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An Approach to the Cartan Geometry I:
Conformal Riemann Manifolds

Masatake Kuranishi

Introduction

As is well known F. Klein extracted the essence of the classical
geometry by saying that the geometry is the study of properties invariant
under the transformations of Lie groups on homogenous spaces. This
includes for instance the euclidean geometry and the conformal euclidean
geometry. However, this geometry is too rigid to treat geometric objects
we meet in reality. B. Riemann was thus led to introduce his geometry
generalizing the euclidean geometry.

Tt is a natural question to ask how to generalize the Riemann’s work
to the case of an arbitrary classical geometry which is a homogenous
space X = G/H, where G is a Lie group and H is its closed subgroup.
We call any such generalization a structure modeled after the classical
geometry G/H.

E. Cartan [1] gave an answer by introducing “a generalized space”.
Namely, instead of the space X together with the action of G on X,
he considers the projection pg: G — X. There is on G the invariant
1-form, say wg, valued in the Lie algebra g of G. He associate to the
classical geometry G/H the pair (G, pg,wg), which is in todays lan-
guage a Cartan connection wg on a principal H. -bundle G over X. We
recover the homogenous space structure of X because the graphs of the
transformations of G are the integral submanifolds of the differential
system mjwg — mhwg on G X G, where my (resp. mg) is the projection to
the first (resp. second) component of G x G. By the structure equation
of the Lie algebra we have

1
(1) dwa + -i[wa,wc] =0.
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174 M. Kuranishi

Cartan’s generalized space structures are deformations of the above
structure. Namely, in todays language, a generalized space structure on
a manifold M is a pair (E, p,w) of a principal H-bundle E over M with
the projection p and a Cartan connection w on E. We call it a Cartan
structure modeled after the homogenous space G /H. E will be called
the frame bundle. It has the curvature form

(2) K:dw—i—%[w,w].

While developing the modern terminology for Cartan’s work,
C. Ehresmann [3] made an interesting comment on the problem by say-
ing that a structure modeled after & /H is a space where a homogenous
space G/H is attached to each point. We interpret this as saying that, on
such a space, neighborhoods of each point are identified infinitesimally
(up to certain order) with a neighborhood of a reference point in G JH.

Since Cartan’s work many answers to our question are introduced,
including the use of Cartan’s theory of equivalence and infinite Lie
groups. In this note we mainly view the development evolved around
these two view points of Cartan and Ehresmann.

We note that the parameter space of structures modeled after G/H
on a manifold is obviously infinite dimensional. Therefore we can think
of two approaches to the problem. One is to develop a way to write
down all such structures and the other is to find a good way to pick one
nice such structure,

A variation of the first order infinitesimal version of Ehresmann’s
view was started by S. S. Chern [2] under the name G-structure. This
G refers to a linear Lie group, not to our G, but more related to our H.
Actually a slightly limited case of the G-structure was already considered
by H. Weyl as a generalization of the general relativity. The theory of
G-structures seems to mainly concerned with the first approach. For
surveys see for example S. Kobayashi [5] and T. Ochiai [12].

There are also a lot of works with respect to the second approach.
The Levi-Chivita’s Riemann geometry may be viewed, in retrospect,
as the first satisfactory fusion of Cartan’s and Eheresman’s viewpoints
in the second approach. This is the Cartan connection, with vanish-
ing torsion, on the orthonormal frame bundle. The case for the con-
formal geometry was worked out by H. Weyl [18], who extracted the
conformally invariant components of the curvature tensor called Weyl
tensor. CR geometry created by E. Cartan [2], N. Tanaka [16], and
S. 8. Chern-J. Moser [5] can be considered as the case where the model
structure is the unit complex ball with the holomorphic automorphism
group.
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Generalizing his pioneering work on CR structures, N. Tanaka
[14]-[16] introduced structures closely related to Cartan’s. His work was
further developed by T. Morimoto [10], [11] and K. Yamaguchi [17]. The
works of A. Cap and J. Slovak for the higher codimensional CR struc-
tures are in this volume. There is also a work of R. Miyaoka [9] on the
Lie’s sphere geometry.

In the cases of the conformal geometry and CR geometry on a man-
ifold M, we may follow the analogy with the Riemann geometry and
construct the bundle, say E, using the first order Ehresmann approach.
However, it is a principal H/H;-bundle for a normal subgroup H; of H.
We have to enlarge E; to a principal H-bundle, say E.

Our attempt to develop a general method to include the cases of
Riemann, conformal, and CR as special cases was first outlined in [6]
and completed in [7]. It is further developed by Y. Liu [8]. We con-
structed the above E by applying the Cartan’s method of prolongation
to E,. However, the traditional approach is to use 2-jets as was done, for
example, in Kobayashi [5] and Ogiue [13]. Namely, E1 may be naturally
regarded as embedded in J*, the space of the 1-jets of maps of G/H to
M at a reference point e € G/H. We also have the space of 2-jets J 2,
and the projection p: J2 — J'. We construct a section Ey — J 2. Then
E is defined as the subspace of J? consisting of the orbits of H-action
passing points of the image of E' in J2.

