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Abstract.

we extend the work of Sternberg and Weinstein concerning the
phase space of 2 particle in 3 Ying—ﬂills field. The phase spaces we
investigate are Poisson manifolds which are also vector bundles over
symplectic manifolds. Their Poisson structures are obtained by using
a connection (vang-Mills field) to splice together the canonical
Poisson structure on the base symptectic manifold with a Lie-Poisson
structure (Poisson structure on the dual of a Lie algebra) on the fiber.
An intrinsic formula is given for the resuiting Poisson bracket. Such
Poisson structures are shown to arise on the normal bundle to 2
co-adjoint orbit. Other applications are given to the motion of an
incompressible fluid with 2 free boundary, to a particle in a
Yang-Mills field, and to a Yang-Mills plasma.
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introduction

This thesis presents contributions to “the bundle picture” for
Poisson manifoids and then applies them to obtain Hamiltonian
formulations for three systems of physical interest. The painting of
the bundle picture was begun by Sternberg {1977] and Weinstein
[1978] in their investigations of the symplectic geometry of the
phase space of a classical colored particle in an external Yang-Mills
field. The phase space of such a particle is a vector bundle over
standard single particle phase space with fiber the vector space of
color charges. The Poisson bracket on the phase space depends on the
Yang-Mills potential (connection).  The particle’s dynamics is
governed by Hamilton's equations with the Hamiltonian being the
standard kinetic energy of the particle. The resulting equations of
motion are known as Wong's equations.

Abstractly, the starting point for the bundle picture is T*B, the
cotangent bundie of a principal G-bundle B—X. in the colored particle
example, X represents the underlying space (or space-time) through
which the particle travels. The structure group G acts on T*B by
canonical transformations and has momentum map TH*B— g™ where g*
is the dual of the Lie algebra g of G. In the example of the colored
particle, g* represents the space of color charges. The quotient
T*B/G is a Poisson manifold (called the Poisson reduced space). Its

symplectic leaves are the spaces investigated by Weinstein {1978}
T*B/G is a vector bundl i
e over X with fiber T* X xg* Making T*B/G

i )
nto a vector bundle over T*X requires the choice of a connection A

for the principal bundle B.
Instead of using the connection A to make T*B/G into a vector

bundle over T*X, we can use it to spiit T8, and so by duality T*B, into
horizontal + vertical. This splitting can be thought of as an

isomorphism ¢ A:B'x g%—T*B, where B# is the puli-back bundie of B
to T*X (B* is a principal G-bundie over T*X). O, intertwines the G

action on T*B with the "diagonai” 6 action ((action as the structure
group of B#) x {co-adjoint action)) onB#x g*. The quotient of B*x g*

by this diagonal action is written B¥xg g™ or AG*(B*®), and is called

the co-adjoint bundle over T*X associated to B®. (This is the standard
associated bundle construction) 1tis a vector bundle over T*X with
fiber g*. If we take X to be space or space-time and G to be SU3)
then this co-adjoint bundle is the phase space of our colored particle.

The quotient map {® 4} AG*(B#)—T*B/G is an 1somorphism. We call

this isomorphism the "minimal coupling procedure” since its
coordinate expression is precisely the physicists’ minimal coupling
procedure. We put a Poisson structure on AG%(B*) by using the
minimal coupling procedure to pull back the Poisson structure on
T#B/G. The symplectic leaves are then the symplectic manifolds

introduced by Sternberg {1977). .
The first result of this thesis is an intrinsic formula for the

Poisson bracket on the co-adjoint pundle which is presented at the

end of §1.1. Schematicatly, this formula reads



(F,G) = canonical bracket on T*X
+ curvature (fiber-base interaction) term
+ Lie-Poisson bracket for the fiber g* [pB.1)

This result is not new, being first proved by local calculation in
Montgomery, Marsden , and Ratiu {1984]. However, the proof provided
in this thests (corotlary to Theorem 1 of §1.2) is new, being
coordinate-free, and it aiso leads to an interesting generalization of
the formula {formula [PB1] of §1.2]

The coordinate free proof relies on “Poissonizing” a symplectic
construction of Sternberg's {1977). The result of this "Poissinization"
is a connection-dependent Poisson bracket on (a neighborhood of the
zero section of) any co-adjoint bundle over an arbitrary symplectic
manifold. In other words, we can drop the restriction that the base
space of the co-adjoint bundle be a cotangent bundle. The payments
for this increase of generality are that

(i) the Poisson structure may blow-up away from the zero section
(ii) an extra term may have to be added to formula [PB.1]

(These two payments are related in that (i) implies (ii)) The
investigation of this generalization of Sternberg's construction is
carried out in §1.2, the main resuit being Theorem 1 of that section.

We present four applications of the bundle picture. In the first
application (S1.3) we investigate Poisson structures on the normal
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bundle of a co-adjoint orbit in the dual of a Lie algebra We only
consider reductive co-adjoint orbits (all co-adjoint orbits for
compact groups are reductive). Normal bundles of such orbits inherit
two  Poisson structures, one induced by a naturally arising
connection, the other induced by an exponential map of the co-adjoint
orbit into the dual Lie algebra. An appiication of Theorem 1 of §1.2
shows that these two Poisson structures are actually the same. As an
added bonus, Theorem 1 allows us to understand the singularities of
this Poisson structure.

The other three applications are motivated by physics and are
presented in the second part of the thesis. The phase space for each of
these three examples can be obtained as the reduction of the phase

) spaces T*B where the configuration space B is a principal bundle.

Thus in each of these examples reduced Poisson brackets (depending
on a connection) of the form [PB. 1]} are derived.

The first physical application (§2.1) is to the dynamics of the
colored particle mentioned above. There are four formulations of the
dynamics of such a particle:. the symplectic formulation of Sternberg
[1977], the symplectic formulation of Weinstein [1978], the geodesic
formulation of Kaluza-Klein and Kerner [1968], and the formulation
of the physicist Wong {1970] Weinstein showed that his formulation
was equivalent to Sternberg's. Sniatycki [1979) showed that these
two formulations are equivalent to that of Kaluza-Klein and Kerner.
Montgomery {1984} showed how these formulations are equivalent to
that of Wong. $2.1 is a rewriting of Montgomery [1984], the main
change being that care is taken to point out the differences between



the relativistic and non-relativistic formulations.

The second physical applications (§2.2) is to a plasma of
colored particles in the self-consistent field approximation. We use
the approach of Marsden-Weinstein (1982] in their investigation of
the Hamiitonian formulation of the Maxwell-Viasov equations, i.e. of
an Abelian plasma. The action of the gauge group on the unreduced
plasma phase space of {Yang-Mills potentials) x {electric fields) x
(plasma densities) is more complicated in the non-Abelian case. This
adds two complications to the Hamiltonian formulation of a
non-Abelian plasma. The first is that the momentum map is more
complicated. However, it is calculable by standard methods. This is
done in §1.4. The second complication is that the quotient space of
connections modulo the gauge group is much more complicated
topologically in the non-Abelian case, and so does not admit a global
coordinatization. Thus we rely on a local choice of gauge in order to
explicitly write down the Poisson brackets on the reduced space.

The third and final physical application (§2.3) is to an
understanding of the Hamiltonian structure for the flow of an
incompressible fluid with free boundary and surface tension, i.e. a
water drop. There are two versions of the Poisson bracket, one
corresponding to the reduced cotangent bundle T*B/G, and one to the
co-adjoint bundle Ad*(B*). Both generalize the canonical brackets
which Zakharov {1968] found for the irrotational case. These brackets
were found useful by Lewis et al. [1985] in their work on stability of
rotating water drops.

Other applications and future directions

Alan Weinstein [1985] generalized his [1978] construction in
order to investigate a symplectic model for the principal series of
group representations. The Poisson manifold T*8/6 mentioned above
is isomorphic to the Poisson reduction at 0 of the Poisson manifold

T*Bxg*, in symbols: T*8/6 =(T*Bxg*)o. Weinstein's generalization
was toreplace g* with an arbitrary Poisson manifold P which admits
a momentum map Jp:P—eg* (In the case above where P = g Jp ts
minus the fdentity map). Call the pair (P, Jp) a  Poisson
6-mantfold. One of the main results in Weinstein [1985] is that the
assignment (B,G,P,Jp)— (T*BxP)O is a functor from the category of
principal G-bundles and Poisson G-manifolds to the category of
Poisson manifolds.

Carinena and lbort {1985] have applied the bundle picture in
order to give a canonical interpretation of ghost fields and of the
B.R.S. transformations which are important tools in the quantization
of Yang-Mills fields. Let B be the space of (irreducible) connections
on a principal bundle, G be the gauge group for the principal bundie
and X = B/G. Take A to be the Couloumb connection on B—X. Then
O, T*B= B*xg*. Carinena and Ibort have shown that the correct

Interpretation of the g* factor is as the set of ghost fields. The BRS.
transformations are the infinitesimal transformations on B*xg*



corresponding to the diagonal action of G.

