
is the horizontal lift of Nx wrt the Levi-Civita connection.

3. Some things to check:

- D is integrable i↵ M is SD (or ASD, I forget)

[Well, not exactly true, there might be some isolated points on the
twistor fiber, max 4, where the distribution is integrable, ie fails to be
bracket generating].

- When M is the product of two surfaces with the di↵rence metric, D
is just the rolling distribution.

- When D is not integrable it is automaticaly (2, 3, 5).

- D dependes only on the conformal class of the metric on M .

Main question:

- Find examples of irreducible M such that D is ”flat” (G2-symmetry).

(Irreducible means not a product of surfaces with the di↵erence metric).
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4. Norowski-An have a recent additional paper where they propose looking
at “Plebanski second heavenly metric”, some class of metrics depending
on an arbitrary function ⇥ of 4 variables, which appears somewhere in
general realtivity, giving metrics which are SD and Ricci flat (I dont un-
dersand the physical or geometrical motivation for introducing them);
the flatness condition on D, plus some simplifying assumptions on ⇥,
translate to a very complicated 8th order ODE for ⇥, giving appar-
ently many local solutions. The resulting metrics on M are irreducible
(scalar flat reducible means the 2 surfaces are constant curvature, of
same curvature).

5. Nurowski told me on the phone that Dennis The (now in Australia)
gave a recent talk where he comes up with some class of homogeneous
irreducible 2,2 metrics with flat twistor distribution. He uses a phe-
nomenon in parabolic geometries called “symmetry gap”, meaning in
our case, that if a (2,3,5) distribution has ”submaximal” symmetry
group (or rather algebra, its all local) than the maximal dimension of
the symmetry is 6 (if I am not mistaken). So its enough to present
a 2,2 metric which is not SD, with 7 linearly independent conformal
Killing fields.

6. Some linear algebra with signature (2, 2). Take R4 as the set of
2⇥ 2 matrices (linear transformations R2 ! R2)

X =

✓
x1 x2

x3 x4

◆
.

The quadratic form X 7! det(X) = x1x4 � x2x3 is of signature (2, 2).

Note: Nurowski-An take the quadratic form x1x2 � x3x4, so their for-
mulas look a little di↵erent.

7. The group G̃ = SL2(R)⇥ SL2(R) acts by

(g+, g�) ·X = g+Xg�1
� ,

with ine↵ective kernel±(I, I). ThenG = SL2(R)⇥SL2(R)/{±(I, I)} ⇠=
SO2,2 ⇢ GL4(R), the group of orientation preserving isometries of R4

(with respect to the quadratic form det(X)). Let g be the Lie algebra
of G. Then g ⇠= sl2(R)� sl2(R).
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8. To each 2-plane in R4 correponds a line in ⇤2(R2) (wedge the elemnts
of a basis of this plane). A plane is said to be SD (self-dual) if the
cooreponding line in ⇤2(R2) is SD wrt the Hodge operator and the
standard orientation. It turns out that each null plane is either SD or
ASD.

9. A null vector in R4 is a matrix X such that det(X) = 0, hence of
rank 1, i.e. with 1-dim kernel L� ⇢ R2, or equivalently, a 1-dim image
L+ ⇢ R2. A null 2-plane is given by either the set of X with a common
kernel L� or a common image L+. The former is an ASD plane and
the later is SD (checked, tedious, ommited).

10. Let N0 = {x3 = x4 = 0} (the set of matrices with common image
L0 = R(1, 0) (the x-axis). More generaly, let Nt = {X 2 R4|R(1, t)t =
Im(X)}, and N1 = {X 2 R4|R(0, 1) = Im(X)}. Thus

Nt = {X|x3 � tx3 = x4 � tx2 = 0}, t 2 R.

Let T be the space of SD null 2-planes in R4. From the description
above of null planes, T = {Nt|t 2 R [ {1}} = RP 1 (the set of 1-dim
L+ ⇢ R2).

11. G acts transitively on T. The stabilizer ofN0 isH := U⇥SL2(R)/{±(I, I)},
where U ⇢ SL2(R) is the set of upper triangular 2 ⇥ 2 matrices of de-
terminant 1 (stabilizer of L0). Hence h = u� sl2(R), where u is the set
of upper triangular matrices of trace 0.

The action of G on G/H = T = RP 1 factors through the standard
action of PSL2(R) on RP 1 by Mobious transformations, t 7! at+b

ct+d
.

12. We have the following picture: the set of null vectors in R4 define
the null quadric, a quadratic surface Q ⇢ RP 3, given in homogeneous
coordinates by x1x4�x2x3 = 0, or in a�ne coordinates, x = x1/x4, y =
x2/x4, z = x3/x4, by the graph of the function z = xy (it looks like a
saddle point at the origin; the level curves are hyperbolas y = const/x).
The null planes define on Q a double rulling, so that through each point
of the quadric pass exactly two lines, one SD and one ASD. In the a�ne
coordinates x, y, z, the lines on z = xy through the point (x0, y0, x0y0)
are z = x0y and z = xy0. The group G acts on Q, preserving both
rullings.
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13. Here is a representation theoretic description. Let S = R2 be the
standard 2-dimesional real representation of SL2(R). Note that it is
self-dual, ie S ⇠= S⇤, via the invariant area form ! = dx ^ dy on S,
v = (a, b) 7! ◆v! = ady � bdx. The group G = SL2(R) ⇥ SL2(R) has
2 basic representations on R2, denoted by S+, S� (the left factor acts
non-trivialy on S+, the right factor on S�). Let !± 2 ⇤2(S⇤

±) be the
invariant area forms on S±.

