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In this assignment, you will prove the Cayley-Hamilton theorem. Throughout, V is a finite-
dimensional vector space and L : V → V is a linear operator. See the weekly assignment webpage
for due dates, templates, and assignment description. Make sure to justify any claims you make.
You may not appeal to any results that we have not discussed in class.

1. Suppose that W is an L-invariant1 subspace of V . Then we obtain by restriction a linear oper-
ator L|W : W →W . Prove that the characteristic polynomial of L|W divides the characteristic
polynomial of L.2

Proof. Let A = (b1, . . . , bk) be a basis for W and extend to a basis B = (b1, . . . bn) for V . For
each i = 1, . . . , n, write

[L(bi)]B = (α1i, . . . , αni).

Then since W is L-invariant, L(bi) ∈ W for all i = 1, . . . , k which implies that αji = 0 for all
k < j ≤ n. Thus, there exist matrices C ∈ F (n−k)×k, and D ∈ F (n−k)×(n−k) such that

[L]B =

(
[L |W ]A C

0 D

)
.

Then we see that

cL(x) = det(xIn − [L]B)

=
(

xIk−[L|W ]A −C
0 xIn−k−D

)
= cL|W (x)cD(x).

This proves that cL|W (x) divides cL(x), as claimed. Hopefully, you recognize this argument
from the notes.

1See Def 4.3.6
2Hint: start with a basis for W and extend to a basis B for V . Argue that [L]B =

(
X Y
0 Z

)
for some matrices

X,Y, Z. Compute cL(x) using this fact.
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2. For v 6= 0, define span(L, v) := span{Li(v) : i ∈ N0}. Here L0 := IdV .

(a) Prove that span(L, v) is an L-invariant subspace of V .

(b) Prove that there exists a largest integer k such that Bk := {v, L(v), . . . , Lk−1(v)} is
independent. Moreover, show that Bk is a basis for span(L, v).

Proof. (a) We need to show that L(span(L, v)) ⊆ span(L, v). Since L is a linear map, it
suffices to show that L({Li(v) : i ∈ N0}) ⊆ span(L, v). But this is obvious because
L(Li(v)) = Li+1(v) ∈ span(L, v) for any i ∈ N0.

(b) The set
{n ∈ N : Bn is independent}

is nonempty sinceB1 is independent and is bounded from above since V is finite-dimensional.
Therefore, the set has a maximum element k.
To see that Bk spans span(L, v), it suffices to show that Li(v) ∈ span(Bk) for all i ≥ k.
We prove this claim by induction on i. The claim is true for i = k, because Bk is
independent, while the set

Bk+1 = {v, L(v), . . . , Lk−1(v), Lk(v)}

is dependent (by maximality of K). In particular, span(Bk+1) = span(Bk). Let i ≥ k
and assume that Li−1(v) ∈ span(Bk). Then

Li−1(v) =

k−1∑
j=0

αiL
i(v)

for some α0, . . . , αk−1 ∈ F . Thus,

Li(v) = L

k−1∑
j=0

αjL
j(v)

 =

k−1∑
j=0

Lj+1(v) =

k∑
j=1

Lj(v).

Thus, Li(v) ∈ span(Bk+1) = span(Bk).

3. Let v 6= 0 and let B := Bk be the basis for W := span(L, v) from Problems 1 & 2. Define
mL,v(x) = a0 + a1x + · · · + ak−1x

k−1 + xk ∈ F [x] where a0, a1, . . . , ak−1 are the unique
coefficients such that

a0v + a1L(v) + · · ·+ ak−1L
k−1(v) + Lk(v) = 0.

Since W is L-invariant, we obtain by restriction a linear operator L|W : W →W . The goal of
this problem is to show that the characteristic polynomial of L|W is equal to mL,v(x).

(a) Compute the matrix xIk − [L|W ]B .

(b) Show that det(xIk − [L|W ]B) = mL,v(x) using induction on k. 3

3Hint: For the inductive step, start by using cofactor expansion along the first row.
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Proof. (a) This part is a straightforward computation. Observe that L(Li(v)) = Li+1(v) for
all 0 ≤ i ≤ k − 1. Thus,

[L |W ]B =



0 0 0 · · · 0 0 −a0
1 0 0 0 0 −a1
0 1 0 0 0 −a2
...

. . .
...

0 0 0 1 0 −ak−2
0 0 0 · · · 0 1 −ak−1


.

Thus,

xIk − [L |W ]B =



x 0 0 · · · 0 0 a0
−1 x 0 0 0 a1
0 −1 x 0 0 a2
...

. . .
...

0 0 0 −1 x ak−2
0 0 0 · · · 0 −1 x+ ak−1


.

(b) The base case is k = 1. In that case, det(xI1 − [L |W ]B) = det(x + a0) = x + a0. Now,
let k ≥ 1 and assume that the statement holds for k− 1. Then, using cofactor expansion
along the first row, we obtain

det(xIk − [L |W ]B) = x

∣∣∣∣∣∣∣
x 0 0 0 a1
−1 x 0 0 a2

...
. . .

...
0 0 −1 x ak−2

0 0 ··· 0 −1 x+ak−1

∣∣∣∣∣∣∣+ (−1)k−1a0

∣∣∣∣∣∣∣
−1 x 0 0 0
0 −1 x 0 0

...
. . .

...
0 0 0 −1 x
0 0 0 ··· 0 −1

∣∣∣∣∣∣∣
= x(xk−1 + ak−1x

k−2 + · · ·+ a2x+ a1) + (−1)2k−2a0

= xk + ak−1x
k−1 + · · ·+ a1x+ a0.

We used the inductive hypothesis to compute the determinant of the first cofactor.

4. Use Problems 1-3 to prove the Cayley-Hamilton theorem: the linear operator L is a root of its
characteristic polynomial, that is, cL(L) is the zero operator in End(V ).4

Proof. We need to show that cL(L)(v) = 0 for all v ∈ V . If v = 0, then this is trivial because
cL(L) is a linear map. Assume v 6= 0. Then W = span(L, v) is an L-invariant subspace, so
L restricts to a linear operator L |W on W . By Problem 3, cL|W (x) = mL,v(x). Notice that
mL,v(L)(v) = 0 by definition of mL,v(x). Finally, using Problem 1, mL,v(x) divides cL(x), so
there exists p(x) ∈ F [x] such that cL(x) = p(x)mL,v(x). Then

cL(L)(v) = p(L)(mL,v(v)) = p(L)(0) = 0.

This proves that cL(L) is the zero operator.

4Hint: need to show cL(L)(v) = 0 for all v ∈ V . Case 1: v = 0. Case 2: v 6= 0, invoke Problems 1 & 3 to write
cL(x) as a product of two polynomials. Use this to show cL(L)(v) = 0.
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