Guillemin and Uribe [1985) used the bundie picture in an
investigation of spectrai problems on s%and on 52 They studied the
spectral asymptotics of the operator covariant Laplacian plus
potenttal. This operates on spaces of sections of vector bundles over
54 or 52 These spectral problems can be thought of as quantum
versions of the classical Wong's equations for these bundles.
Guillemin and Uribe found Montgomery [1984]  helpful in
understanding these spectral probiems.

The covariant Laplacian is the operator DA*DA where D, is the

covariant derivative associated to ine connection A. For the problem
over 54, Gulllemin and Uribe took A to be the standard connection for
the quaternionic Hopf fibration. Guillemin, Uribe and the author are
currently working on extending their [1985) results to the case where
A 15 any self-dual connection for this fibration. This involves solving
wong's equations with the Yang-Mills field being an arbitrary
self-dual connection on S9 with instanton number one. So far, we
have been able to show that this problem is completely integrable.

Atiyah and Hitchin [1985)] have investigated the dynamics of
monopoles in the adiabatic 1imit. it would be interesting to couple
Atiyanh's equations with Wong's equations for a particle in a monopole
Tield. It is conceivable that the resulting approximate mode) for a
Yang-Mills plasma would be exactly solvable.
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st Reducing the Cotangent Bundle of a Principal Bundle.

Introduction to §1.1

This section is a review and summary of existing resuits
concerning the two isomorphic Poisson reductions of the cotangent
bundle‘ of a principal bundie by its structure group. One of these
reductions depends on a connection and the other does not. We
describe both of the resulting Poisson structures in coordinates and
in coordinate-free language.

The first papers in this area were in the symplectic category.
The seminal papers are Sternberg [1977) where the
connection-dependent symplectic reduced space was described, and
Weinstein [1978] where the “intrinsic” symplectic reduced space was
described. The present section follows the lines of Montgomery
{1984] which "Poissonized" these seminal papers and connected them
with the physics literature. This section ends with a coordinate-free
formula, first stated in Montgomery, Marsden, and Ratiu [1985], for
the connection-induced brackets. This bracket has the ‘schematic

form:
(F,G) = canonical bracket on base

+ curvature (interaction) term

+ Lie-Poisson bracket on fibres.

Letm:B— X be a principai right G-bundie. Thus G acts on B on
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the right. The cotangent 1ift of the G action to T*B is a canonical
action. The “intrinsic™ Poisson reduced space is simply the quotient
T#B/G. Think of functions on the quotleﬁt as G-invariant functfons on
T*B. Their Poisson bracket is just their usudl Poisson bracket on
T*B, which IS another G-invariant function, so can be thought of as a
function on the quotient.

To describe the other Poisson structure requires more
machinery. The G-action on T*B has equivariant momentum map

O*.T*B— g% 0%(a ) = 0™ (dp,), where o, §~T B is the infinitesimal
b b *“b b b

generator of the G-action on B:

Ob(x)' d/d)\l)\.o(bexpkx), ¥ ef.

One easily sees that o*"Y(0) = V°, the annihilator of the vertical
subbundle V = kerTm € TB. V* is arealization of the pull-back bundie
B* of B by the cotangent projection T T*X—X. This means that we

have a principal G-bundle map:

10
T
Vo B — B
1
ey X .
diagram 1.1.1

The map VO — B denotes the restriction of the cotangent

projection T*B—B to the G-invariant subbundle VO The projection
M:VO—T*X is defined by

<ﬂ(db), Tﬂb‘Vb) - (db,Vb), for db € T*DB,VD € TbB

[To see that Mayp) is @ well defined element of T*X, x = 7(b), note
that oy, annihilates kerTny, so that @y, V> = ‘“D'Vb’ provided that
Tnpvp = T‘nb-\?'b , and note that 11 is a submersion, so that any vector
In T,X can be written in the form T, vy, ]

Let A be a connection onB. So

ApTpB—g,b ¢ B

is 2 g-valued one form on B satisfying



Ap"op = fdentity ong, and Apg = Adg1"Ay TRG-1 .
A splits TB into the vertical and horizontal subbundies over B:
TpB = Vp®H), Vp =kerTmy,, Hy=kerA,, forbe B.
The dual splitting can be thought of as an isomorphism:
O=0(A). B*xg*—V'@H" = T*B ;
where V* = B* = Annfhilator of V
and H® = Annihilator of H.
¢ is given by
S(AXap, 1) = dptAp*i .
The inverse of & is given by
oA (8y) = (8- 0p*A8p, op¥By) .
The equivariance property of A implies that ¢ is a G-equivariant

isomorphism, where the action on T*B is the cotangent 1ift action
discussed above and where the action on B*xg* is the diagonal one:

(op,1)g= (TRg-l*ub, Adg*u),

Note that the action on the B* factor is just the restriction of the G
action on T*B to B*CT*B. Also note that we have the commutative
diagram

Qia)

Byt 7

diagram 1.1.2

Using ®, we can pull back the canonical symplectic form wg =
-(BB on T*B to obtain a connection-dependent symplectic form on

B®xg*. A straightforward calculation yields:
0*98 = M*6y + <u A%

where 6y 1s the cenonice) one-form on T*X, where A®= g*A is the

pull beck connection on B#, eand whers <u,A®> denotes the one-form

(atp, i <, A®(ay)>. It follows thet



0%0p = MPuy -0 GLA®. (RRY

where wy = -doy is the cenonice! two-form on T*X.

Remark. Basically the same symplectic form was used by
Sternberg as an intermediate step in {1977). inhis set-upg* was
replaced by a symplectic G-manifold with momentum map J: F—§*.

The form he used was N*wy + d <J,A%>. Since the momentum mep for

the Jart co-adjoint action on g,* is ur— -}, we ere in essence using

the same form os he.

we now form the Poisson reduced space as before by
dividing through by 6. This yields the following commutative
diagram of Poisson maps:

J
B’xq« ¢ QTQB
L
N 7
¢
(]!
£z Bey gm——————-——-“—’T*E’.!G

G

diagram 1.1.3
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The horizontal arrows are Poisson isomorphisms. The quotient of
B*xg* by G is an associated vector bundle to B=. It is called the

co-adjoint bundle , written B¥xgg* or Ad®(B#®), and is a vector

bundie over T#X with fibre g*. As proved in Montgomery [1984] and in
Theorem 1 of the next'section, the symplectic leaves of Ad*(B*) are
the spaces B*xg0, oc g* is a co-adjoint orbit, which were
constructed by Sternberg {1977) Note that the construction of
AG*(B#) and its projection onto T*X are independent of the choice
of the connnection A However, its Poisson structure depends
strongly on the choice of A, through the splitting ¢.

The Poisson structure of the other quotient, T*B/G, is clearly

connection-independent. However, without & connection there is no
projection from T*B/G o T*X. The conneclion A defines such @
projection through its horizontal 1ift. Let

hbTxx—‘Tb

denote the horizontel lift defined by A: imhy = Hp, end Tripehy
=ldentity. Then

lapl—hp*ey

1s the projection. Here [apl ¢ T*B/G denotes the equivaience class,
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1.6. the G ordit, conteining «, « T*B. Since hyg = TRgehy, the covector
hy®ap « T, *K 15 independent of which representative, «; of this
squivelence class is picked. Summerizing

connection .
dependert [ia) "universal”
bracket AZiZ®} T*B/6  bracket
N
\ y
universalt \\ / ™ connection
oratection ] depengent
’ T*X projection

diagrem 1.1.4

The map [$(A)] will be called the minimal coupling precedurs, for
reasons which will become clear in the following loce) discussion.

Lecal Structurs.
1t will be necessary to understand these Poisson structures

locally as well as globally. A local trivialization By = UxG along with
coordinates x4, y =1,_.n on U ¢ X induces coordinates (xM, pean. Q,)
or simply (x, €@, Q) ¢ IRxIRMexg* on T*B/G, as follows . Since By

= UxG we have T*(BU) = THUxG) = T* x T*G, as symplectic
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manifoids. Then as Poisson manifolds T*B/G DT*BU /6 = (T™y x

T*G)/G = T*J x (T*G/G) = T*U x #*. The G action on T*G is the right
action. This corresponds to the fact that the #* factor will have its
+ Lie-Poisson structure. The x, p®@™ are the usual canonical

coordinates on T*U . The Q, are linear coordinates on §*, so depend
on o choice of besis for g. Let c%, be the structure constents of g
refative to this choice of basis. The brackets on T*B,/G are then

given by

(xH, pCang) = gk

(0, 0p) = Qg

all other brackets zero.

In the case where B is the principal bundie for a Yang-Mills
theory over space ;( (or space-time), T*B/G Is Interpreted as the
phase space for a classical quark under the influence of an external
Yang-Mills field. The xM are the quark's spacetime coordinates. The

pcan. y e its canonical (as opposed to physical, or kinetic) momenta.
The 0a are its color charges. This example is presented in §2.1.