Next R4 = Mat2⇥2(R) = Hom(S+, S�) = S+ ⌦ S⇤
� = S+ ⌦ S� (that’s

quite long, sorry) , equiped with the 2-form !+ ⌦ !�, which is G-
invariant, symmetric, and of signature (2, 2). The set of decomposable
vectors v+ ⌦ v� is G-invariant and obiously null. A SD plane has the
form v+ ⌦ S�, and an ASD is S+ ⌦ v�. Thus we see that the set of SD
null 2-planes correpsonds to P (S+) ⇠= RP 1.

[Can go on, find the Hodge star operator. . . ]

14. Now letM be an oriented manifold with a metric of signature (2, 2). For
x 2 M , an oriented orthonormal coframe in TxM is a linear orientation
preserving isometry u : TxM ! R4. The set of such coframes is a
principal G bundle p : B ! M .

15. Let TM ! M be the bundle of self dual null planes on M . That is

TM = {u�1N0|u 2 B}.

Then TM is a 5-dimensional manifold, a bundle of real projective lines
over M .

Note that TM can be identified with B/H , u�1N0 7! uH.

Another description of TM : it is the projectivization of the 2-plane
bundle S+ ! M , associated to the standard representaion of left factor
of G̃ = SL2 ⇥ SL2. (The bundle S+ may not exist globaly, but its
projectivization does exist).

16. A rank 2 distribution D is defined on TM by parallel translation of SD
null 2-planes along null directions. Given a point x̃ 2 TM it stands
por a SD null 2-plane Nx ⇢ TxM , where x = p(x̃). Then D(x̃) is the
horizontal lift (wrt the Levi Civita connection of M) of Nx to Tx̃TM .
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17. Let us see why D depends only on the conformal class of the metric on
M and the orientation.

First note that the definition of null vectors and SD null 2-plane (ie TM
itself) depend only on the conformal structure and the orientation.

Next, it is a standard fact that null geodesics on a pseudo riemannian
manifold depend only on the conformal structure (a conformal change
of the metric will result only in a reparametrization of null geodesics;
***add an argument or reference***). Also, as we saw before, any null
vector is contained in a unique SD null 2-plane.

It follows that given any null geodesic x(s) in M , there is a unique 1
parameter family of SD null 2-planes Ns along x(s) (i.e. Ns ⇢ Tx(s)M)
such that ẋ(s) 2 Ns. Furthermore, since parallel transport is an isom-
etry, the assignement s 7! Ns is parallel along x(s) and is unaltered by
a conformal change of the metric.

Now take a point x̃ 2 TM , andNx ⇢ TxM , x = p(x̃), the corresponding
null 2-plane. A vector v 2 D(x̃) i↵ v = ˙̃x(0), where x̃(s) is a curve
in TM such that x̃(0) = x̃, x(s) = p(x̃(s)) is a curve in M so that
p⇤v = ẋ(0) 2 Nx, and the family of null 2-planes Ns corresponding
to x̃(s) is parallel transported along x(s). Since ẋ = p⇤v is null, we
can take wlog x(s) to be a null geodesic, hence x̃(s) is unaltered by a
conformal change of the metric, and the same is true for v = ˙̃x(0).

18. Let ! be the soldering form on B. It is an R4 valued 1-form with the
(defining) property

!(u) = p⇤u.

Let ✓ be the Levi-Civita connection form. It is a g ⇢ gl4(R) valued
G-equivariant 1-form on B with the (defining) property

d! = �✓ ^ !.

(The wedge product on the right means we are multiplying a 4 ⇥ 4
matrix of 1-forms by a column vector of 1-forms).

19. A better way to write the last equation is to use g = sl2(R)�sl2(R), so
that ✓ = (✓+, ✓�), where ✓± are sl2(R)-valued 1-forms on B (a traceless

5



2 ⇥ 2 matrix of 1-forms), and !, d! are gl2(R)-valued 1- and 2-forms
(resp.) on B. So the last equation becomes

d! = �✓+ ^ ! � ! ^ ✓�,

where on the right we have the wedging of 2⇥ 2 matrices of 1-forms.

The forms !, ✓ together determine a conframing of B.

20. Consider the projection ⇡ : g ! g/h. Then ⇡✓ is a g/h-valued H-
equivariant 1-form on B, hence descends to a 1-form ✓T on TM =
B/H with values in the vertical bundle V = B ⇥H g/h (kernel of
the derivative of the projection TM ! M). The kernel of ✓T is the
horizontal distribution on TM induced by the Levi-Civita connection
of M .

21. In terms of our model g = sl2(R)�sl2(R), h = u�sl2(R), ✓ = (✓+, ✓�),
we can take

✓T = ✓+21.

The H-action is given by

R⇤
h✓T = Ad(h�1)✓T = a�2✓T,

where

h = (u, g�), u =

✓
a b
0 a�1

◆
.

22. A moving coframe on M is a (local) section of M ! B. Then u =
(!1, . . . ,!4), where the !i = u⇤xi form a basis of 1-forms such that

hv, vi = !1(v)!4(v)� !2(v)!3(v), v 2 TM.

For each x 2 M and t 2 R\1, u(x)�1Nt ⇢ TxM is a SD null 2-plane,
ie an element of p�1(x) ⇢ TM , given by the common kernels of the two
1-forms

!1 � t!3, !2 � t!4.
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23. Pull back the !i’s to TM . Then a coframing of TM is given by

!1, . . . ,!4, ✓T

and the distribution D on TM is given by the common kernels of the
three 1-forms

↵1 = !1 � t!3, ↵2 = !2 � t!4, ↵3 = ✓T.

The integrability condition for D is given the condition

d↵i ⌘ 0 (mod ↵1,↵2,↵3).

[Now comes this calculation; or rather, work on B, not TM , basi-
caly thinking of B as a reduction of the frame bundle of TM to H ⇢
GL5(R).]
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