In this paper, we use the Ehresmann approach of the second order
and construct E as a quotient space p~1(E1) — E with a commutative
diagram:

Jl — J2
_ i i
(3) By «— p B
I |
El — F

When we construct a principal H-bundle, say Ep, so that Ei «— Ey C
p~lE; C J?. then the vertical downarrow in (3) will induce an iso-
moorphism E, — E. Therefore our frame bundle is isomorphic to the
traditional one.

Once the frame bundle is constructed, we work locally and find a
Cartan connection by imposing conditions on the curvature form. In
Kobayashi [5] this was done using the canonical forms of J2. We can
adopt this method in our frame work. However, we used here a direct
method using the definition of the Cartan connections.

The curvature is valued in the Lie algebra g of G, which has the
grading: g = g(-1) T &) + &()- We designate a suitable subspace
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8n C g(0) + 8(1)- A Cartan connections on E is called normal when the
cuvature takes value in gy.

In our case the set of normal connections is a family of isomor-
phic Cartan connections depending on one arbitrary function. It turns
out that the Weyl tensor is independent of the connections in the fam-
ily. Therefore we obtain a unique Weyl curvature form. However, to
construct a Cartan connection globally we need to choose locally one
connection from the above family in such a way they match up. We do
this is this paper.

In §1 we review the case of the homogenous conformal Riemann
geometry. We write down several formulas which will be used later. In §2
we construct the frame bundle and the normal Cartan connections along
the line mentioned above in the case of conformal geometry. We also
show that the g(1)-part of the normal Cartan connections are obtained
using the conformal covariant derivative of Weyl tensor. In the end we
construct a global normal conformal Cartan connection.

The literature for the conformal connection is too numerous and
very difficult to give a complete reference. As a result we listed only a
few which we quoted in this paper. We beg perdon for the omission.

The author is greately benefited by the discussions with Professor
Keizo Yamaguchi.

§1. The Homogeous Conformal Space
We fix a nondegenerate m x m matrix
(1) (bij)v 5L, j=1...,m.

We consider the conformal euclidean geometry based on the metric on
R™ given by

(2) (dz,dz) = hy; do da’.

A) Let R™*2 be the euclidean space with the standard chart:
(3) (€%...,6m ) = (€,¢,6m), ¢ =(,.. €M),
from which we remove the origin obtaining the punctured euclidean
space R™*2. Dividing by the non-zero scalar mutiplication operation,
we obtain the projective space
(4) p: R™2  R™%/C* — P!,

Denote by [¢] = [£°,..., ™+ the homogenous coordinate of RP™ L.
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Consider the hypersurface ™ in RP™! given by

(5.1) ™ B(€) = (¢, &) —28%mT =0,
where
(5.2) (€,€) = &€

We embed R™ in @™ by
(6) R™3z— [1,33, %(m,m)] € o™,

B) R™ itself is not the homogeous space. Tts closure @™ is the
homogenous conformal space, given as follows:

Denote by G the subgroup of GL(R,m-+2) consisting of all matrix g
satisfying:

(7 detg=1, (g(§)) = (&)

Let G be the subgroup of the projective transformation group
induced by G. In view of (5.1) we find that G preseeves ™ and acts as
a transformation group of ®™.

We find that G decomposes to the product of the translation group
and the isotropy group. Namely,

(8) G=1L-H,

*

1 0 0 )
9 L=<ly=|y I 0 =y=(y1,---,ym)“,w=§(y,y)
w y* I

where (y*); = _jkyk, and H consists of matrixes of the form

a v b
(10) h=h(at,B)=|0 t B |, where
0 0 at!
dett=1, t*=1I, B=(6,....8™M"%,
(11) b
w=a(@t, =560,

where (t*); = Ekhﬂt}c and I is the identity m x m-matrix. It is conve-
nient to consider a smaller group where a > 0. The Lie algebra g of G
has the grading:

(12) g =g(-1) + 80 T 8a) where,
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(13.1) g1 = {{@}H) = (i(i(i@_))s=0; ve Rm}’

ds
(13.2) g0) = R+ {o(m)}, where for £ € o(m)
. 1 3 h(ef, I
(13.3) {t} = (M) , T= (M) ,
ds A ds 5=0
: dh(L,1,5P) ,
(13.4) ga) = {{ﬂ}a) = (-——————( p ﬁ)) :B¢e Rm}.
s=0
(14) h = g(o) + g(1) is the Lie algebra of H.

We find by calculation
Ad(h™ )G} = {at* g} 1) — alg, B)m
+{at*y ® Bt — at"B & gt} + {t* (by — a (B, 1)B)} 1),
(15) Ad(h™Hm =7+ {t* B}
Ad(RH{i} = {t*tt} + {t*iB} )
Ad(}fl){ﬁ'}(l) = {a—lt*ﬁ}(l)-

In terms of the decomposition (8) the action of g € G onz € R™ C
O™ is given by i

(16.1) Tyz=y+ ;(tas + —;(x, m)ﬁ), where
(16.2) A=a(1+ (62, 6) + 3 (6,6)(x.2)).