The coordinatization of Ad*(B*) goes as follows. The local
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trivialization By = UxG Induces the local trivialization Bfwy = T*U
x G of the pull- back bundle and induces the local vector bundie
trivializations of Ag*(B), = Uxg® and AG™(B* Jpugy = THUxg*. Again,

the coordinates x* induce coordinates on T c T*X, but this time
these cotangent coordinates will be written (x,p) instead of (x, p¢aM).
The coordinitization of g* is the same. Then (x,0,0) e IRTXIRMxg* are
coordinates on Ad*(B#).

with respect to these trivializations, the coordinate
description of diagram 1.1.3 is

a)

(x, 5, 9, Q*I———(x, p°™ g, 0) ¢ IR"XIR"*uGx g
{x, 0, @) k————(x, p°°", Q) ¢ IR"xIR"*x g
1))
[diagram 1.1.3a)
where

Q* = Ad, "0,

and

and
pcaﬂ. =p+QA,

and " - " denotes the pairing between g* and g. (in the top right hand
corner of the diagram we have right trivialized T*6 = 6 x #*) This
last equation is the classical relationship between the canonical
momenta, p°@- and the physical, or kinetic momenta p which Is at the
foundation of the minimal coupling procedure for gauge theories,
including electromagnetism. This is why we call [8(A)] the minimal
cdupllng procedure. ‘

Since [®(A)] 1s a Poisson map, the local expresston for it can be
used to calculate the (x, p, Q) brackets from the (x, p¢@ Q) brackets.
One finds

(%M, pg) = 84,

(py, Pg) = QyF2 g

(05, 0p) =049,

(py. 0y ) = -0gcdpaP,
all other brackets zero.

Here Abu 1S the local expression for the connection A, and Faue 1s the



local expression for its curvature.

Relationship with earlier versions of cotangent reduction.
There are a number of works on the symplectic reduction of the
cotangent bundle T*B of a principal G-bundle B. In primitive form,
these works date back at least to Smaie [1970] Recall that the
syfnplectté reduced spéce at u € g%, denoted 7(T*B)‘;, is the quotient

space o*"(u)/Gu where G, Is the isotropy group of . One of the

goals of these earlier works was to determine when the symplectic
reduced space was the cotangent bundle of the base space X.

Cotangent bundle reduction theorem [Satzer-Marsden-Kummer)
Suppose that 6 = Gu . Then the symplectic reduced space

(T*B), Is symplectically isomorphic to T*X with the
symplectic form wy—<F®>. Here F*® denotes the curvature

of the connection A® on the bundie B—T*X.

This theorem is due to Satzer [1977] for the case where G is
Abelian, in which case Gu always equals G. Abraham and Marsden

{1978] generalized Satzer's resuit to the case (5u =, not necessarily
Abelian, For example, if yu = 0 then Gu always equals G. The
realization that the term subtracted from the canonical two-form wy

€an be written <u.F*> is due to Kummer [1981].
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We will now reprove this theorem from our point of view.
From commutative diagram 1.1.2 we know that ®(A) maps o*"(u)

tsomorphically onte  B=x(u). This map I ep—
(o -Ag*o*a p-O™p*H). Being the restriction of a G-equivariant map
toa Gu1qu|varian1 submanifolq, 1t is Gu-equlvarlant. S0, i1 G = Gu
we can divide through by 6, obtaining [(A)o* ™ (u)/G,;— Bxg(u).=
B#/G x{u} = T*Xx{u). Dropping the constant factor y, we have the
isomorphism: {«p) — [ap-Ap*o*a pl This is the isomorphism used by
Abraham-tarsden[1978, p.300-301} and Kummer [1981,p.263,eq.3).

To caiculate the symplectic form w on T*X induced by this
isomorphism, recall the definition of the reduced symplectic form on
o*"(u)/Gu. It is defined by the condition that its pull-back to

o*"(u) C T*B equals the restriction of wg to a*"(u). Since

O(A)f*wB = T*wy - d<p,A>, the form w on T*X is defined by
T*w = #(*wy - d¢W,AY)

where 1 is the inclusion B*—B*x(uj—eB*x g* Now i*du A*> =
UO0A% = <uF® - < lA® A*)p. Since G‘1 = G, it follows that
<,IZ, ¥ =0 for all £, ¥ ¢ g*, and hence that <y [A*,A*) =0. Thus w

= wy ~ <,F*>, agreeing with Kummer's result. (Kummer's form is

actually déy + <u,F#>  This sign difference is accounted for by the



21

fact that the symplectic forms he uses on T*X and T*B are +d8y and

+dég, which are the negatives of the symplectic forms which we use.)

Remarks.

1. The term <,F*> is called a “magnetic term" (see §2.1 of this
thesis for the reason behind this terminology). Kummer {1981] notes
that it has an obstruction-theoretic interpretation. It is a closed
two-form, so representsa cohomology class on T#X. This cohomology
class is zero if and only if 2 connection A for B — X canbe found such

that {#(A)] induces the standard symplectic form on T*X.
2. In the general circumstance where Gu « G, the 1somorphism
(T*B), = T#x generalizes to become 3 symplectic embedding of

(T%8), into THB/6y,). Montgomery {1984] sketched how to obtain this
embedding from the viewpoint of this thesis. The basic observation
is that there is 2 natural isomorphism B/Gu =Bxg0 € Ad*(B) where ©

is the co-adjoint orbit through .

3. if the G action on B is not free, then B—B/G =X is no longer
a principal bundie (and in general no longer even a manifold), but there
is still a version of the cotangent bundle reduction theorem. This is
due to Montgomery 11983} and applies, for example, to the case B =
' IR3, 6 = S0(3) with the standard action.

4. incase G is torus and the manifold being reduced is
compact (instead of T#B), it is still true that the reduced symplectic
form varies linearly with U ¢ g* for y a regular value of the
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momentum map. This is the main result of Duistermaat and Heckman
(1982]. Their result in turn is intimately reiated to the important and
celebrated fact (Atiyah [1982], {1983), Guillemin and Sternberg
11982)) that the image of the momentum map is a convex polyhedron

ing*.

Intrinsic Bracket Formula.
we will end this ssction by steting the intrinsic bracket
formule on AG*(B*). We first introduce the necessery notation.

ozloplc AGHB?), & ¢BoCTHB, ped®
p=Nie)=Ma) e TX, %= 7i(b).

we hove used TI to denote the two different projections, AQ*(B*) —
T*X ond B# —T*X but this should not cause eny confusion. The

connection A induces the pull-beck connection A® = tg"A On B® ond on
its sssociated vector bundie Ad*(B®). A section of Ad*(B®) which is

coveriently constent through e will be denoted by h. Covarisnt
constency uniquely determines the section's differential st p. In fact

Tgh = g Ty(T*R—T(AG*(B2),

the horizontal 1ift with respect to the connection A® on Ad®(B®).



23

The curveturs of A® will bs denoted F* (= tp*F). We think

of F® as an AKB®) = B®xgg-volued two-form on T*M. MNote that

Ad(B*®) is the dual vector bundle to Ad*(B*).
It 1 is o function on Ad*(B*), ils verticel differential ot e ,
written dyf(e), 1s the element of AG(B*), defined by

(@/80) | \-0f(e*AV) = cv.Byfle)> , forv e £ .

Here <, > denotes the natural pairing between Ad*(B*) and AB®) .
Finally, note that the fibres of Ad(B®) have a natural Lie algebra
structure, also denoted [ , ] (see the appendix for details).

We can now stete the intrinsic {ormula for the Poisson brackets on
Ag*(D®).

“.0}(‘) = {h*f, h'ﬂh.x‘p) + (.,r.(x“gf‘xh‘d) + (.,(ﬂvf,ﬂvﬂ]) IPB.1]

Here, {, hyay denote the cononical brackets on T*X and X« denotes
the Homiltonfon vector fieid on T*X corresponding to h*f: dy( Kpug) =

{yn*flyuy for y o function on T*X. This formuls will be proved os o

corollary to Theoram 1 of tha next section. It was originelly proved
by locel calculation in Montgomery, Marsden, and Retiu, [ 1985,
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$1.2. The Intrinsic Poisson Bracket Formula: Generalization
and Proof.

In this section we investigate a generalization, due to
Sternberg [1977] in the symplectic case, of the Poisson manifold
discussed in the previous section. Our main result is formula [PB.2]
of Theorem 1, which generalizes the intrinsic formula of the previous
section.

Let S be a symplectic manifold with symplectic form wg.

Sternberg [1977] investigated fiber bundies E over S with structure
group G whose fibres F are symplectic G-manifolds. Let B be the
associated principal bundle to €, so that £ = BxgF, and let A be a

connection on B. Using the connection, Sternberg showed how to put
the symplectic structures of the base and fiber together in order to
obtain a pre-symplectic structure on the total space E. We replace
the symplectic fiber F with the Poisson manifold g%, the dual Lie
algebra to the structure group G. E then becomes the associated

vector bundle known as the co-adjoint bundie to B: E = Bxgg* = Ad*(B)

and Sternberg's construction gives a Poisson structure (with possible
singularities) on E. The symplectic leaves of E are Sternbergs
spaces, with fibre F a co-adjoint orbit in g*.

The other theorems and corollaries of this section besides
Theorem 1 are concerned with the deviation of the general bracket
{PB.2] from the bracket of the previous section. This deviation is
contained in a single term, which we call the “cross-curvature term”.



