
Weekly Assignment 3 Solutions

Jadyn V. Breland
MATH 117: Advanced Linear Algebra

August 22, 2023

Some hints for this assignment are written in the footnotes. See the weekly assignment webpage
for due dates, templates, and assignment description. Make sure to justify any claims you make.
You may not appeal to any results that we have not discussed in class.

1. Let V be finite-dimensional vector space and W a subspace. Suppose that {b1, . . . , bk} is a
basis for W and extend this to a basis {b1, . . . , bk, bk+1, . . . , bn} for V using Proposition 1.4.11.
Prove that the set of vectors {bk+1 +W, . . . , bn +W} is a basis for the quotient space V/W .

Proof. It suffices to show that {bk+1 + W, . . . , bn + W} is an independent set. Indeed, if it is
an independent set, then the vectors are all distinct which implies that

|{bk+1 +W, . . . , bn +W}| = n− k.

But we know that V ∼= W ⊕ V/W so that

dimV/W = dimV − dimW = n− k = |{bk+1 +W, . . . , bn +W}|.

Thus, if {bk+1 +W, . . . , bn +W} is an independent set, then it is automatically a basis.

In order to show that the set is independent, suppose that

n∑
i=k+1

αi(bi +W ) = W.

Then
n∑

i=k+1

αibi ∈W.

Hence, there exist α1, . . . , αk ∈ F such that

n∑
i=k+1

αibi =

k∑
i=1

αibi

But {b1, . . . , bn} is a basis for V , hence, αi = 0 for all i = 1, . . . , n.

Definition 1. Let V be a vector space and let S be a subset of V . The annihilator S0 of S is the
set of linear functionals whose kernel contains S, that is,

S0 := {f ∈ V ∗ : f(v) = 0 for all v ∈ S} ⊂ V ∗.
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2. Let V be a vector space.

(a) Let S be a subset of V . Prove that S0 is a subspace of V ∗.

Proof.

The zero function annihilates S, so S0 is nonempty. If f, g ∈ S0, α ∈ F , and v ∈ S, then

(αf + g)(v) = αf(v) + g(v) = 0 + 0 = 0.

Hence, αf + g ∈ S0. This proves S0 is a subspace.

(b) Let W be a subspace of V . Prove that W 0 is isomorphic to (V/W )∗.1

Proof. Define a function Φ : W 0 → (V/W )∗ as follows. Every f ∈ W 0 annihilates
W , so the Unviersal Property of the Quotient can be invoked. Given f ∈ W 0, define
Φ(f) : V/W → F to be the unique linear functional satisfying Φ(f) ◦ π = f , where
π : V → V/W is the quotient map. This function is actually a linear map. Indeed, let
f, g ∈W 0 and α ∈ F . Then for any v ∈ V ,

(Φ(αf + g))(v +W ) = (Φ(αf + g) ◦ π)(v)

= (αf + g)(v)

= αf(v) + g(v)

= α(Φ(f) ◦ π)(v) + (Φ(g) ◦ π)(v)

= α(Φ(f))(v +W ) + (Φ(g))(v)

which proves that Φ(αf+g) = αΦ(f)+Φ(g). Define another function Ψ : (V/W )∗ →W 0

via Φ(f̄) = f̄ ◦ π. Clearly, Φ(f̄) ∈ W 0 since π annihilates W . The Universal Property of
the Quotient guarantees that Φ and Ψ are mutually inverse bijections.

(c) Suppose that V is finite-dimensional and let W be a subspace of V . By part (b),
dim(W 0) = dimV − dimW . Provide another proof of this equation using dual bases.2

Proof. Start with a basis {b1, . . . , bk} for W and extend to a basis B = {b1, . . . , bn} for
V . Let B∗ = {ϕ1, . . . , ϕn} be the dual basis. I claim that {ϕk+1, . . . , ϕn} is a basis for

W 0. Let w ∈W and k + 1 ≤ j ≤ n. Then w =
∑k

i=1 αibi for some α1, . . . , αk ∈ F and

ϕj(w) =

k∑
i=1

αiϕj(bi) =

k∑
i=1

αiδji = 0

since j > k. Thus, {ϕk+1, . . . , ϕn} ⊂ W 0. By definition of dual basis, they are already
independent. Thus, it suffices to show that they span W 0. Let f ∈ W 0. Since f ∈ V ,
we can write f =

∑n
i=1 αiϕi for some α1, . . . , αn ∈ F . Evaluating the equation at bj for

1 ≤ j ≤ k yields

0 = f(bj) =

n∑
i=1

αiϕi(bj) =

n∑
i=1

αiδij = αj

since f annihilates W . Thus,

f =

n∑
i=k+1

αiϕi

which proves the claim. Now the dimension formula follows immediately because dim(W 0) =
n− k = dim(V )− dim(W ).

1Hint: Universal Property of the Quotient.
2Hint: Start with a basis for W and extend to a basis for V . Can you use the corresponding dual basis to construct

a basis for W 0?
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Definition 2. Let V be a vector space. A bilinear form B : V × V → F is called reflexive if
B(v, v′) = 0 implies B(v′, v) = 0 for all v, v′ ∈ V . The radical of a reflexive bilinear form is the set

rad(V ) := {v ∈ V : B(v, v′) = 0 for all v′ ∈ V }.

A reflexive bilinear form is called nondegenerate if rad(V ) = {0}.

3. Let V be a vector space. Let B : V × V → F be a bilinear form on V .

(a) For any v ∈ V , define a function ΦB(v) : V → F by the rule (ΦB(v))(w) = B(v, w).
Show that ΦB(v) is a linear functional and show that the assignment v 7→ ΦB(v) defines
a linear map ΦB : V → V ∗.