We see now that G acts transitively on ®™.

We regard ®™ as a conformal Riemann manifold as follows: We '
consider a metric on

(17) Fm+l p‘l(cbm)
given by
(18) ds® = (d¢’, de'y — 2dgO° dgn+t,

For simplicity we set
(19) F=R",
We have a chart £ = (c,z) on p~'F given by

(20) & = (c, ez, —;-c(x, m)) .
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Then we find that the metric on p~!F induced by ds? is
(21) (ds)p, where (ds)r = (dz,dz).-
In view of (7) the metric ds? on ®™+! is invariant under the action of
the matrix g. We find by (19), (16), and (10) that
1
(22) (h¢) = (Ch, epIThe, —2-ch<Th:c,Th£E>), cnL, = CA.

Hence h¢ has the coordinate (cp, The). Then it follows by (19)—(20) that
\2(dz,dz) = (Ty, dz, T), dz). Since Ty(y) is a translation, it follows that

(23) (T,)*(ds)r = A™2(ds) -

We conclude that the action of G on ®™ is conformal.

C) Denote by JF(F) the space of 2-jets at the reference point 0 of
maps of neighborhoods of 0 € F into F. JP(F) has the standard chart
(s .-,08 j2eo), whereg<p. IfJ € JB(R™) is represented by a map

f=(@),....fm(x)
o1f
(24) y=10), Pi.dl)) =557 5 O
We find by calculation
1
pl;(Th) = Et§7

(25) k Lo 1y kg kg

p7(Th) = a—jlﬁ - aﬁiq(tjﬁ +tt;) Y.

We note that J§(T%) gives informations on a, ¢ in (10), and we need
JZ to get 8. We note also that we reach 3 more quickly by using the
conformal factor A~2 of T}, (cf. (23) and (16)), i.e.
oA -
(26) %3(0) = ah;,(t D |
E) In view of (9)—(10) the Maurer-Cartan form:
Qa)y - Q) - (Qa)p+1
(27) Qe =1 Q)] .- Q)i o (Qg)fnﬂ
Qe)g ™ Q) - (Qe)nta
has the relations
Q)0+ Qo) =0, ()7t = hu(@6)o
(28) (Q6)0 = B () nsrs Bt Q6)k + hia(26); =0,
| (QG)?n+1 = (QG)6n+1 =0.
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Since Q¢ = g~ dg, we also find by (8)—(10) that
()5 = dloga — a(B, dy),
Q)3 = alt*dy)’ = ah?*hti dy,
Qo). = (t"d)] + a(t*dy) (5t — a(t*B)’ (dy*t)
= W' hygt(dt, + ah,, £2(8" dy - B ay")),
(V6)mia = (°dB) + (+*B) dloga + b(t*dy)’ — a(t*8)i (5, dy)
= 1 byt (dB* + B*(dloga — a(B,dy)) + bdy®).

We use wg ro denote the Maurer-Cartan form of H. We also set wy =
h~1dh. Since w g is obtained by setting dy = 0 in the above

(29)

(30) (wH)g = dloga, (WH)% =0, (wH)i = (t*dt)?c = b’-ﬂbiqt? dt;’;,
(@)1 = (£ dB) + (£*B) dlogq = B by, ti(dB* + B dlog a).

Note that (Qc)3, ..., ()3, ..., ()] (> k)., ()4, form a base.
The structure equations:

(31) AQ6); + ()7 A (Q6)t =0
(rys,t=0,1,...,m+ 1) is rewritten, due to the reltion (28), as
d(Qe)g + —hjk(QG>Zn+1 A (Qa)E =0,
d(Qa); +{(6)] - 81 ()2} A Q)5 =0,
(32)  dQe)l + ()] A ()i
+ 2 {(Q6)] A ()i — (Qe)h A Q) } =0,
U g1+ {(Q6)] + 6(Q6)3) A ()41 =0.

When we regsard Qg as a 1-form valued in the Lie algebra g of

G, the adjoint action of H transforms the components of Qg. In fact
by (15)

(Ad(h™)06); = a(t*) Qe ),
(Ad(A™)0c)) = (26)0 - ah;, 8 (Qc)E,
(Ad(h)06)} = ()Lt ()
+ (altRB7Y); — alt™B)'t by ) Q)
(B0 )y = )i {a™ (Q6), 1, + B/Qe) + 5 (968
= aBhu(96)5 + £(6,6)(Q0)3 ).

(33)
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§2. Conformal Riemann Geometry

We consider the conformal Riemann geometry on a manifold M
based on a Riemann metric (ds?)ys. We study the local aspect of the
metric near a reference point, say Pp. Fix a chart z = (z!,...,2™) on a
neighborhood of Py, z(FPp) = 0. We write

(1) (ds®)p = gij(x)da’ da’.