25

Consider the two~form
£l = N*wg - dep, A [1.21)

on Bxg*. Here <u,A> denotes the one-form (b,u)-><u AP, 0 is
Closed. It is also invariant under the diagaonal right 6 action

(b,u)o—)(bg,Adg*u) since A transforms according to Albg) »
Adg-|°A(b)'TRg-l, Note that formula [1.1.1] of the previous section
states that Q2 = d*wp satisfies [1.2.1], where S is replaced by T*x, B

by B#, and A by A®. (This two-form was used by Sternberg in[1977).
Guillemin and Sternberg investigated this form in detail {1985, ch.
40, prop.40.1] and proved the first part of Theorem 1. In remark S
below we show how to obtain () as the pull-back of a form on T*B, )

in Theorem 1 below we show that Q is nondegenerate in a
neighborhood U of Bx(0). To describe this neighborhood U, as well as
to state the theorem, we wiil develop some more notation. we begin
by fixing the names of elements in the various spaces, and their
projections:

(b,u) € Bxg*,
e =p(b,u) =[b,u) e Bxgg* ~ E
x =1(b) =ni(e) = n(p(b,u)) ¢ S
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p: Bxg* — E,
n:8, E~5 .

Note that we use the same letter 7 to denote the two bundle
projections onto S, but this should not cause any confusion.

Let F denote the curvature of A and h the horizontal 1ift for A
F will be thought of as either a two-form on S with values in E* =

Bng or an equivariant two~form on B with values in ¢, whichever is

more convenient. The relation between the two is:
<, FO(v,w) = <t F(bXhv,hw)> .

On TS consider the antisymmetric bilinear form
we = w(x) - <e,F> [1.2.2]

(“’e is an element of AZTX*S, and not a section of A2T*S, that is, it
Is not a two-form. However, we will sometimes abuse language and
call w, a two~form. If one wished to make it into a legitimate
two-form defined on a neighborhood of x, one would have to replace
the element e of E with a Jocal section y—ely) of Ad¥(B) ~E.). The
neighborhood U on which Q is nondegenerate consists of

those (b,u) for which w, is nondegenerate. Fix x. Then the
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set of e in E, such that w, IS non-degenerate (that is the set p(UXE,)
{s 2 Zariski-open subset of E,, since it is compiement of the solution

set of the polynomial equation detwg = 0. See the picture at the end
of the next section for a class of examples where the solution set of
the equation detw, = O 1S the union of  Tinite number of affine planes

in €, When dim(S) = 4 and dim(E,) = 2 examples can be given such
that this solution set is any given conic section not containing the
origin. '

Let the inverse of we (as @ map TS — T*,5) be denoted by

JeT*S— T,S. Forec plU)anda ¢ TS define Zo(a) by
Jgle) = Jgle) + Zgla) .
Note that Jg(a) ts thg inversg of w=w, Now
welZg(a), " ) = wel Jola), ) = w (Jgle), * )

= o - wg Wgle), * ) + @F(Jofe), - »

= @ o), " P
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Lo(a) = Je(<e,F( Jolat), - »)

Finally, set
Z¢ = Zgldf) .
so that
“’e( g, )= <eFXq, »

where X; = Jo(df) denotes the Hamiltonian vector field for f with

respect tow, (pot we)‘
The rest of the notation needed to state Theorem 1 is the same
as was needed to state the global bracket formula at the end of the

previous section: h:S—+E denotes a local section through € = n(x) which

is covariantly constant at s (Dh(xX) = 0), the curvature F of A is tobe

interperted as a two-form on S with values in E* = Ad(B), and dyf(e)

€ B*, denotes the vertical diff erential of the function f on Eate
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Iheorem 1. Q is a symplectic form on the neighborhood U
(described above) of Bx(0) in Bxg*. The G action (b,u)—s

(bg,Adg*u) is a canonical action. The projection B x g* —» g%
is the momentum map for this action.
The corresponding Poisson reduced space FE = Bxgs*

has Poisson bracket given by:

(1.g)(e) = (™1, h¥g)g(x)+ <&,F(Xper, Xpag)(X)> ¢ <e,(d. 1, ab
s tefs Xpg dy

¢ Qf(ln&r, Xh&g)(X» [PB.2)

The Hamiltonian vector field corresponding to the function
N*F, F afunctionon S is

Xpywg(€) = hog(dF) = NXe + hoZite) .

The symplectic leaf of E through e = [b,u] is the space
Bxg® (8 is the co-adjoint orbit through u), with the

symplectic structure given to it by Sternberg. The
symplectic form on this leaf at e with respect to the

connection-induced identification T,(Bxg8) = TySeT 0 is

we®wg where wg is the + orbit symplectic form on ®.
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Before we prove this theorem, we make several important
remarks, backed up by theorems. The first four remarks have to do
with the cross-curvature term ;

(e,F(anr, Xn*g)(X)X

Remark 1. Using the definition of Z;, we note that the

cross~curvature term satisfies
(e,F(Zh*f, Xh*g)()()) = we(Zh*f, Zh*g)(X)

This  substitution makes the brackets ([PB.2] manifestly
skew-symmetric.
The brackets [PB.2] can also be rewritten

(f,g)(e) = (h*f, h¥*gla(x) + <e[d,f, d,qb [PB.2%)

where (F, G)e(x) is defined to be wa(XXJg(dF), Jo(dG)), for F and 6

functions in a neighborhood of x. To see this we compute

wglJg(dF), Jo(d6) = weldoOF 12, Jo(dG)+Z)
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= wlJg(dF), Jy(dG)) - <e,F(Jo(dF), J,(d6)»
+ welJoldF),Z6)* wylZp, Jo(dB))* welZp.Z5)
={F,G)5(x) ~<e FXe, Xgh+<e,F(Xg, Xgh+<e,FlXe, Xgh+<e,F(Zp, Xg)
* {F.G)g(x)s<e,F(Xg, XD+ <@ F(Zp, X

Now, set F = h*f, G= h¥*g and compare with [PB.2].
Since {(h*f, h¥*g)g(x) = an*1(J dh¥*g), we see that the Poisson

bracket blows up precisely at the points e where w, becomes
gdegenerate. i on the complement of p(v).

Bemark 2, If the cross-curvature term is zero, then the bracket [PB.2]
reduces to the Intrinsic bracket stated at the end of the previous
section. The relevant fact which makes the cross-curvature term
disappear here Is that kerf 1S a co-isotropic distribution on S . That
is, for each x ¢ S, kerf, CT¢S contains a Lagrangian subspace of TS
(wWhen we say “kerf", we are thinking of F as a vector bundle
endomorphism, TS — Hom(TS5,Ad(B)).) We use the word ‘distribution’
in the generalized sense: the rank of kerf, is allowed to change as x

varies.

Ineorem 2. The cross-curvature term <e,F(Zpxq, Xpug)(x)>

is zero for all f,g, and e if and only if kerf is a
co-isotropic distribution on S. If this is the case then ( is
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globally a symplectic form on Bxg*.

We will give the proof of this theorem below, following the proof
of Theorem 1.

Corollary. Let S = T*X and B be the puli-back bundle of a
principal bundle over X. Then the intrinsic bracket formula
{PB.1] of §1.2 is valid.

Proof of the Corgllary, According to Theorem 2, we need only prove

that kerf is a co-isotropic distribution. The Poisson structure of the
previous section is obtained by the construction of this section if we

take 5= T*X, A to be the pull back of a connection Ay over X. ThenF =
1*Fx where g T*X-X is the cotangent projection and Fy is the
curvature of Ax: [ In the previous section, the present A went by the
name of A¥, and the present F by the name of F*. The present A, was
called A in the previous section, and the present Fy was called F.]
Hence kerf = {Y ¢ TT*Q; Fu(TrgV, ") =0)cketha. In coordinates , kerf

contains all the 3/9p's, and perhaps some of the 3/9q’s (namely, the

3/2q’s spanning kerf ) and hence is co-isotropic. e

Remark 3. There is a local converse to the fact that the

cross-curvature term is zero in the Yang-Mills case. From the Bianchi
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identity one sees that kerf is an involutive distribution. If it is also
co-isotropic, then locally it contains a polarization (involutive
Lagrangian distribution) A and Jocally Q =S/A is a manifold, with
S=T*Q, where the fibres Tq*Q correspond to the leaves of A. Since
the curvature Is zero along these leaves, A is the pullback of a
connection Ax for the principal bundle Bu—~Q, where By is the

restriction of B to the zero section of S=T*Q. Summarizing:

Iheorem 3. If the cross-curvature term is zero then locatly
S=T*Q and the connection A on B is the pullback of a

connection on Blyerg-gection Q- !N Other words, locally the

situation is that of the previous section.

Note that the existence of such a connection, that is, a
connection whose curvature has co-isotropic kernel, is a “symplectic
bundie” invariant. By this we mean that if B~S admits such 2
connection and
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is a bundle isomorphism with ¢ symplectic, then B'=S' admits such a
connection.

