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ABSTRACT Bacteria that swim without the benefit of
flagella might do so by generating longitudinal or transverse
surface waves. For example, swimming speeds of order 25
,um/s are expected for a spherical cell propagating longitu-
dinal waves of 0.2 ,um length, 0.02 ,um amplitude, and 160
,im/s speed. This problem was solved earlier by mathemati-
cians who were interested in the locomotion of ciliates and who
considered the undulations of the envelope swept out by ciliary
tips. A new solution is given for spheres propagating sinusoidal
waveforms rather than Legendre polynomials. The earlier work
is reviewed and possible experimental tests are suggested.

Strains of the cyanobacterium Synechococcus swim in seawater
at speeds of up to 25 ,Lm/s (1). They are rod-shaped organisms
measuring about 1 ,tm in diameter by 2 ,um long. Synechococ-
cus swim in the direction of their long axis, following an
irregular helical track. Their means of locomotion is not
known, and they have no flagella, either external or internal.
As far as one can see by light microscopy, they do not change
shape. Under certain growth conditions, long asymmetric cells
appear, but these just roll rigidly about an axis parallel to their
long axis, the direction of locomotion (T. P. Pitta, personal
communication). An electrophoretic, or "ion drive," mecha-
nism has been proposed for other bacteria (2) but has been
ruled out for Synechococcus (3). The only propulsive mecha-
nisms that remain possible appear to be surface flow or
undulation. Here, we note that the requisite thrust might be
generated by small-amplitude, high-frequency waves that
travel along the outer cell membrane.
The traveling waves that we envisage are surface oscillations.

They can be either normal or tangential to the surface, or a
combination of the two. Even tangential waves can yield the
requisite thrust. In retrospect, this propulsive mechanism for
cyanobacteria could have been suggested by a number of
researchers much earlier. Lighthill (4), Blake (5), Brennen (6),
and Shapere and Wilczek (7) developed quantitative theories
of swimming in low Reynolds number fluids by means of small
surface waves. These theories were developed for ciliated
organisms, the surface wave being the "envelope", or smooth
approximation to, the tips of the many cilia. However, the cilia
themselves were not essential for the theories.

This paper is a review of these past results with an eye toward
application to cyanobacterial swimming. We have tried to put
the results in a framework that will be useful to microbiologists.
We have also included a technical extension of the previous
theories: we can expand our surface waveforms in a Fourier
basis to obtain swimming velocities, as opposed to the tradi-
tional expansions in terms of a Legendre basis.

RESULTS
Swimming Speeds. Imagine the organism as a sphere or

ellipsoid with tangential waves traveling from one pole to the

other, with the wave amplitudes constant along lines of lati-
tude, as shown in Fig. 1. c denotes the speed, A denotes the
wavelength, and a denotes the amplitude of these traveling
surface waves. Our model predicts that for tangential surface
waves a spherical organism swims in the same direction as the
surface wave at a speed V equal to

V= (T3/2)(a/A)2c. I1]
This formula is based on an approximation that is only valid
when a/A is small. In particular, 16(a/A) should be smaller than
1. The coefficient of 16 will change a bit for a rod-shaped
organism, but will be the same order of magnitude. For
example, take A = 0.2 ,um, a = 0.02 ,um. To achieve a speed
of 25 ,um/s, we need a wave speed of 160 ,um/s. The wave
speed c is Av, where v is the frequency of the wave (800 s-1);
1/v = T is its period (1.3 ms). The number of modes that fit
into a longitudinal great circle is n = 2ITR/A, where R is the
radius of the sphere. For R = 1 ,tm, n -31.

In deriving this formula, we assume that the surface waves
are axially symmetric, so that at any time they are constant
along meridians. This implies that the organism moves in a
straight line. (Since the actual organisms move in helical paths,
their propulsive waves, assuming that our mechanism is the
real mechanism, are not quite axially symmetric.) We also have
assumed that the wave form is that of an nth Fourier mode. In
other words, along any longitudinal cross-section of the sphere,
the wave is given by a trigonometric polynomial. An analytic
form for the waveforms we use is given below.

Fig. 2 is a plot of the fluid velocity field near the cell
membrane. In Fig. 2, we are moving with the cell. Think of it
as being one frame taken out of a movie of the cell's expansion
and contraction waves and the resulting fluid motion. The
successive frames would look identical, except that they would
be translated in the direction of the wave motion. This plot is
based on solving Stokes equations for a deforming plane as
opposed to a sphere. This is a good approximation of the flow
field near the sphere when a-and A are small; see Childress (8).

