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The structure of optimal controls for a steering problem
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1 Introduction

We study some facts about the structure of optimal
controls in a steering problem for a nonlinear control
system. This problem is of considerable current inter-
est in the context of so-called nonholonomic motion
planning for robots. In ([7],[8]}, we showed that the
problem of motion planning for such mobile robots
under non-integrable Pfaffian constraints was equiv-
alent to a steering problem for nonlinear control sys-
tems. The control laws that we proposed in that work
was motivated to a large extent by work of Brockett
on sinusoidal optimal controls for a class of nonlinear
systems ([4]). In parallel, there has been a tremen-
dous amount of recent work on nonholonomy calcu-
lations in mechanics and of the connections between
gauge theory and problems of reorienting deformable
bodies, such as falling cats and space robots([6]). The
primary function of this paper is to bring together
results from these two areas in the context of opti-
mal control; which is, of course, generalized classical
mechanics to control theorists. The results on deriva-
tives of the optimal controls are known to many prac-
titioners (for example, Sussmann uses similar calcu-
lations in ([10], pg. 90-91) for studying singular opti-
mal controls and Baillieul derived sinuscidal optimal
controls for SO(3) in ([2])). Our symplectic point of
view is new and of some interest. The original prob-
lem which we set out to solve: namely, to obtain a
Newton-Puiseux like expansion for the optimal con-
trol costs associated with the optimal steering prob-
lem (more precisely, the sub Riemannian geodesic
problem), alluded to by Brockett ([3]) remains un-
solved, when more than one level of Lie brackets is
needed to achieve controllability.
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2 First derivative of the opti-
mal control

2.1 The Drift Free Case

Consider the problem of steering a system without
drift on " of the form

Z=gqu1+ -+ GmUm (1)

from an initial state z(0}) = z; to a final state
z(1) = z; in one second. Moreover, we will do so
with a minimum L norm of the control, namely, we
minimize
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We take a Hamiltonian point of view; thus, we define
the Hamiltonian

He,u,8) = P (3 gila)us) + 53 sl
i=1

=1

The normal optimal controls are then obtained by
minimizing the Hamiltonian as

uf = —p"gi(z) (3)

and the optimal Hamiltonian is given by

m

H*(2,p) = —3 > (0 0i(z))? @

=1

The Hamiltonian system for the case of abnormal con-
trols will be discussed in a companion paper in these
proceedings by the second author. The Hamiltonian
equations for the optimal control are

i= Y= -TLa@0TaE) o
p= Y7 = T 287 p(pT ()

with the boundary conditions z(0) = 2;,2(1) = z;.
We will assume that smooth solutions to the equa-
tions (5) exist. In particular, this will require that
it is, in fact, possible to find trajectories steering the




system from z; to z;. In turn, this requires that the
control Lie algebra generated by the g; vector fields
spans " at every point (the controllability rank con-
dition). Under these assumptions, some very interest-
ing results are obtained by differentiating the optimal
controls of (3). We will use the convention that the
Lie bracket of two vector fields is given (in coordi-
nates) by

_ 092 091
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Proposition 1 Optimal Controls are Unitary

Consider the optimal control problem of (2) for the
system of (1). Then the optimal controls of (3) satisfy
the following differential equation:
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where Q(p, z) =
0 e pT[glxgi'] PT[,qugm]
PT[.']-‘,QI] s 0 pT[gl"gm]
PT [9m, 91 Pl lgm, 3] - 0

(7
In particular, this implies that the controls are uni-
tary, that is

Dol =D jui(0)? (8)

i=1 i=1
forall t.

Proof: The proof of equation (6) follows by direct
differentiation of (3} using the Hamiltonian system
(5). For the unitarity of the control, we see that the
form of equation (6) is a linear equation with a skew
symmetric right hand side. (The skew symmetry of
follows from the skew symmetry of the Lie bracket.)
The unitarity of the controls now foliows directly from
(6).

Remarks:

1. By virtue of the fact that the magnitude of the
optimal controls which solve the problem of (2)
are constant, it follows that the same optimal
controls also solve an other optimization problem
with a different cost, namely,

[ ,' 3 () ®)

The problem solved by the optimization of the
criterion (9) is a geodesic problem, associated

with the sub-Riemannian metric induced by the
drift free control system (1). Indeed, the optimal
controls also solve the problem

/0 ¥ (Z(u.-(t)f) dt

i=1
for any monotone function ¢{.) : R — R.