Remark 4. Recall that a polarization of S is a Lagrangian
distribution. To say that kerF is co-isotropic is equivalent to saying
that it contains a polarization. Complex polarizations are important
in geometric quantization and may have consequences to the work
here. As evidence for this, we cite the fact that on a Kahler manifold
the 8/z% span a complex polarization on which the curvature
vanishes.

Work in this direction would probably involve complex Poisson
brackets. In this regard we take note of the following curiosity.
Consider the standard Poisson bracket on IRZ = ¢. Extend the bracket
to complex functions by complex linearity. Then one finds as a
consequence of the Cauchy-Riemann differential equations (or more

picturesquely, by thinking of z and 7 as canonically conjugate
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variables) that the bracket of two holomorphic functions is always
zero. This fact remains true if IRZ is replaced by IR2D = ¢". The
calculation is almost identical to the n =1 caiculation.

Bemark 5. As suggested by Weinstein ([1978), and in conversation)
the form Q of {1.2.1] on Bxg* is the puliback of a form on T*B. The
form on T*B 15 §§ zwg + (pr*wg where wg = -08g 1s the canonical

Symplectic form and pr is the projection T*B—B—S. Embed Bxg*
into T*B by the composition

Oxid. ®(A)
Bxg*————B*x g*——T*B

where B* c T*B, and ®(A) are as In §1.1, and O Is the zero section
b0y, € B,*cTp*B. The pullback of { by this embedding is Q. The

embedding is also G-equivariant, so it induces an embedding of Ad*(B)
into T*B/G. This is not a Poisson embedding, but its image inherits a
Poisson structure (with possible stngularities) from that of T*B/G in
the same way that a submanifold which is transverse to a symplectic
leaf in a general Poisson manifold inherits a Poisson structure
(called the "transverse” Poisson structure, see Weinstein [1984, prop.
1.4]). Our embedding ¢ is an isomorphism between Ad*(B) with the
Poisson structure of Theorem 1, and its image in T*B/G with its
inherited Poisson structure.
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Proof of theorem |

The connection A defines a decomposition:
Tib,)(Bx0%) = TyS xgxg®, given by (Y,a)->(Tn, Y, AY,)  [123]
with the inverse isomorphism given by

(V,K,d)->(l’bV'obX, o)

where h,:T,S —T,B denotes horizontal 1ift and op¥ +T,B denotes the

infinitesimal generator operator. Now

O<GLA> = <udA> + <dp A A

= <P -<p [AAD ¢ <dp A A

where the notation is self-explanatory. Relative to our

decomposition, we have:

Q((V] ,K],d 1 ),(V2,32,d2)) = OKV‘,Vz) - <u,F(hV‘,hV2)) * <Y, {¥ 1 ,32])

- Lo ',32) + (d2,xl)

= w(v;,vz) - <e,F(v,,v2)> <, [K|,52]> IR PIARTIR S
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= we(Vj,V2) + <, [“.‘2]’ - <y ,32) + <d2,¥1> [1.24] .

Note that this two-form can be written weBo(i) on T,S&(gxg*)

where o) is given by the last three terms of [1.2.4]. In coordinates
olu) is of the form (V|
-1 A

which is always invertible. Thus Q(b,u) 1s nondegenerate if and only
if wg is. This proves that 0 is symplectic precisely on U

The decomposition dual to [1.2.3] is
Tip,u)™B x g*) = T, S xg™xg, by (8,8 »—=>(hy*8,0 ,*8,¥) [1.2.3%]
with inverse
(0,6, >(TH p*E+A ,%d,X).

it will be heipful to calculate the vectors Q-dua! to each of the three
types of covectors in this decomposition.

Acovector in the first factor has the form (8,0,0) with BeT *S.

Now
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(B,0,0)'(Vz,"z,d2) = B'V2 = we(Je(B).V ]) = Q((Je(B),0,0)),(V2."2,0(2))

which shows that the 0-dual of (8,0,0) is (Je(s),0,0) =
(Jo(8)+Z,4(8),0,0).

Under our decompositions, (8,0,0) corresponds to
(%8,0)=p*7r*B ¢ Ty *Bxg and (Jy(8)+Z¢(B), 0,0) to (hyJy(8)*hZ(8),0)
€ TpBxg*. Set 8 = dF where F 15 a function on S. Then the Hamiitonian
vector field on B x g* corresponding to p*n*F is (hyXe*hpZp(e), 0},
Since p is a Poisson map, and since the horizontal 1ift hy: TXS—-oT eE is
equal to Ty, |, pe(hy@0), we see that Xyuple) = heXp ¢ hoZple)

as stated in the theorem .

Acovector in the second factor has the form (0, «,0) where
o € g*. According to formula[1.2.4]

Q( (0, 0,-a), (vz,xz,uz)) =0+0 +<¥>+0
50 that the f1-dua! to (0, ,0) 15 (0,0,-«).

Finally, 2 covector in the third factor has the form 0,0,¥),
¥ ¢ §. Its dual vector is (O,x,ad,*u) since
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(0,0,¥1(vp,¥,a0) = <ap,¥>
= <, [%,9b - <, [¥,65D + <y, ¥>
= ), [¥,%D - cadp, ¥ ¢ @, ¥>
= Q((0,%,a0* ), (vp,¥p,a0)) .

Now (O,x,ad,*ui corresponds under our decomposition to the
infinitesimal generator ¥pxgn Under the ‘diagonal’ right G action.
Thus the preceding calculation says that this Infinitesimal generator
is the -Hamiltonian vector field for the Hamiltonian <n,,¥> where
T, is the projection Bxg*~g*. This proves the claim that %y s
the momentum map for the diagonal G action .

From the general theory of Poisson reduction [see appendix), it
follows that the symplectic leaves of E are the submanifolds
J7%6)/6 = B x56. The symplectic form on a leaf is obtained by
adding "2*“’(9 = J"’wo, where wg is the +orbit symplectic form on ©,
to Q2 restricted to Bx® = J~(®) ang pushing the resulting sum down
toJ”1(©)/6. So, the form on J™}(6) = B x8which one pushes down is
T*wg - d<,A> + Tio™ wy. This 1s precisely the form which Sternberg
[1977] pushed down to get his pre-symplectic structure on B xgO.
This proves that the symplectic leaves of E are the spaces
Bxg® with the symplectic structure given to them by
Sternberg .

We now show that the symplectic form on the leaf Bxg® is
given by our formula wedw g. According to the above paragraph it
suffices to show that p*w 8w g = *No*wg. Relative to the
decomposition [1.2.3] and the connection-induced decomposition TE=
T,Sxg* the differential T(b, up s given by (v,¥ ,u)-—o(v,a-ad‘*u). Let
Xy» X2 € T(p, ,)BxO. With respect to our decomposition, X; =
(v, ¥p,a;), for i = 1,2, where o = ad™(8 ) (since «; ¢ T,0). Set X

TpX; sothat X; = (v;,a0(8,~¥;)*u). Then

p*(weﬁwe)(x 1 X2) = weﬁwe (R.l .Yz)
=wg (V], V2) + w@( ad(s ,-K‘ Py, 30(82’32)*].1 )

= wg (V,, V2) +<,l8 |‘x‘, 32“2)) .

where in the last equality we used the definition of wg. From

formula (1.2.4) we have

Q(x,. XZ) ’ﬂz*ws(x |- Xz) = we (Vl, V2) + <, (1“,1‘2]) - <d‘,52>
* (dz,x‘> + (De(d‘, dz)
=wg (v, Vo) + <, [Xp‘zb -<ple ],7‘2]> + ﬂ-l.(Bz,‘]])

+<uis 1 ,32]>
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= we (Vi vo) + <, [B1-¥), 85-¥) .

where in the second equality we used «; = ad*(8;)u. This proves the

final claim of the Theorem: the symplectic form on the leaf
BxgO is wlug.

We are now in a position to compute brackets on €. Call a
function horizontal at e if its differential annihilates the space of
vertical vectors at e, and vertical if its differential annihilates the
space of horizontal vectors at e. We will only calculate brackets for
functions which are either horizontal or are vertical at the point e ¢ E
In question. The differentials of such functions clearly span THE
Thus if we show that formula [PB.2] holds for the three possible
combinations: (horizontal,horizontal), {horizontal,vertical}, and
{vertical, vertical], then we have proved the validity of that formula
(since both sides of this formula depend oniy on the differentials of
the functions at e, and in a bilinear skew-symmetric way).

Ihorizontalhorizontall The horizontal functions at e are all of

the form m*{ | f a functionon S (i.e. any horizontal covector at e can
be written m®df(x)). We have

(%1, Ti%gl(e) = (Pt prmr*g)g, g(b,u)

Now
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(X1, p* gl gu(D,i) = O (hyyy(d1),0, (hyJg(dg),0) )
= welJg(dN,Jp(dg))
= {1.gle(x)
Note in remark 1, we showed that (f,glg(x) = [f,glg(x) + <e,F(Xy, Xg)x)>

* <e,F(Zy, xg)(x» .