Spherical or ellipsoidal organisms also can swim using
waveforms that are a combination of normal and tangential
oscillations. If the oscillations are purely normal, then the
swimmer moves in the direction opposite to that of the surface
wave, as opposed to the case of tangential waves. To under-
stand this, think of the wave as pushing the nearby fluid in its
direction of motion; consequently, the whole organism moves
in the opposite direction. A traveling wave of normal oscilla-
tions has troughs within which it can temporarily "trap" the
fluid, whereas tangential waves have no such surface features.
By using a combination of normal and tangential oscillations,
an organism can achieve swimming speeds roughly double
those of purely tangential waveforms, other wave parameters
being held the same.

Derivation. Our results are based on an analysis of Stokes
equations, the relevant equations for motion at low Reynolds
number. The Reynolds number is Re = UL/v, where U and L
are a characteristic velocity and length for the problem,
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FIG. 1. It is possible to swim at low Reynolds number using traveling tangential waves. Here we depict a traveling tangential wave with wavelength
about one-third of body length. The dark areas represent regions of contraction that drift to the left (short arrows). The intervening light areas
are regions of expansion. Local regions of the outer cell membrane simply expand or contract: there is no net flow of membrane mass. The cell
swims to the left (long arrow).

respectively, and v is the kinematic viscosity (the viscosity of
the fluid divided by its specific gravity). If Re is much less than
1, then Stokes equations can be used with confidence. If for U
and L we use the swimming speed and diameter of Synecho-
coccus, we get Re _10-5. If instead we use the wavespeed and
wavelength discussed in the introduction, Re _10-4. So Stokes
equations are a valid approximation of the fluid mechanics.
The cell membrane is assumed impermeable to the fluid, which
means that the boundary conditions are no-slip: the fluid
velocity at a point of the membrane matches the velocity of that
material point. Most of what we need from this Stokesian fluid
mechanics has already been worked out by Lighthill (4), Blake
(5), Brennen (6), Childress (8), Shapere and Wilczek (7), and
others. As noted earlier, their motivation was to understand
the swimming of ciliated swimmers, using the so-called enve-
lope model in which the cilia tips are approximated by a
smooth undulating surface.
The Stokes equations are partial differential equations for

the fluid velocity of the fluid outside of the cell, given the
instantaneous deformation of the cell membrane. From the
analytic point of view, the most important thing about these
equations are that they are linear and of the "elliptic" type, like
the Laplacian. Not all instantaneous deformations are possi-
ble. Only those deformations for which the net force and
torque on the cell are zero are physically allowable. These last
conditions together with Stokes equations determine the ve-
locity of the organism, given a particular swimming stroke (for
details, see refs. 4-12).
Our basic problem is to estimate the swimming velocity of

an organism whose swimming stroke consists of a small-
amplitude time-periodic deformation of its surface: a traveling
wave on the cell membrane. We will suppose for simplicity that
this deformation can be expressed in the form:

xl-x + a[cos(wt)vP(!) + sin(wt)v2(&i)].

=1 2aV= -aaCF(v1, v2) [3]

plus terms higher order in a2. The key to understanding
small-amplitude swimming is to understand the object F(V1, v2).
It is a vector-valued functional with units of inverse length. A
functional is a function of functions, which is to say, a function
with inputs being functions and outputs being numbers. Our F
is slightly more general. Its inputs are pairs of vector fields v1
= v,(x) and v2 = v2(1) (not just functions) defined along the cell
surface. Its output F(v1, v2) is a fixed vector representing
swimming direction. It depends parametrically on the back-
ground shape of the cell surface, which here we take to be a
sphere. In addition, our F satisfies the algebraic properties of
skew-symmetry F(v1, v2) = -F(v2, v1) and bilinearity F(v1 +
CV3, V2) = F(v1, v2) + cF(v3, V2), for any constant scalar c. These
properties are closely related to the linearity of the Stokes
equations and to the "scallop theorem" (8, 9). This theorem
asserts that if the material points of the membrane retrace their
path during the swimming stroke, then the net velocity is zero.
[In terms of our F, this becomes the assertion that if v2 = 0 or
more generally that if v1 = (const.)v2, then F(v1, V2) = 0.]
Computing F(v1, v2) involves solving the Stokes equations for
various deformations of the surface S.
The swimming model that we use was also used by Blake (5),

Brennen (6), and others. In this model, the organism is a
sphere of radius R that propels itself by oscillating its outer
membrane in an axially symmetric manner. We will use
spherical coordinates rm, 0m, and ),,, for the position of a
material point on the deformed sphere, with Om being the
azimuthal angle measured from the north pole. The surface
waves are then described by deformations of the form:

rm = rm(O, t) = R(1 +f(0, t)),
Om = Om(O t) = 0 + g(0, t),[2]