2. Another consequence of the constant magnitude
of the optimal control is that the optimal con-
trol normalized by |u(0}|, i.e. ,:—%}[ solves the

minimum time problem: minimize T' subject to

m
z(0) =z, 2(T) =2y » | <1 W
i=1
See the companion paper by Montgomery for a
proof of this claim.

3. For the case of m = 2, the preceding result is
particularly pleasing:

’&1 _ 0 w(t) L3}

iz |~ | ~w(?) 0 Uy
for w(t) = p” [g1(z), g2(x)] and the optimal con-
trols have the form

[ =] 256

where $(t) = fot w(t)dt.

4. Let us set D; = Span{gi(z) :i=1,...m} . In
the case where D is the horizontal distribution
for some connection (on a principal G bundle,
say) then the Lie brackets [g;, g;] are essentially
the curvature of this connection. Q;;(z, p) is the
component of the curvature in the ‘p’ direction,
The equations we derived for u* are called the
(first) Wong equations in this case. See Mont-

gomery ([6], [5]).

A symplectic geometric version of these calcula-
tions is obtained by introducing the following nota-
tion: ([1}, pg. 242). If f is a vector field on R" then
its “momentum function”

P :T"R =R"OF" 5 %

w1 ]

is the function
P(f)(z,p) = p" f(z)
We have the following basic relation

{P(f), P(g}} = —P([f.9])

where {-,-} denotes the Poisson bracket acting on
functions of z, p, defined by

—~ 00 0% _ 90w
{¢(z’p)l¢(x!p)} = g 62,‘ ap' ap' (91','




Let us set F; = P(g;). Then

and u} = —PF;. Recall that if F is any function of
(z, p) then )

F={F H}
describes its time rate of change along trajectory
(2(t), p()) of Hamilton’s equations. It follows that

m
W =—{P,H} = {P.P;}P;
i=1
or
= Qu* (10)
where Q is the time-dependent skew symmetric ma-
trix with entries

Qi;(t) = —{P:, P;} = P(l9:, 95)) = p" [9:, 5]

evaluated at the point (z(t), p(t)) (cf. equation (7)).

It is of interest to apply the calculations of this
theorem to some simple model systems: first, the ex-
ample of the so-called Heisenberg Lie algebra for the
control system:

T = w
i‘g = Uz (11)
I3 = Itz — ToU

A simple calculation yields that the optimal controls

satisfy
U1 0 —2p3(‘t ] [ ]
= 12
[ ] [ 2ps3(t) (12)
and the Hamiltonian equations yield that ps = 0
(indeed, by inspection the optimal Hamiltonian is
not a function of r3, since g1, g2 are not), so that
p3(t) = ps(0) and thus the optimal controls are sinu-
soids at frequency 2p3(0).

2.2 Systems with Drift

The preceding proposition can be generalized to the
case of a control system with drift:

) :f(m)+zgi(-’c)us' (13)

i=1

We will be interested in steering this system from
z; to z; minimizing the cost criterion of (2). The
Hamiltonian is modified to

Ti(2) + 97> gilz)w) +

1=1

H(z,u,p)=p

> lul
i=1

and the optimal control is still given by the formula
of (3), namely

u = —pgi(z) = —

where, P; is the momentum function defined earlier,
but the optimal Hamiltonian is given by

SRR

with P(f) standing for the momentum function asso-
ciated by f. The Hamiltonian equations for optimal
control are given by

T = (”) Z:'-‘q 91("’)(11{ gi(z))
p= U o+ T 28T p(pT ()

The analog of Proposition 1 is now

H*(z,p) =

(15)

Proposition 2 First derivative of the optimal
controls for a system with drift

Consider the optimal control problem of (2) for the
system of (18). Then the optimal controls of (3} sat-
isfy the following differential equation:

1:‘1 Uy - T{f).ql]
T.';,' = Q(x,p) 'U'i + - T[.f) gl'] (16)
G wm | | ~#"1f,90)

where Q(z, p) is as defined in equation (7) above.
Remarks:

1. It is easy to see that the controls in the case
of systems with drift are not unitary. Roughly
speaking, the optimal controls have to overcome
drift to the extent given by —pT[f, g;] for the ith
component.