We assume that the matrix (gi;(x)) is conjugate to h;; given in §1 (1).

249
Asin §1 we denote by F the model conformal structure. We also use F' to

denote a neighborhood of 0 of the model structure. (ds)r = (dy,dy) =
hy; dy* dy?, where y is the standard chart of F'. (hij ) is the inverse matrix
of (k).

A) Let g = gi;(y)dy’ dy’ be a quadratic form. We set

(2) trg = h"qi;(y)-

Let f be a map of F' into M.

Definition 1. We say that f is an attaching map of M at F(0)
when there is a function ¢ > 0 on F such that

(3) Fds®)m — C(dSZ)F = 0(1), tr(f*(ds2)M - c(dsz)F) = 0(2),

where O(l) denotes terms in the ideal generated by y* --- y¥. ¢ will be
called the conformal factor of the attaching map. When f satisfies the
first equation in (3), we say that f is an attaching map of order 1.

We claim that, for any attching map g of order 1 and for any linear
form ¢ = ¢y in y, there is an attaching map f with the conformal factor
c+cg such that the 1-jets of f and g agree. The constant co in the above
is determined by g. Namely, for an unknown f we set

(4) fily) = b +pjy’ + %pﬁ-ky"y’“ o

Then

) F(ds?)a = 9 (F @) (@3 + Py (05 + iy )dy’ dy’ + O(2)-

Hence the equation for f to be an attaching map as above is given by
gia(zo)pkp, = cohy;, and with G} = h¥ gra(wo)pj,

(6) Pk "

i 09kl .
2G}.ps; + b ETd (zo)p; Pé'Pt = mcy.
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Since the matrix (G;) is non-singular, our assertion follows easily.

We say that attaching maps f1, f2 at o with the conformal factors
C1, ¢y are equivalent when

(7) Joh=3fa  jier = jles.

The equivalent classes of attaching maps will be called the frames
of M. Denote by E the set of the frames of M. Let E; be the space of
1-jets at O of attaching maps. Clearly we have the projection £ — Ey:

(8) E >theclassof f — jlf e By, and
(9) Ey =R (the frame bundle of the metric (ds?) pr).

Note by (6) that cq is determined by the 1-jets information. Hence E is
a manifold with a standard chart:

(10) (Eye1y. .0 ycm).

B) If fis an attaching map at zg, f o T, is also an attach-
ing map at zy because T}, is a conformal map of F. We denote by
(the class of f)o Ry, the above frame. Let the class of f has the standard
chart (=g, p;'v, C1, ... Cp). Since the conformal factor of foThis A 2¢coTy,
we see by (23)—~(26) §1, the class of f o T}, has the standard chart:

1
(11) (mo,p}cztf,c’l,...,dﬂ), where
R S ~20p kgl _1ij k1
Cj =a "ty —2a" cohyti B, meo = A gy (z0)p;ip;-

We thus have the operation of H on E. In particular, E is a principal
H-bundle, where the R), action of H in the standard chart is given by
the above formula.

C) We next discuss local trivializations of E. Let f(z) be a local
section of E. Then the induced local trivialization of E is given by

(12) FxH3 (z,h) - f(z) o Ry,.
Denote by
(13) (2,0} (z), c1(z), . .. s Cm ()

the standard chart of f(z). Then we see by (11) that in the standard
chart the above local trivialization has the expression:

: 1
(w’p%(m)atf, Clyeen,y Cm), where

(14) ¢ = a‘sci(x)t§~ - 2a‘zco(x)hkltfﬂl,

meo(z) = bV gry(2)p¥ (z)pl ().
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Let us change the local section f(z) to £#(z) = f(z) © Rp(s), inducing
a new local chart (z,h"). We see by (12) that

(15) h = h(z)h!,
(16) a= a(w)aﬁ, t= t(w)t“, 8= 15(:1;),6'u + C—Ll'gﬂ(m)-

D) It is known how to construct a unique Cartan connection locally
on E. Nevertheless, we want to go over the construction, because we
wish to take up the problem of constructing such Cartan connection
globally.

We fix a local trivialization of F induced by a local section f(z)
of E. We work on the domain of the above section and call it M. We
use the induced chart (z,h) of E.

We first follow the analogy with the Riemann manifold and construct
1-form Qf on E valued in R™ = F. These are the first order coframes of
the conformal structure. Namely, we note that F is the space of 1-jets of
the first order attaching maps. Hence they are linear maps ToF' — T'M.
Their dual may be regarded as F-valued 1-forms Qr on E;. Composing
with the projection E — Ep, we thus have a well defined 1-form: Qp
on F.

In terms of our chart (cf. (12) §1)

(17.1) Qp = Adh Nwp, wp=(...,wh,...), wh=p () d".
When we set QF = (Qk, ..., QF),
(17.2) Q= a(t™YYipHz)f dzt.
Note by (6) that
(...,wh,...) is a section of the 1-st order coframe bundle

17.3
(17:3) of the metric ! (ds®) -

meo ()
E) A Cartan connection on M has the expression
(18) Q=Ad(h Y )w +h~'dh, w isa g-valued 1-form on W.