Here x denotes a point of the surface, a is a measure of the
wave amplitude, assumed to be small, t is time, and vi1() and
v2(x) are vector fields along (not necessarily tangent to) the cell
membrane. These vector fields represent two independent
deformations of the membrane. It can then be shown (7, 12)
that the average swimming velocity Vof the organism over one
period is of the form

[4]

[5]

and

4)( = 4), [6]
where (0, 4) are the coordinates of a material point on the
undeformed sphere, and where the deformations f, g are
periodic in t with a fixed period T. The particular tangential
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FIG. 2. How a longitudinal wave traveling on the surface of a cell affects the adjacent fluid. The arrows depict the fluid velocity profile at a
frozen time t; the wave is moving to the left. Imagine a water molecule starting where indicated (0). We will describe its trajectory as the wave
passes. It is initially being pushed to the right. As the region of contraction C approaches it is pushed up and to the right. As C passes, it is pushed
up and to the left. Between the region of contraction C and the region of expansion E, it is pushed to the left. As E approaches, it is pushed down
and to the left. Once E passes, it is pushed down and to the right, and between E and the next C it is pushed to the right. Notice that the water
molecule is closer to the membrane while being pushed to the right. Because the velocity profile rapidly decays away from the membrane, the
molecule is pushed farther to the right than to the left. Therefore, an organism that can move its outer membrane in this manner swims in the
same direction as the wave.
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waveforms of interest to us are those discussed in the intro-
duction. For these:

f = O [7]
and

a
g = cos(n6 - cot)

a
= [sin(wt)sin(nO) + cos(ct)cos(n6)]. [8]

To convert this deformation into the vector form involving VI,
v2, multiply the radial deformation f by the normalized radial
vector field j, and the azimuthal deformation g by the vector
field in the azimuthal direction E0. The latter vector field is not
normalized; its length is r. Thus, vi1 = sin(nO)Eo and -2 =
cos(nO)Eo. By axial symmetry, the swimming motion is in the
direction of the sphere's axis. It follows that we can write F in
the form F(sin(nO)Eo, cos(nO)Eo) = F(sin(n0)Eo, cos(n6)Eo)ez,
where ez is the unit vector pointing along the sphere's axis
and F is_ scalar valued. Our goal then, is to calculate
F(sin(n O)E ,cos(n 6)Ee).
The Stokes equations with boundary data on a sphere are

most conveniently solved in terms of Legendre polynomials
Pn(cos 0) for the radial deformations f, and in terms of their
normalized derivatives

2 d
Vn(COS 0) = n( + ldPn(cos 0) [9]

for the tangential oscillations g. The values of F(VjEO,VkEo),
F(Pner,VjE0), and F(Pner,Pmer) were calculated by Shapere and
Wilczek (7) and in a different form by Blake (5). Because we
are only concerned for the moment with tangential oscilla-
tions, it is convenient to drop the vector appendage "E" and
simply write F(Vj,Vk). The results obtained by these earlier
workers are F(Vj,Vk) = 0 unlessj and k differ by 1, in which case
F(Vn,Vn+l) = 8/[(2n+1)(2n+3)R].
Now we expand our deformations in terms of the Vj:

sin(n 0) = I AjVj(cos 0) [10]

and

cos(nO) = E B1V1(cos 0). [11]

These expansions were performed by Hobson (13) (see also
equations 8.924.3 and 8.924.4 in ref. 14). By bilinearity and
skew-symmetry:

F(sin(n 0), cos(n 0)) = X AjB1F(Vj, VI). [12]

Hobson's expansion for sin(n 0) only contains terms with jc
n and his expansion for cos(n6) only contains terms with 1-
n - 1. It follows that the sum for F contains only a finite
number of terms, those involving F(Vn-2,Vn-1), F(Vn1,Vn),
and F(Vn,Vn+i). The sum can be done explicitly, yielding the
swimming velocities

1
V= - a2c F(sin(n 0), cos(n6))Ce, [13]2

with F (sin(n0),cos(n0))= mrn/4R. This completes our derivation.
Using the same technique, one can calculate the swimming

velocities due to a wave that is a combination of tangential and
normal sinusoidal oscillations. In this case, material points on
the sphere follow elliptical paths. Calculations of this kind were
done by Blake (5) for Legendre-based waves. As mentioned
earlier, the swimming speeds attained can be about twice as

fast as those for the purely tangential waves, the other wave
parameters being the same.