2. In the symplectic geometry notation the constant
term in the equation for 4 has as its i th entry

{P(f), Pi}.
3. For a linear system, namely
m
i:A$+Zb,’ug (17)
i=1

it follows that the optimal controls satisfy:

U pT Aby
u | = | pTAb (18)
LT PTAbm

3 Higher Order Derivatives of
the Optimal Controls

The calculations leading to Proposition 1 can be it-
erated to get formulas for all order derivatives of the



optimal inputs u;. Recall that the optimal inputs
satisfy the differential equation

u=Qu (19)

with @i; = p" g, 9;] = —{P;, Pj}, a skew symmetric
matrix. A calculation similar to that of Proposition
1, vields that

Qs = 3 (p" ok, 93, 9] e (20)
k=1

Using this calculation we may now verify that
= Qa(u, u) + Q%u (21)

where Q2 (u, u) is a bilinear map from ™ x {§™ - R™
with

(Q2(w,u))i =D > (0" 9k, [9i, 9511 wws;

i=1k=1

and Q? is the (symmetric) square of the skew-
symmetric matrix . The ijk th entry of Q5 is
—{{P;, P;}, Px}. This calculation can be iterated to
yield

u® = Qolu,u,u)+ Q(Qu, u) + La(u,Qu) (g
+ 29 Q3 (u, u) + Qu

with §23(u, u, u) a multi-linear map from £ x R™ x
g™ — 7™

m m m

(Q:;(U, u, u))f = Z E Z(pT[gh LQkJ [gi;gj]]])ukujul

=1 j=1k=1

Thus, the i th entry has coefficient in jk,I given by
—{{P:, P;}, P}, P} For systems with drift, the equa-
tion (21) is modified to

&= Qau,u) + Qu+ Tru+ ¥ (23)
where the matrix ¥, € £™*™ has as it’s ij th entry

pT[[fs gi]s 9.7] + .pT [[gl'! gj]) .f]
and ¥ € ®™ has the form

pT[f7 [f;.?l]] - T[flgl]

: ol
PrIf, [f, gm]] —p7 [f, 9m]

In the symplectic notation, the ij th entry of ¥, is

{{P(), P}, P} +{{P: P;}, P(f)} and the i th entry

of ¥is {P(f), {P(f), P}}+ 5L {P:, PH{B:, P(f)}.

4 Optimal Controls on Lie

Groups

Consider the case that the state space is the Lie
Group SO(3), the rotation group, which we view as

the configuration space of a rigid body, a satellite.
Assume that the satellite has a momentum wheel on
each of two of its orthogonal principal axes and that
the satellite and its momentum wheels are isolated
and as a system has angular momentum 0. Let o
be the angular velocities of the wheels. Choose a
basis set Fy, E3, E3 of the space of skew symmetric
matrices, representing infinitesimal rotations about
the z,y, 2 axes respectively, Then, the control vec-
tor fields are left invariant with g;(z) = zE; and the
control system modeling the satellite (expressing the
statement that angular momentum = 0) is

& = g1(z)ur + ga(2)ug (24)

Here the controls u; = —(m;/I;)v;, where m; is the
moment of inertia of the i th wheel and I; is the
moment of inertia of the satellite about the corre-
sponding principal axis, i = 1,2. We pose the same
optimal steering problem as before, namely to steer
from z; to £y minimizing fol (u? + u2)dt. Let P; be
the momentum functions corresponding to the g;,
as above. P; is defined from g3 := xE3. Then,
we have that [g91,92) = —gs and cyclic permuta-
tions of this relationship. The P; satisfy the Poisson
bracket relationships: {P,, P} = Ps , {P, P3} =
P, , {Ps,P\} = P, and the optimal control Hamil-
tonian is H* = ~(1/2)(P? + P2) with the optimal
controls given by u} = —~FP;.