Note that we have the projection pr: g — g/h = F. By a Cartan
connection of the conformal structure we mean a Cartan connection £
such that

(19) pQ = QF.
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Hence the Cartan connections of F are of the form

Q= Ad(h™") (wg +wg) + 1 dh,

20
(20) where wy is an 1-form valued in h.

To determine © we have to determine w H- We do this by using the
curvature of Q.

F) The curvature form K of Q is given by
@) K=do+ %[sz,n] = Ad(h™Y)k, where k = duw + %[w,w].
We set (cf. (13) §1)

(22.1) wh = WaT +{wo} + {wn}qa), where
(22.) wr is R-valued, wo = ((wo)}) is o(m)-valued,
' wp = (Wi, ..., w) is R™-valued.

In the above, o(m) is with respect to the quadratic form (1) §1. In view
of (32) §1 we then find that

(231) k= {kF}(-l) -+ ]C,,r’ll' + {ko} + {kh}(l)a where

K, = dwl, + ((wo)], — Wabl) A wh,,

kr = dw, +_@«kw{; Awh,

o)

(23.2) . ‘ . | .
(ko) = d(wo)}, + (wo)] A (wo)k + hyy (wh A wh, + wy, Aw),

K, = dwi, + ((wo)] + wn6]) A wh,

We note that, since wg is o(m)-valued, ko defined by the above formula
is also o(m)-valued.
G) We first examine the case when

(24.1) K3 =0, K,=0,

which is (by (15) §1 and (21)) equivalent to the conditions:

(24.2) k} =0, k,=0. ‘
We set
(25) Wr = wwlwi“v (wo)i = (wo)ilw%w wfl = (wh){wiﬂ

We first write down the condition on Wy, Wy which is equivalent to
the condition: kp = 0. In view of the formula for w} in (17.1) we find
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by calculation that
dw% +ql Awlh =0, where

qj__qul qi_(—ljap';cli
k= GaWry G =\P )y oz P

(26)

Therefore k%, = 0 if and only if we can find A, (y) such that
(27) (wo)} — wabl = ¢l + AL wh, Al = Al

Since ]ljk(wo){: + ﬁji(wo)i = 0, we can eliminate wy in the above. We
thus find that the condition (26) implies that

b_jkA:]]cl + _’ljzA?ci =Tk, Wwhere

28) e
e = ~ (Rl + Rjdh; + 2R wni).

As in the case of Riemann geometry, this equation has the unique solu-
tion. Namely,

) 1 . . 1 s k k
gy ™ el 5 e~
9
1. .. j j ji
+ 511”1@”1 (q?jl _ q;}lk) — Gl way — 8 Wrk + B Ay Wi

Therefore, it follows by (26) that

i1l iy g ko _ k
301) (woliy = 5k — @) + ZH" B, (@0, — g4
. 1. .. ; ji
+ 5&””&111(‘1@1 - qjllk) — 8wk + B by i

We check by calculation that the above wg is o(m)-valued. We thus
find that for an arbitrary choice of w, there is an unique wp for which
kr = 0. Recalling the construction of the Levi-Civita connections, in
view of (17.3) we may rewrite (30.1) as

(30.2)  (wo)l = (wh)l + Hiweswh, whereH}; = h'hy — 5765
where (w})] is the o(m)-part of the Levi-Civita Cartan connection of

the metric (1/c(x))(ds?)nm- ‘
We see by (23.2) that kr = 0 if and only if

o ] l
(ﬁjk(wﬁ)l - hzk(wﬁ)j), dwr = (dww)jl'“’fw A wp-

Do =

(81)  (dwg)j =
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H) It remains to determine hyy, (wg); + hyy, (wf);. The formula for kg
in (23.2) suggests that we may be able to obtain the above term using
ko and wp. In fact, when we set

(32) d(wO){c + (wﬂ){ A (wO)fYc = ngiwlp A w%, Wizz + WIZil =0,
we find by calculation that
) ) 1 , ) )
(33) ((ko)i)ar = Wi, + 5(53.@%1 Wit — & hyg Wi + hgwl; — hul).
Therefore
) ) 1 )
(34) ((ko)7)i; = ngj + ‘2“(2 - m)-}_"klwixi - hkiw{mj'

In order to eliminate wﬂj in the above, we multiply h* and add in k, 1.
We find

(35) ¥ ((ko)})es = WL, + (1 — mywd,;.
It then follows by calculation that
; . ) 1
AZE 1{((’“0)%1%’11‘ - Wizlilj} = 5(1 - m)hkzw{n‘a
1

y ‘
Al = 8,61 +

(36)

hy b7t
1—m™*

Therefore we see that Ay w!,; + @“wlhk is determined by ko and W. The
condition for kg becomes simpler when we note as in the case of Riemann
geometry that