DISCUSSION
Earlier Work The implications of low Reynolds number to

problems of self-propulsion were realized as early as 1930 (15).
Various authors have presented infinite models for low Reyn-
olds number swimming. Taylor (16), Reynolds (17), Tuck (18),
Blake (19), and Childress (8) treat an infinite swimming sheet;
Blake (19, 20) and Shapere and Wilczek (7) treat infinite
swimming cylinders. An analytical model for approximating
the translational velocities of spherical organisms that swim
using small amplitude oscillations was first proposed by Light-
hill (4). Traveling surface waves were approximated using two
spherical harmonics whose orders differed by one. He ob-
tained an infinite sum expression for the swimming speed V,
but he did not compare his predictions with observations.

In 1971, Blake (5, 19, 20) adapted Lighthill's model to
explain ciliary propulsion by replacing the loci of the cilia tips
with a continuous envelope. For certain organisms, Opalina
ranarum for example, the cilia tips remain close together
during the swimming stroke, and for such organisms the model
provided good results. Blake found an expression for the
instantaneous velocity of a sphere undergoing Legendre-
polynomial deformations. Since the expansion of sinusoidal
deformations as a series of Legendre polynomials contains an
infinity of terms, Blake's equation for velocity seemingly
contains an infinity of terms. However, inspection of this series
reveals that only products of consecutive Legendre polynomi-
als appear. Using the expansions for sin(n6) and cos(n6)
described above, one can show that the average velocity of a
sphere propagating longitudinal waves reduces to a single
term, identical to our Eq. 1.

In 1974, Brennen (6) proposed an oscillating boundary-layer
theory to explain ciliary propulsion. In his model, the fluid
surrounding the organism is divided into two regions: (i) an
oscillating boundary-layer close to the cell and (ii) an external
complimentary region of steady Stokes flow. The unsteady
boundary-layer fluid motions, generated by the surface oscil-
lation, attenuate like exp(-r/A), where A is the wavelength of
the surface wave and r is the distance from the surface. These
are matched to the exterior flow. Finally, the condition of zero
net force on the self-propelling organism is used to obtain a
further constraint on the flows, which is applied to obtain the
propulsive velocity. Brennen (6) obtains the velocity formula
V = (4w2/3)(a/A)2c.

In 1989, Shapere and Wilczek (7) proposed a geometrical
model for propulsion at low Reynolds number. The quantity
we refer to as F was introduced here, where it is called the field
strength or curvature. They generalized the results of Lighthill
(4) and Blake (5) by treating arbitrary small amplitude surface
oscillations of a spherical swimmer and by obtaining expres-
sions for the rotational as well as the translational velocities.
While all of the authors after Lighthill (4) were concerned

with ciliary propulsion, their models are applicable, without
modification, to organisms with oscillatory membranes. In
fact, the general framework of Shapere and Wilczek (7) is
applicable to any low Reynolds number swimmer. However,
they only applied their framework to certain two-dimensional
swimmers and to spherical swimmers.

Experimental Tests. It seems unlikely that one can test
models of this kind on a cell the size of Synechococcus by
marking the flow of the external medium, e.g., by tracking
displacements of fluid along the arrows of Fig. 2. The effects
of Brownian motion on small test particles are too severe.
However, it should be possible to fasten such particles to the
outer surface of a cell. If the attachment is to an element that
participates in contraction or expansion, as in C or E in Fig. 2,
then a particle will move back and forth. It will vibrate at the
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frequency of the wave, v = 1/T (800 s-1 in the examples given
in the introduction). The motion will be in a direction parallel
to the surface of the cell if the wave is longitudinal or normal
to this surface if the wave is transverse. In principle, motion of
this kind can be demonstrated by power spectral analysis of the
output of a suitable edge detector.

If, on the other hand, the surface of the cell flows in bulk,
then the particle will move from one end of the cell to the
other. In fact, this happens when latex particles are added to
certain gliding bacteria (bacteria that fail to swim but that glide
along solid substrates), e.g., Cytophaga johnsonae (21) or
Cytophaga sp. strain U67 (22). In the latter case, something
quite remarkable happens: the particles move to and fro along
the surface of the cell in a direction roughly parallel to its long
axis, passing each other in opposite directions, even when in
close proximity. Thus, the surface of the cell does not move in
bulk like the tread of a tank or as it would were a layer of slime
swept backwards by traveling waves of the sort envisioned here.

It was argued earlier (3) that propulsion of swimming
Synechococcus must be due to mechanical deformation or flow
of the cell surface. However, it was not appreciated at the time
that longitudinal waves, which might not generate any detect-
able change in cell shape, could provide a viable propulsive
mechanism.
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