In the instance that the total angular momentum
of the satellite is (¢, ¢z, ¢a), then the system corre-
sponds to a system with drift and it is easy to verify
that the optimal Hamiltonian is

H* = ~(1/2)(PE + P}) + c1PL + c2P2 + c3Ps

In the case of zero angular momentum, to verify that
the controls are unitary, we compute

u = —{P, H*}

so that we have that

(3] [comm 5™ ][] e

This is exactly the same formula as was derived in
Section 2. However, in this case a more explicit so-
lution to the state trajectory corresponding to the
optimal control may be given. The optimal Hamil-
tonian may be rewritten as H* = Hy — H3, where
Hy = —(1/2)(P% + P} + P§) and H; = —(1/2)(P?).
Notice that {P;, Ho} = 0 so that in particular, the
flows of Hz and Hy commute. In fact, since Hg gen-
erates the geodesic flow on SO(3), corresponding to
the free motion of a completely symmetric rigid body,
any solution of Hamilton’s equations using Hy is given
by

z(t) = z(0)e*¥> (26)
for some skew symmetric matrix wx € $3%3 of the

form,
0 wa —-W3
—3 0 (205}
ws —w; 0



which has the interpretation of body angular veloc-
ity. The vector field associated with H3 has the inter-
pretation of being the flow associated with rotation
about the third body axis. Thus, the flow associated
with Hj is 2(t) = z(0)ezp(cstE3). Composing these
two flows, we get that the flow corresponding to the
optimal Hamiltonian is

z(t) = z(0)ev* o2t Ea (27)

Using this formula in the equations of the control sys-
tem above yields that ¢35 = —wg. The optimal controls
in this case are sinusoids as in the case of the Heisen-
berg algebra control system (11) as may be verified
by noting that in (25) that {P,, P;} = P5 and further
that P3 = {P3,H*} = —1/2{Ps, P2+ P}} = 0, s0
that u}, u3 are sinusoids at frequency P5(0).

This example is a special case of the following gen-
eral problem: Let X be an n-dimensional Lie group
and G C X an n — k dimensional Lie subgroup.
Let < .,. > be a bi-invariant inner product (Killing
form) on the associated Lie Algebra, Lie (X). Let
U = Lie(G)* be the space of controls. Then, we
have that LieX = LieG @ U. Now consider the con-
trol problem

z==zu (28)

where 2 € X and v € U with cost functional
%fol < u(t),u(t) > dt to be minimized subject to
the constraint that u steers 2; to ;. This problem
has the following general solution (see [2], [6]):

Theorem 3 The normal optimal extremals corre-
sponding to the problem of (28) are

z(t) = zoexp(tw)erp(—tw™) (29)

with exp: Lie(G) — G being the usual ezponential
map, w an arbitrary element of Lie(G) and wt, the
orthogonal projection of w onto Lie(G) = Ut

The theorem is proved in the same way as the pre-
ceding by writing the optimal Hamiltonian as

1 n
—'2"(21’.'2 -
=1

n

> B

i=k+1

5 Sub-Riemannian Balls

In this section, we discuss the shape of the balls
in the sub-Riemannian metric induced by the con-
trol. These balls are of interest, in as much as
they represent the correct metric for path planning
in the instance of non-holonomic motion planning.
We define S(z¢, ;) to be the value function corre-
sponding to minimizing (2) for steering from zy to
zy. We define S(zo,21) = 1/2d%(x9,z,), where d
is called the sub-Riemannian distance function. The
sub-Riemannian ball centered at zp is the set of points

{z : d(xo,z) < §}. Detailed calculations of the sub-
Riemannian balls are seldom explicit. Here, we dis-
cuss in detail the case that we have a three dimen-
sional state space with two controls in %2 and SO(3).
in the instance of £2 the following is a re-expression
of work in [4].

Thus, we consider the case where

= (1,0,—01(31,12))T,g2 = (0) 1: —a2(21)x2))T

Then H = —1PE ~ LP? with P; = p; — psai(z1, z3).
Since H is independent of the third coordinate, z3, we
have p3 is a constant. The optimal control equations
are the Lorentz equations for a charge ps traveling
through a magnetic field:

iy = pab(zy, z2)us
iy —pab(z1, z2)uy (30)

with b(zy,z3) = %} - g:a If a4 = —1/224 and
az = 1/2z, as in the Heisenberg example of Section
2.1, then b(z;, £2) = constant # 0 and these equations
can be immediately integrated. Set u == u; 4 ius € C

Then the “Lorentz equation” becomes

%= —iAu ;A =ps b= constant
so that u(t) = e~"*u(0) and, if we write w = z, + iz,
then

w(t) = w(0) - “Wye-ir_y)

which is the parametric form of a circle C with center
w(0) + 1'.(,%1 and radius R = M(D—l. Further, assume
that £,{(0) = z2(0) = 2:3(0) 0. Then, z3(t) =
I (zl dzy—z2dz;) which is the area bounded by the
moving secant [0, w(?)] and the arc of the circle C:

3(t) = 5 R(M ~ sin(\))

Following Riemannian geometry, we write

(w(1), 2(1))

where v = v(0) = p1(0) + ip2(0),A = ps and
(#1(0), z2(0),23(0)) = (0,0,0). We have that the
map ezp : R2 -

The sub-Riemannian ball of radius § is the image
under the map exp of the solid cylinder |v] < 4. The
sub-Riemannian sphere is the boundary of this set.
These are shown in Figure (1) for radii of 1,2. The
sub-Riemannian wave front is defined to be the im-
age of the set |v| = . It properly contains the sub-
Riemannian sphere. Using the above solutions, we

exp(v,A) =

have:
ezp(v, ) = (;( —iEA _ |v|) (A — sinl))
where we think of 3asC @& ® One calculates
v in_y  lol sinA



Figure 1: Showing the sub-Riemannian balls of radius

1and 2
s

Figure 2: Sub Riemannian wave fronts

Setting |v] = J, we see that we have described the
sub-Riemannian wavefront, and sphere as surface of
rotations. The sub-Riemannian wave fronts are visu-
alized in Figure (2). This wavefront figure can also
be found in an appendix to the little known, but ex-
cellent paper of Rayner ([9]).

For the case of the steering problem for the satellite
in SO(3), let us compute the sub-Riemannian metric
distance required to steer from z(0} = I to z(1) =
e?Es . A simple calculation using (27) yields that ws =
27 — 8 (to be interpreted mod 2 if # > =) and that
|w] = 27. One may, thus, choose the optimal inputs
to be of the form u](t) = (27 — @) cos(w;t) and u} =
(27 — ) sin(wit) with w? + (27 — 6)2 = (27)2. The
metric distance from z(0) to z(1) is, thus,

2#\/1—(1—2%)2

so that one may conjecture that the shape of the ball
at least for small 8 is like that of the Heisenberg ball.
Some important differences do exist: one of the more
interesting ones is that the frequency w; of the opti-
mal input sinusoids for motion along Fj3, a conjugate
direction, is less than 2.

References

(1] R. Abraham and J. E. Marsden. Foundations of
Mechanics. Benjamin Cummings, 1978.

(2] J. Baillieul. Geometric methods for nonlinear op-
timal control problems. Journal of Optimization
Theory and Applications, 25(4):519~548, 1978.

[3]

[4]

(5]

(6]

[7]

(8]

[9]

[10]

R. W. Brockett. Nonlinear control theory
and differential geometery. In Proceedings of
the International Conference of Mathematicians,
Warszawa, pages 1357-1368, 1973.

R. W. Brockett. Control theory and singuiar Rie-
mannian geometry. In New Directions in Applied
Mathematics, pages 11-27. Springer-Verlag, New
York, 1981.

R. Montgomery. Optimal control of de-
formable bodies, ischolonomic problems and
sub-Riemannian geometry. Technical Report
05324-89, Mathematical Sciences Research Insti-
tute, 1989.

R. Montgomery. Isoholonomic problems and
some applications. Commaunications in Mathe-
matical Physics, 128:565-592, 1990,

R. M. Murray and S. S. Sastry. Grasping and
manipulation using multifingered robot hands.
In R. W. Brockett, editor, Robotics: Proceedings
of Symposia in Applied Mathematics, Volume 41,
pages 91-128. American Mathematical Society,
1990.

R. M. Murray and S. S. Sastry. Nonholonomic
motion planning: Steering using sinusoids. Tech-
nical Report UCB/ERL M91/45, Electronics Re-
search Laboratory, University of California at
Berkeley, 1991.

C. B. Rayner. The exponential map for the
Lagrange problem on differentiable manifolds.
Philosophical Transactions of the Royal Society
of London, Ser. A, Math. and Phys. Sci. No.
1127, 262:299-344, 1967.

H. Sussmann. Lie brackets, real analyticity and
geometric control. In R. W. Brockett, R. S.
Millman, and H. J. Sussmann, editors, Differ-
ential Geometric Control Theory, pages 1-116.
Birkhauser, 1983.