(37) ((Ro)L)15 = ((ko)?)s-

The above follows by taking the exterior derivative of 0 = kf;. in (23.2)
and using the formulas in (23.2). In the end the terms containing wy,

cancel out.
We impose the condition:

(38) ((Ko);)ws = 0.
Since the above condition is equivalent to the condition:
(39)  ((Ko)i)ki=0, where(Ko)} = ((Ko)i)uldh A,

this is a well defined curvature condition. We find by (36)

+Wi, )

t1k1j

2 ) )
(40) hygwi; + ﬁilwiﬂc = IA’,E;“{Wg

1917
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Therefore it follows by (31)

AW+ W)

m—1 181 i1k1J

1
(41) hygwhi = 'é(dww)ki +

We conclude

(42) Proposition. For an arbitrary 1-form wy in (22.1) there is an
unique conformal Cartan connection (20), (22) satisfying the conditions:

Kr=0, Kry=0, ((Ko);)}m =0.
wo and wy, of the connection is given by (30.2) and (41).

The above connections will be called normal conformal Cartan con-
nections.

I) We next find an expression of the curvatures. For simplicity we
set

(43) ﬁkjw{lz =Wy T WD, Wkt = Wik) W(kl) = ~W(lk)-
By (31) and (40)
1

(44)  wpy = (dwndw,  wEy = —— 1Aﬁ%il (Wi s+ Wik}
We then find by (33)
. ) . 1 s 5
(45) ((ko)h)a = Wiy + 5 (HpooF — Hiy 61) (wisy + W(sty)-
To calculate W,Zil, we see by (30.2)
(46) _ dwék = dwgf,'c + Hf,: d(wnri) A w% + melj,: dw%.
Set
(47) d(wrk) = (Waley + ww(kw)w%,

Wrikl) = Wik,  Wr(kl) = Wik
Since dwy = d(wn) A W + Wri dwt,, we note by (44) that
(48) Wkly = Wa(lk) — wwi% ((whe)e — (wip) — Sjwer + Siwn).
Therefore
d(wgk) = d(ng) + H;;c (Wnlip) + W (piy )W A wh
(49) g { L ((wh)p — ! — (b + wniFy)

+ Hle: (wwp‘sé - (wéq)jﬂ) }w% N W



188 M. Kuranishi

We also have by (30.2)

1 i1 !
wi, Awhy, = wh A wlt + Wi { HY L (wh)p + H;Z(wgk)q

(50) 5 erim
le H W ywhp A wh.

Hence by (32) we find that

(51) Wi, = kpq+ { 36 (Wrin) + W) — HI (wpig) + wig)}
+wmpjz§,qa

where R{'pqw? A wi, is the curvature form of the metric (1 /e(2))(ds?) ar,
an

Py = éHﬂ ((wh)p ~ wapb] — (why)1 +wri6)
= SHEL () — wngb — () + w6
(52) lHlJI:((wop)q - wwq‘szlo - (w(l)q)P + wvrp‘sé)
~(H“;(w o = Hpp (w§])q + HZ (wh) — H(whh),)
(HﬂH - H YW

Therefore we find by (45) that
(53) ((ko)})pq = RL,, + (Hﬂsat H360) (Wi + Wrfen) + wri P .
Summing in j = q in the above, we find by (38)

(54) (Hj,j&f 6t)(w[st]+w,,[st]) —2RI

ij
ki — 2Wgi P,

kpj
It turns out by (32) that for an indeterminant Xt symmetric in s, t

(85) Yip = (HJ; 6, — HI6) Xy = (2 - M) Xkp — hyph** Xy Hence

Xst = st, }k:pa
(56) % 1 1 1
here K'*P == —— ghgp 4 = —h_ hF".
where st 9 s6t +2( _1)( _2)hsth

Therefore we find that
(57) ((ko))pq = Ripq — (HIg8t — HIS6U KM R, 1wy, B

kpgr  Where
(58) Bl = P? - (HI8% ~ HI6EVKE R,
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We find by calculation that

(59) wmﬁlgq =0. Hence
(60) (ko)i)pq = B, — (8% — HIE) KT Rigr
Note that

y oy ; 1 . "
(Hjp6p — HI 6O KEXa = —m——_—Q'(HﬁCqu — H} Xip)
(61) : 1

] i\ 3,8t
=g el T I

Then the formula (60) is rewritten as the classical formula for the Weyl
tensor:

, . 1 . 3 .