Proof. The function ΦB(v) is linear because B is linear the second component - easy to
check. Thus, ΦB defines a function from V to V ∗. The function ΦB is linear because B
is linear in the first component, but its slightly less obvious because ΦB takes values in
V ∗. Indeed, let u, v, w ∈ V and α ∈ F . Then

(ΦB(αu+ v))(w) = B(αu+ v, w)

= αB(u,w) +B(v, w)

= α(ΦB(u))(w) + (ΦB(v))(w)

which shows that ΦB(αu+ v) = αΦB(u) + ΦB(v). This proves the claim.

(b) Suppose that V is finite-dimensional and that B is reflexive and nondegenerate.

(i) Prove that ΦB is an isomorphism.

Proof. Since V and V ∗ are isomorphic, it suffices to prove that ΦB is injective.
Suppose that v ∈ ker ΦB . Then ΦB(v) is the zero map. Then for any w ∈ V , we
have

0 = (ΦB(v))(w) = B(v, w).

This implies that v ∈ rad(W ) = {0}. Thus, v = 0 and ΦB is injective.

Note: the hypothesis that B is reflexive was not used. The only reason to include
this hypothesis was to avoid defining left and right radicals. Evidently, this statement
is true for an arbitrary bilinear form whose right (left?) radical is the zero space.

(ii) Let W be a subspace of V . Describe the preimage W⊥ := Φ−1B (W 0) of W 0 under
ΦB . In particular, W 0 ∼= W⊥.

Proof. We have

W⊥ = Φ−1B (W 0) = {v ∈ V : ϕB(v) ∈W 0}
= {v ∈ V : W ⊆ ker ΦB(v)}
= {v ∈ V : B(v, w) = 0 for all w ∈W}.

This should convince you that the notation W⊥ is appropriate. For example, if B is
the dot product on Rn (an example of a reflexive, nondegenerate bilinear form), then
W⊥ is just the orthogonal complement of W !
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(iii) Suppose that B is nondegenerate when restricted to W , i.e., rad(W ) = {0}. Prove
that V = W ⊕W⊥.

Proof. First, observe that W⊥ ∼= W 0 ∼= (V/W )∗ ∼= V/W by the preceding results.
Also, V ∼= W ⊕ V/W . Thus,

dim(W +W⊥) = dim(W ) + dim(W⊥)− dim(W ∩W⊥)

= dim(W ) + dim(V/W )− dim(W ∩W⊥)

= dim(W ⊕ V/W )− dim(W ∩W⊥)

= dim(V )− dim(W ∩W⊥).

Thus, in order to prove V = W ⊕W⊥, it suffices to show that W ∩W⊥ = {0}. But
this follows directly from the hypothesis because

rad(W ) = {w ∈W : B(w,w′) = 0 for all w′ ∈W} = W ∩W⊥.

This completes the proof.

4. (i) Suppose that L1 : V1 → W1 and L2 : V2 → W2 are linear maps. Prove that there is a
unique linear map

L1 ⊗ L2 : V1 ⊗ V2 →W1 ⊗W2

with the property that (L1 ⊗ L2)(v1 ⊗ v2) = L(v1)⊗ L(v2) for all v1 ∈ V1 and v2 ∈ V2.3

Proof. Define a map B : V1 × V2 → W1 ⊗W2 via B(v1, v2) = L(v1) ⊗ L(v2). Then B
is bilinear because L1, L2 are linear and − ⊗ − is bilinear. Details left to the motivated
student. Thus, according to the Universal Property of the Tensor Product, there is a
unique linear map L1 ⊗ L2 : V1 ⊗ V2 →W1 ⊗W2 with the property that

(L1 ⊗ L2)(v1 ⊗ v2) = B(v1, v2) = L(v1)⊗ L(v2).

This proves the claim.

(ii) Let F = Z5 and let V = F 2. Let L : V → V be the linear map defined by left
multiplication with the matrix A = ( 0 1

4 2 ). Let E = (e1, e2) denote the standard basis for
V . Compute the matrix

[L⊗ L]B

for linear map L⊗L : V ⊗V → V ⊗V , where B is the basis (e1⊗e1, e1⊗e2, e2⊗e1, e2⊗e2)
for V ⊗ V .

Solution. Note that B = E ⊗ E as we saw in the lecture. One can easily show that
[(a, b) ⊗ (c, d)]B = (ac, ad, bc, bd) for any a, b, c, d ∈ F , so coordinate vectors are actually
easy to compute. We have

[(L⊗ L)(e1 ⊗ e1)]B = [L(e1)⊗ L(e1)]B = [(0, 4)⊗ (0, 4)]B = (0, 0, 0, 1),

[(L⊗ L)(e1 ⊗ e2)]B = [L(e1)⊗ L(e2)]B = [(0, 4)⊗ (1, 2)]B = (0, 0, 4, 3),

[(L⊗ L)(e2 ⊗ e1)]B = [L(e2)⊗ L(e1)]B = [(1, 2)⊗ (0, 4)]B = (0, 4, 0, 3),

and
[(L⊗ L)(e2 ⊗ e2)]B = [L(e2)⊗ L(e2)]B = [(1, 2)⊗ (1, 2)]B = (1, 2, 2, 4).

Thus,

[L⊗ L]B =

(
0 0 0 1
0 0 4 2
0 4 0 2
1 3 3 4

)
.

3Hint: Universal Property of the Tensor Product.
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