ﬁm_ga]m To calculate brackets with vertical terms it is
helpful to have a nice representation of these functions. Any
vertical function can be written as pairing with a
section ¥ of E* which is flat at x. That such a function is
vertical eastly shown:

d<e,y> = @Dy Tm + <de,y> = <de,y>

where de denotes the vertical projection onto Ey. That all vertical

differentials arise in this way can be seen by a dimension count. As
usual, ¢ can be thought of as an equivariant function B—g which will
also be denoted by ¥. The puil-back by p of the function e——s <©,p(x)
is the function

(b, )—e <, y(b)>

In order to apply our formula for Q we must compute the differential
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of this function relative to our decomposition, . Its differential with
respect to the y slot 1S clearly ¥(b). Since <, w(bg) = (u,Adg-lv(b»,
\ts differential with respect to 3 verticil vector op¥ 15 <,lw(b), 8D
= (M,(b)*u,t >. Finally,since ¥ is fiat at x, dy is zero on any

horizontal vectors at b. Summarizing, we have, relative to our
decomposition [1.2.3%] of T*(Bxg*),

dp*wlp,p) = (0, ad,(b)*u, ¥(b))

where, by abuse of notation, we let y also denote the function on
£ which it defines via pairing Thus the Hamiltonian vector on Bxg*
corresponding to p*¥ 1S
Koy (D,10) = Q-0ual of[ (0, Ady(py*1, 0) *+ (0,0, ¥o) |
= (0, 0,-Ady(p) ™K, ) * (04(D), Ady(p)*H.)
= (0,%b), 0)

{horizontalverticall

{ner, 9} = (pm*f, Prwl gygw
= QX + 21,0,0), (0,¥(D), ON)
=0

{horizontal. horizontal X

(w,9) g = [p*w, P*@lgygn
= 0((0,¥(b), 0),(0,¢(b), 0))
« <y, lw(b), (D)

To see that these three expressions agree with the left hand side
of [PB.2], we simply note that horizontal functions f satisfy = h*n*(
since T+h = identity, and that vertical functions ¥ satisfy ¢ = Oy¥
and dhty =0 (since Dy(e) = 0). This completes the proof of Theorem

fFor completeness, we record the Hamiltonian vector field Xw on

£ corresponding to the function ¥ ¢ T(E*), thought of as a fibre-linear
function on E. We use the representation of vertical functions used in
the proof of the theorem. We have pry(b,u) = ¢, ¥(b) [taking
advantage of the same abuses of notation that we did in the proof of

the theorem.] Then we calculate that dp*¢(b,p) = (<u,Dy>, adw(b)*u ,

¥(b)). So the Hamiltonian vector field for p*y at (b,p) is

Koy = Q-dual of ((<u,Dy>, 0,0)+ (0, ad‘,(b)*u , ¥(bM}

=(Jel<u,D¢>l, 0,0)+(0,%(),0)

Pushing X down to E by Tp yields:
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Xy (€)= heJg(<e,Dy>) + yle) {1.25]

Here ¥ is the infinitesimal generator corresponding to ¥ ¢ I(E*) =

F(Ad(B)), the Lie algebra of the group of automorphisms of B. This
group acts on the left on E® by vector bundle automorphisms.

Proof of Theorem2:

Any differential df at x ¢ S equals dh*m*f(x). Any vector at x
Is of the form X¢ for some f. As e runs over Ey . 4 runs through g*,
where e = [b,u), and e, F(ZgXghx)> = <WF(RZp,AXg)b). Therefore, the
cross-curvature term is zero if and only if Z; € kerf for all functions
fonS. We show that (2y: f a function on S) = (kerF)w e whenever
we 1S nondegenerate It follows that kerf is w-coisotropic
((kerF)"PETP ¢ kerF) if and only if Z; ¢ kerF for all functions f on S.

We start by recalling some notation. If A is a subspace of TS,
then A° denotes the annihtlator of A, which is a subspace of T,*S.
Let J T 5= 1,5 (Je:Tx*S-o T,S) denote the isomorphism induced

by w (wg). S0 X = J(df), and Jol<e,F(Xg, - ») =2, Now we record
some elementary facts:
(1) (<eF(Xg, X e ¢ E,, f afunctiononS) = (kerF)O.

(ii) (kerFY&~PEMP u (xerf)weDerp
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(1) KA0) = A WPEIP, g (A%) = AWe™PEP, for a1 subspaces A of

1,5.

The only one of these facts which is slightly tricky is (if). If
Ze kerf, then for 211 v, w(Z,v) = wy(Z,v). Hence for fixed v, If one side
is 2ero for all Z € kerf, then so is the other side.

Using (1), the definition of Zg, and (1ii), we see that (Z;: f a
function on S} = (kerF)“e™PErP. Using (i1), we have (Z: f a function on
S} = (kerf)“™PErP. therefore (2: f a function on S}  (kerF) iff

(kerF)wPErPC kerf.

Finally we show that if kerF is co-isotropic, then w, is always

nondegenerate. Pick a Lagrangian subspace contained in kerf and a

Darboux basis for TXS, the 1ast half of whose elements span this

subspace. Then, relative to this basis:

w=01
-1 0

and <e,F> has the form

FO
oo ,

S0 that w, has the form
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-F1
-10

which is always invertible. Its inverse is
0 -1
1 -F.

This demonstrates that wg IS nondegenerate and completes the proof

of Theorem 2. o

$1.3 The Normal Bundie to a Co-adjoint Orbit and
Poisson Fibre Bundles.

Introdyction.

In this section we investigate Poisson structures on the normal
bundie N(L) to the symplectic leaf L of a Poisson manifold P. We yin
be concerned mainly with the case L = ® a reductive (deriﬁed Vbelow)
co-adjoint orbit in P = g% (Every co-adjoint orbit is reductive if G
admits a bi-invariant Riemannian metric, and in particular if G is
compact.) These structures will give examples where the
cross-curvature term of the previous section is not zero, and also
where the Poisson structure blows up. The reader is urged to look
ahead near the end of this section where the example N(S2) for G=
SO(3) and N(principal orbit) for G=SU(3) are presented.

Returning to the general case, the fibres of N = N(L) inherit a
linear Poisson structure from P. On the other hand, one can use an
exponential map N—P to pull back the Poisson structure on P thus
obtaining a Poisson structure on N in a neighborhood of its zero
section. This Poisson structure induces the transverse Poisson
structure (see Weinstein [1984] for a definition) on the fibers of N. If
these two Poisson structures on the fibers of N are equal we will call
the exponential map a “simultaneous linearization™ of L and will say
that L is "simultaneously linearizable". Reductive orbits have a
natural exponential map N(@)—g* Molino {1984] noted that this map
is a simultaneous linearization of ©.

A simultaneous finearization of N(L) provides a way of putting
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together the Lie-Poisson structure on the fibres of N and the
symplectic structure on the base L of N ‘in order to obtain a Poisson
structure on N. In the previous section, we saw how to do a simitar
type of splicing: we used a connection to put 2 Poisson structure on
Ad*(B) where B is a principal bundie over the symplectic manifold L.

Now B=G—6=6/6 M is a principal Gu-bundle where Gu is the isotropy

group of an element | of ©. In the case where © is a reductive orbit
there is a natural G-invariant connection on this principal bundie. (In
fact, the existence of such a connection 1s equivalent to © being
reductive)) 1t also turns out that in the reductive case the associated
vector bundle Ad*(B) to B=G is identifiable with N(8). So, if we apply
the construction of the previous section to this situation, we obtain
another Poisson structure on N(@) in addition to Moiino's. The basic
result of this section [Theorem 1 below] is that these two Poisson
structure agree.

This result can be proven as a corollary of the work of
Guillemin and Sternberg [1985], as we show in remark 2 below
[p.51-52]. However Guillemin and Sternberg do not state or prove the
result. The proof which we give is self -contained.

As a corollary to Theorem 1, we get a singularity theorem,
which says that the set of points where Molino's Poisson structure on
N(©) blows up equals the set of critical points of the exponential map.
“(This theorem is not obvious, since for a general simultaneous
linearization of L it is not true that critical points of the exponential

map are singularities of the Poisson structure on N(L).) Nice

S0

examples of this are provided by Molino's Poisson structure on N(SZ),
and more generally on N(®), © a regular co-adjoint orbit for G a
compact group.

The lay-out of this section is as follows. First we discuss the
fiber Poisson structure on N(L) and put it into the more general
context of what we call “Lie-Poisson vector bundles™. We then review
the notion of linearizing the Poisson structure at x € L as discussed
by Weinstein [1984] We will prove that if P is linearizable at x, then
L is simuitaneously linearizable (the converse is obvious). This proof
was shown to me by Weinstein. Thus linearizing is equivalent to
simuitaneously linearizing. Even so, we feel that the concept of
simultaneously linearization is useful, if for no other reason than
that it generate interesting examples of Poisson manifolds ang of
singularities of Poisson structures. After this we will discuss
structure groups for N(L) and for Lie-Poisson vector bundles in
general. After these preliminaries, we come to the body of this
section, which is the investigation of the case L= © a reductive
co-adjoint orbit. We define the two Poisson structures on N(©), and
prove in Theorem 1 that these two structures are equal. Finally, we
will prove the Singularity Theorem concerning how the Poisson
structure on N(©) blows up, and illustrate this blow-up with the
examples N(52) and more generally N(®), © 2 regular co-adjoint orbit
for a compact G.
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The Normal Bundle as a Poisson Fibre Bundle.