((ko)i)pq = R‘;cpq + m(‘%qu - 631Rkp + b‘,kqb:] Ry,
B
(m—1)(m—2)
(63) Ry = R?;lja R = K" Ry

(62)

— by b Rig) + (81hyy — BET),  where

(cf. formula (28.12) Chapter 2, Eisenhart [4], where the chart coframe
dxd is used. We used the orthonormal coframe wh-)

J) There is an a priori ground why the cancelation (59) takes place.
This is a reflection of the fact that for normal conformal connections
we have k, = 0. In fact, for arbitrary R™-valued function 5(z) let us
consider a Cartan connection £ given\by

(64) w(z) = Ad(h(l, I,,B(a:))'l)w(m).
in (18). We see by (15) §1
(65) w,(z) = wr (z) - ﬁijﬁj (fl’)w% (z)-

By (21) the new curvature is given by

(66) k(z) = Ad(h(l,I,ﬁ(m))"l)k(m).

We find by (15) §1 that this is a conformal Cartan connection and
(67) k. =k =0, ko(x)=Fo(z), En=rlnt ko (2)-

Therefore ) is a normal connection. When wy = 0, we see by (53)
that the formula for ko is given by (60). We see by the above, when
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Wr = hy;(z)wh(z), the formula for kg is still given by (60). This
means that (59) must be true.

The above formula also prove the followings: Let ky(x) be the
&(1)-part of the curvature form when W, = 0. Then

(68) K = k] + h*¥wpi ko)l

(69) Proposition. Any two normal conformal Cartan connections are
tsomorphic.

K) We next write down the expression of k. In view of (68) it is
enough to consider the case w, = 0. We then find by (41) and (36) that
with w{ = w], wk

1

Che = R AV, )
(70) I .
= m— 1]1”)( ;:;k'r + le:‘pr) - (m — 1)2 &Iz;-hpqwgrqr'

Since wp(;, = 0 by (47) and wepy = 0 by (44) when w, = 0 we see
by (51)

(71) WI:W = Rkp'
Therefore we find

1
m—1

(72) w{l =7 (@lelk - 6%R>w§.

It then follows by (23.2) and (68)

; 2
kl]i = m—1
(73)

{hjl(dRzk = Ryi(wo)}) + A Ry, (wo )?
1
m—1

5idR} Awh 4 hkiwri(kﬂ){;-

‘We can also express k}j1 by kg and its derivatives, provided m > 3.
By (21) (or by calculation) we find by (23.2) that

(74) d(ko)] = (ko)] A (wo)k — (wo)] A (ko) + hyy (b A why ~ wh A k).

Noting that for o = ajxy/ A v* with ajz = —ag; and 8 = By

1 ,
(75) N = 3(anbi+ awb; + ayBiy? Av* A+,
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we find by (38) that

3((dko)])pas = ((K0)])pa((w0)}k)s = ((Ko)i)wa((wo));
(76) — (ko)) (wa)})p = (Koo (wo)i)a
+ hkz{(ki’;)qj‘sé + (k{j)jl’éé — (m — 3)(ki)pg-
Therefore

(77) (3 — m)kh — 20kl ) pye Ak = dki, where
(78) (k) pgls A wh = i {3((dho)])pgywh Awh = ((wo)]);(ko)7
+ ((wo)2); (ko)} + 2(wo)d A ((ko)T )ps Wi }-

‘We then conclude that
i 1 T L e i
(79) h = 3_———m{dko + 5 (kg )iy N U’F}'

For future use we rewrite the formula for dk§ in (78). We set, with
the proper symmetry, ko = (ko)ijwis Awh, dko = (dko)ijiwh Awh Ak,
df = (df);w% for a function f. Then
3(dko)ijt = (d(ko) )i + (d(ko)ui); + (d(ko)iz)1 + (ko)ir (wer);

— (Ko)ir (wh; )t + (ko) jr (whi)t = (ko) jr (o)
+ (ko)ir(wh;)i = (ko)ir(whe)s
+2{(Ko)ig (wa)1 + (Ko)ja (wr)i + (Ko)ui (wn)s}-

Therefore by (38)
3(dkéi)pql = (d(kéz‘)pq)l + (k(l)i)pr(w(gl)q - (k:é)i>11"'(w8q)l
+ (kéi)qr('Lng)l - (kéi)qr(wgl)p + Q(k(l)i)pq("UW)l~

We then find by (78)

(80)

(81)

(82) hy Jké = (d(kéi)pq)lw% Auwg ~ (wgi)l(kO)fn + (wgz)j(ko)é
+ Z(wgp)lw% A (k) grwh + 2(w7,)lkéi.

J) We will show that ki, is also obtained by the conformal covari-
ant derivatives of Ky. We first recall the definitions. This is valid for
any principal H-bundle F with a Cartan connection € (18) given in
terms of a local trivialization of E. We are considering any homogenous
space G/H.
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. Consider a curve f; = (x4, h;) in E. We denote its tangent vectors
f: by

(83) (€,hs) where &, =dz/dt, heye = hy(I + ehy)

(mod. €2). hy is h-valued. Let Q(f,) be the evaluation of O at f;. Then
(84) Q(f:) = Ad((hs) Vw(zs, da(de)) + .

f; is called the parallel displacement of £, over the curve z(t) in M when
(85) puQ(f) =o.