The normal bundle has fibres N, =T,P/T L. So any linear function
on the fibre N, can be written df(x) where f is a function on P which

1s constant onL. The Poisson bracket on Ny is then given by

(df(x), dgaly =(alf,gpXx) .

A submanifold of P which is transverse to L at x inherits 3
Poisson structure in a neighborhood of x , cailed the transverse
Poisson structure at x . Any choice of a transverse submanifold
yields a locally isomorphic Poisson structure, and the local
isomorphism class of this Poisson structure is independent of which
x ¢ L is picked. Another way of characterizing the Poisson structure
on N, is that it is the linearization of the transverse Poisson

structure to L at x. For more details see [weinstein, 1984 The

linearization problem for Poisson manifolds asks: “Is Ny

Po!sson-isomorphib 10 the transverse Poisson structure at x?” if this
is the case we will say that P is linearizable at x. The linearization
problem is discussed In detail by Weinstein [1984]. Since the
transverse structure is independent of the base point x € L, we see
that if P is linearizabie at x, then it is linearizable at any other point
y of L. it 1s thus proper o spesk of on entire leaf L es being
lineerizeble or not. This leads us to suspect thet if L is linserizeble
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then it is in some sense “simultensously lineerizable™. We heve
olready defined a concept of simulteneous lineorizability in the
introduction. However it will prove useful to give enother
equivalent definition in order to prove this conjecture. We begin with
some definitions.

A Poisson fibre bundle fs a fibre bundle E whose ibers Ey

have a Poisson structure which varies smoothly from fibre to fibre. '
If all the fibres are Poisson isomorphic, we wili call the fibre bundie
a regular Poisson vector bundie. If the fibre bundie 15 a vector
bundle and if on each fibre the bracket of linear functions is linear
then we call E a Lie-Poisson vector bundle . N(L) of the present
section and Ad*(B) of the previous section are exampies of regular
Lie-Poisson vector bundles over symplectic base manifolds. The
Lie-Poisson vector bundle structure on E = Ad*(B) is obtained by

putting the Poisson structure on the fibres E, = §* which they inherit

as transverse manifolds to the zero-section, which is a symplectic
teaf in E. This Lie-Poisson vector bundle structure on Ad*(B) is
independent of the choice of connection on B.

Arealization of a regular Lie-Poisson vector bundle £ over a
symplectic base is a Poisson structure on a neighborhood in the total
space £ which contains the zero section and such that

(i) the zero section S—E is a Poisson map (in particular its image is
a symplectic ieaf in E)
(ii) the transverse Poisson structure on the fibres agrees with the



S3

Poisson structure they inherit from the Lie-Poisson vector bundle
structure.

Example: The Poisson structure on Ad*(B) is a realization of
its Lie-Poisson vector bundie structure.
We are now in a bositlon to state the

Simultaneous linearization problem: Is there an exponential map

N —P such that the pullback of the Poisson structure on P to N is a
realization of the Pvb structure on N7

If such a map exists, we will say that P is simultaneously
linearizable about L, or simply that L is simultaneousty
linearizable and we call the resulting realization a linearizing
realization.

(By an exponential map, we mean 2 map exp:N—P satisfying:
(i)The composition

0 exp
L—N—ul

is the identity, where O denotes the zero section of N, and (fi). the
composition

To(x)exp
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Ny ~oee VO(X) e TO(X)N ——— T P— TXP/T oL =Ny

is the identity, where V=kerTm ¢ TN denotes the subbundle of vertical

vectors and the first isomorphism is the usuai one between Ve and

E'n(e) for any vector bundle E. It follows that an exponential map is

an tsomorphism in a neighborhood of the zero section. The usual
exponential map induced by a Riemannian metric on P {s of course an
exponential map in this present sense.)

if L is simultaneously linearizable then U ¢ N(L) is Poisson
isomorphic to a tubular neighborhood of L in P. 1t will not in general
be true that N is isomorphic to all of P.

We conjectured above that if L is a linearizable leaf then it is
in fact simultaneously linearizable. We now show this. Suppose that
L is linearizable. Let ECP be a tubular neighborhood of L and E—L the
corresponding projection with fibres Ex‘ The Ex are transverse
manifolds to L. As such they inherit the transverse Poisson
structure, so that £ becomes a Poisson fibre bundle. The fact that L is
linearizable means (after perhaps making E smaller) that for each x ¢

L there is a Poisson isomorphism @y:Ny—E  and which agrees to first
order with the natural linear isomorphism Nx—oT xEx- The problem is

then to put these isomorphisms together In a smooth way in order to
form a fibre bundle map ¢:N~E. Such 2 ¢ 1S an exponential map, and
the pull-back by ¢ of the Poisson structure on EcP to N is a
realization of the Lie-Poisson vector bundle structure of N. To see
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that ¢ indeed exists, consider the bundle Hom(N,E) over L whose fibre
over x s the set of such Poisson maps ¢y Our hypothetical ¢ is a
global cross-section of this bundie. We will show that the fibers of
this bundle are contractible, and hence that such a global
cross-section ¢ exists. If ¢, ¥, ¢ Hom,(N,E) then (px"'xx is a
Poisson automorphism of Ny whose differential at O is the identity.
Thus the fibre of Hom(N,E) can be identified with the subgroup of all
Poisson autmorphisms of g* whose differential at 0 is the identity.
Now, I ¢ is o Poisson eutomorphism of g*, so is 9. where () =

1/Ug{ty)). As 1—0, v —Dw(0). This demonstretes thet the group of

oli Poisson automorphisms of g* can be contracted onto Aut(s*), the
group of lineer Poisson sutomorphisms of g*. Morsover, if ¢ is in our

subgroup (1.e. Dy(0) = Id), then so is w,. But then ¥o = De(0) = id, s0
we have shown that our fibre is contractible to a point.

The structure group of a general Lie-Poisson vector bundle can
be reduced from GI{g*) to Aut(g*), the group of linear Poisson
automorphisms of g% The structure group of N(L) can be reduced
further in the sense that one can put a finer topology on Aut(g*) so

that there are fewer allowable transition functions. The standard
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topology on Aut(g*) is the one it inherits as a submanifold of Gl(g*).
To obtain the finer topology, consider the fibration

In(g*)— Aut(g*)—Out($*) where Out(g*) = Aut(g*)/In(g*) and where
in{g*) is the (normal) subgroup of inner automorphisms of Aut(g*).
The group Out(g*) of outer automorphisms shuffles around symplectic
leaves of g*. Since flows generated by Hamiltonians cannot shuffie
leaves around, and since Hamiltonians on P can be used to generate
the transition functions for N(L) the transition functions for N(L) can
be taken to have locally constant Out(g*) components. For more
details, see Dazord {1984). To guarantee that these components of the
transition functions are locally constant, we put the discrete
topology on Out(g*). The topology of In(g*) remains the same. That is
to say, the finer topolgy which we take on Aut(g*) is the one which
makes the fibration isomorphic Out(n*)discretex In(g*). If g is the

semisimple Lie algebra for a compact group then Out(g*) is finite, so
that the two topologies on Aut(g*) are the same. Ai the opposite
extreme, if g is Abelian, then Aut(g*) = Out{g*) = GI(g*), and is to be
taken with the standard topology for arbitrary Lie-Poisson vector
bundles, but with the discrete topology for normal bundle to
symplectic leaves.

As an example, consider the tangent bundle to the sphere, TSQ.
This has the structure of as a Lie-Poisson vector bundle over the
symplectic manifold 52 where the fibres IR2 have the trivial Poisson
structure. This Lie-Poisson vector bundle cannot be the normal bundle
of 52 as the symplectic leaf in some Poisson manifold. For, if it
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were, we could reduce the structure group to that of GI(R?) with the
discrete topology, and any bundle with a discrete structure group over
3 simply connected manifold is a trivial bundle, which 152 s not.

Normel bundle to ¢ co-adjoint orbit,

From now on we will restrict our attention to the casel =8, 8
co-adjoint orbit in P = g*. It is known that there are Lie algebras, for
example ${(3,8), whose duals contains nonlinearizable co-adjoint
orbits. Weinstein [1984] proved that reductive co-adjoint orbits
(defined below) are linearizable. Molino [1984] then constructed o
simultaneously lineerizetion for reductive co-adjoint orbits.

Let u « 8end gy, denote the isotropy subgroup of u. Then  is

celled reductive if there is 8 vector spece splitting

=9, 0u, {1.3.1]
of g satisfying

gy .mylcn, . (132)

It 6 has o bi-inveriant positive definite inner product, then every
element is automaticelly reductive, with By = nuﬂ. i pis

reductive, then every element gy = Adg-l'u of 8 is also reductive

with corresponding splitting
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§ = 9gu ®ngy
where
Squ :Adg-llu 3 Igu=Adg-lI" .