Clearly, given z(t) and f; there is an unique parallel displacement.
Namely, h; is obtained by solving the ordinary differential equation:

(86) hy = — Ad((hy) " Ywy (24, dz ().

Let f; be a parallel displacement and h; be a fixed element in H.
Then R; f is also a parallel displacement. Hence it is enough to consider
the case: fy = (zo, I).

Let X: be a vector field along the curve f;. When we express X; =
(X, ¢¢) with ¢, € h as in (83), Q&) = Ad((he) ™V w(ws, dz (X)) + de.
We say that X; is the parallel displacement of X} along f; when for all ¢

(87) Q) = 2(%).
This means that X, is determined by the equation:

Pg/n Ad((he) M wp(zy, dz(Xy))

(88.1) »
. = pg/n Ad((ho) ™" )wr (o, dz(X0)),

and ¢, is determined by the equation:
(88.2)

Ad((he) ™ Hwar (21, dz (X)) + pn Ad((he) w2, dz(Xy)) + ¢,
= Ad((ho) M wa (20, dz(Xo)) + pn Ad((ho) ™ )wp (2o, dz(Xo)) + do.

_ Let V = (V,4) be a vector field on E, where V = Vi(z,h)d/0z7,
¥ = ¢(z,h) € h. Pick a tangent vector &y of M at zo and fy € F
over zo. By a conformal covariant derivative at fy of V to the direction
To is defined as follows: Take a curve z: in M such that the tangent
vector at ¢ = 0 is @o. Let f; be the parallel displacement of fy and V; be
the parallel displacement of Vg, along f;. Then

o1
(89) VoV = lim ;(Vft = V).
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Let © be a differential g-form on E. For a vector field X on E
we define the covariant derivative 7x© of T by & as follows: For any
vector fields Vy,...,V,

VXG(VD c. ,Vg) = X(@(Vl, .. .,Vg)) - @(Vle,. ‘.,Vg)
= OV, T V)

Let e be a base of g. Set © = €. Denote by ..., W7,... the
base of vector fields dual to ..., Q,,. ... For any parallel displacement f;
of a frame we see clearly (W7)g, is the parallel displacement of (W)s,
along f;. Therefore for any vector field &

(90)

(91) TxOWL, ..., Wy) = X(OWr, ..., Wo))-

We now consider the case of a normal conformal Cartan connection.
We set Ko = p(o) Ad(h~Y)ko, where p(o) is the projection to the degree
0 part of the grading (12) §1, and calculate 7w, Ko. We have by (15) §1

(92) wh = (p1)i(e)da®,  wh(z,dn(W;)) = a~th,
9

(93.1) W, = a_lp(m)itlré—m-; & Winm + {Wio} + {Win}),

where

(93.2) Win (@, h) = byt B — wms(@)a ™8,

Wio(z,h) =t*(8® (t)" ~t1® 8" — o=Vt (wo )i ()t

93.3
(93:3) with t; = (t,. .-, 1")-

The above means that as differential operators

(93.4) Win(e,T) = —una(®) (55 ) _»
(93.5) Wiole,T) = —(uhih(@) (%)tﬂ,

We then find that

1 _ j o7 j T\ gk
(94) Ko(Wp, W) = 5a2 (185 = tip)t (Rt
By calculation we now find by (82) and (91) that

(95) hy dky = (Vi Ko)t) @D
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K) The normal conformal Cartan connections, defined locally,
depend on arbitrary functions w,. They determine a unique class up
to local isomorphism. In order to define globally a normal conformal
Cartan connection, we have to choose wy, for each local trivialization of
the conformal frame bundle in such a way that they match up on the
intersections on the domains of trivializations.

Let (z,h) be a local trivialization. Then for a h-valued function
h(z) we have

(96) h = h(z)h.

For a normal conformal Cartan connection £ we have two expressions:
(97) Q=AdR " w+h" dh = Ad(h Yw+ b1 dh.

Therefore we find by (15) §1 and (30) §1

(98.1) wh = a(@)t* (@)l (x),

(98.2) Wr () = we(2) — a(z)hy),B(c) v’ (z) + dlog a(z),

where as in (10) §1 we set h(z) = h(a(m),t(m),,@(m)).

To find such w, as above we recall that our chart (z, h) is induced by
a section f(z) = (z,pi(z),c1(z),. . yem(z)) (cf. (12)=(13)) of the frame
bundle. We also have co(z) = ¥ gkl(m)pf(x)pé(x) The chart (z,h)
is induced by £(z) = Ry,f(z) = (m,gﬁ.(m),gl(x),...,gm(a;)). Hence
by (11)

C~m=~—1——l‘x‘cm-——~2—‘i~xl:cc‘w
(99) -]( ) G(E)Btj( ) l( ) a(a:)zﬁzltj( ):8( ) 0( )7

1 .
Cy = WCQ(CE).
We then find by (98.1) that

1 1g
(100) Wy = ——idlogco + igaw%-

obeys the transformation law (98). When the above W, is chosen we call
it the global normal conformal Cartan connection.
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