We thus speak of the entire orbit 8as baing reductive.

Using the reductive splitting [1.3.1], Molino {1984] constructed
an exponential map N = N(8)—g*, which simultaneously linearized 8.
The reductive splitting also induces & natural connection on N—8, so
using the construction in §1.2, we get another Poisson structure on N.
We will show thet these two Poisson structures on N are actuelly the
some.

Molino’s exponential map is

{y,c)=->y+a
where we have identified the normal bundle N with pairs

(ya), ye ® , ae uy =annihilator of ny
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Note that I the reductive splitting is induced by a bi-invariant inner
product on ¢ as described above, then Molino's exponential map is the
standard exponential map for the normal bundle of the submanifold ©
in the Euclidean space g* Molino's Poisson structure on N is the
pull-back of the Lie-Poisson structure on g* by this exponential map.

To describe the connection-induced Poisson structure on N it is
helpful to begin by working in a more general setting. A vector space
splitting

g=kon

of the Lie algebra g is called reductive, if its factors satisfy

kkick [1.3.1a)
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kuica [1.3.10]

that is, k is a subalgebra of g and m is a sub-vector space which is
invartant under the adg action. (if, in addition, the splitting satisfies

(w,m] c k then the corresponding homogeneous space is called a
symmetric space.) Th'ink of ® as the horizontal space at e ¢ G for a
ieft G-invariant connection on the right principal K bundle G—oG/k
where K's Lie algebra isk. The horizontal Space at g ¢ G is then

Condition [1.3.1b] is equivalent to the invariance property

TRng = Hgk' forallk e K.

which connection-defined horizontal subspaces must satisfy.

The corresponding horizontal and vertical projections on TG
will be denoted h and v. In particular at e, TeG = ¢, and we have the

projections

hg-u , vk

and the dual projections
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which satisfy
im(h*) = k*, the annihilator of k; im(v¥) =m".
The k-valued connection one-form A corresponding to this choice of

horizontal is easily described in terms of the Maurer-Cartan g-valued
one-form ¢ on G:

= -I
tpg(Yg) TLg Yg €y, ch TgG.
Then

Ag =Veg TgG-oi.

The curvature of the connection is left G-invariant and is given at the
identity by

FleX¥l)=-vi¥t]  ¥tem [1.3.3).

In our case, k = .8 ., K= G‘1 the isotropy group of p, and

Q= G/Gu. The dual projections are
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hiem eag R Mo, o
and satisfy

imth») = g,,° = TuG. the annihtiator of g,

im(v¥*) = au' = Nu.

The horizontal 11ft, hy: Tu0~ TeG = 9 is given by

Ne(Bgu()) = ¥ [13.4]

where the argument of he 1S the Infinitesimal generator of the (left)

co-adjoint action on @, namely
K,*(u) = -ady*u .

The normal bundie N is isomorphic as a vector bundle over © to the

co-adjoint bundle Ad*G = (G x ’u*)/Gu which is associated to the

principal Gu bundlie G —G/6 u= 0. The isomorphism
AAQG — N

is given by
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Mlg.al) = CAdg=1", Adg=1%vea) ¢ Ny, = guix g,

The prescription of §1.2 tells us to put the Poisson structure on Ad*G
which ts obtained by reducing leu* by the "diagonal’ right Gu action

where the symplectic structure used on ij“* is
Q= ‘n*we - d(d,A)

Here wy is the (-) orbit symplectic form on ®, and the §y~valued

connection one-form A on G is the one described above. By the
connection-induced bracket on N, we then mean the push-forward of
the Poisson structure on Ad*G toNby A

Iheorem {
Molino’s Poisson structure on N equals the
connection-induced Poisson structure on N.

The symplectic form w, which determines the

horizontal part of this Poisson bracket (see formula
(PB.2%] of §1.2) is given by

welNEge(), ¥guli) = <piee (L, XD INB1].
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The first part of this theorem can be restated as: “\:Ad*G —N

is a Poisson isomorphism where N has Molino's Poisson structure.”
The theorem is proved by using the foilowing two lemmas.

LEMMA |, The map i(g,a) = Tl.g—l*(nw*d) is a symplectic
embedding of Gxg,* ,with symplectic form 0, into T*6

with its canonical symplectic form. This embedding
satisfies

imT(g:q)i € [Ta(86) 17 (L

Here 8 = i{g,«) ¢ TQ*G, the 6 orbit 86 is with respect to
the right action of 6: 8'h = TRy,-1%s, and "0 denotes the

symplectic orthogonal complement in T*6. This embedding

is G"-equivariant, where the Gu action on T*6 is the
restriction of the right 6 action, and the 6, action on

6xgy,* is the "diagonal’ action.

The abstract setting for the second lemma is as follows. (5,Q)
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is a Hamiitonian K space, (P,w) a Hamiltonian G space, K is a closed
subgroup of G and i:5—P is a K-equivariant symplectic embedding.
S/K and P/G are assumed to be manifolds. The respective Poisson
projections are denoted 17:5~5/K and 1:P-+P/G.

LEMHMA 2,
Under the above hypothesis, If [ImTgil0 c T 6:p, whenever

p = i(s), then the induced map [i}: S/K~P/G is a Poisson map.

Before proving these lemmas, we use them to provide the

Proof of Theorem 1.
SetS = nyu*, P = T*G. Lemma | states that i satisfies the

hypothesis of Lemma 2. Hence
{1} Ad®G—g,*

(the subscript "~ denotes the minus Lie-Poisson structure) 1s 3 local
Poisson isomorphism, Chasing the definitions, one sees that

[iA™ ! NoAG*G-g*

is equal to the exponential map which Molino uses. it follows that A

is a ilocal) Poisson isomorphism. This proves the first part of
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Theorem 1.
To prove the formula [NB1), note from [1.3.3) and [1.3.4) that

<e,F(u)>(£,;,x’*) = -<,[£,¥]>. The formula now follows directly from

the facts that the + orbit symplectic form is w(p) zl*"ﬁ*) and the

definition, we(l) = w(it) - <e,F>(n), of wo @

Proof of Lemma !.

As noted in the previous section, a two-form of the type Q is
automatically nondegenerate, at least in a neighborhood of Gx{0}. So,
if we show that i*w = (0, we will have shown that the embedding i is
symplectic, at least in this neighborhood. Here « denotes the
canonical two-form on T*G.

It is convenient to think of i as the composition

j L
Gxg, *— Gxg* — T*G

namely
(g, c0)— (g, jL+v¥*ct)r—s TLg- 1¥(pev¥a).

The puli-back of the canonical one-form B on T*G by the left
trivializationmap L, is
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L*B(g,8) = ,9(g)

where ¢ is the Maurer-Cartan form on G described earlier (pulled back
to Gxg* by the projection onto the first factor). So

1%8(g,a) = w¥a,p(@) + <ju,p(gh
= <, p(gh + <a,ve(g)
= <)L, p(g) *+ <o, AlgD.
Hence,
*u(g,a) = ~i*dB(g,a)
= -}, 9{g)> -d<at, A(G)>

To prove our first claim, it now suffices to show that ﬂ*w0=

-d41,e(g). Let i denote the restriction of 1 to Gx(0). Clearly i™*w =
-d<u,(g)> . The image of i” is the left-invariant form generated by j,
which also equals Jr"(u) where Jr(eg) = TLg*eg is the momentum
map for the right action of 6. So we must show that i™*w = f*wg

But this is the defining equation for the reduced symplectic structure

on @ = Jr"(u)/Gu, which is known to be the symplectic structure
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Our second claim, inclusion {L1] follows immediately from the
canonical dual pair structure

Jr J|=Tl

T*6

g%« g L

on T*G. Here J) is right trivialization,

J8g) = TRg¥8g

which is the projection for the right G action (and the momentum map

for the left G action). If we freeze o ¢ gu*, we have i(Gx{a}) =
~1 i -1 =

Jp v Thus, Im Tigg o) 3 Ti(gay Jr (Hev¥e) = Ker Ticg ) Jp.

Taking the symplectic orthogonal complements of both sides of this
inclusion yields the desired result:

[im TI(g,d)]D c [ker Ti(g,d) Jr]D = kerTi(g,d)ﬂ

where the final equality is true by definition of dual pair.

The final claim of this lemma, that i is G“ equivariant, is a

straightforward verification.e
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Proof of Lemma 2.

The relevant commutative diagram is

=

w
"~
~
-
~.
[}

diagram 1.3.1

Let f and g be functions on P/G. We must show that

(111], gelill i = (1, glpieeli] -

This is equivalent, by definition of reduced Poisson structures, to
showing that

O(Xf.[‘]'n, xg'[l]'ﬂ) Fw (Xf'n,XQOH)
But 2 = i*w, s0
mxf'“]"ﬂ. Xg-m'ﬂ) = “’(Tixf'[i]'ﬂ, Tng-m-n)

Hen;:e it suffices to show that
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Xpeqy = Th¥pepipeny (1.3.2]

First, we show that Xgep; is in imTi. Clearly Xpopy € [kerTNO, since if
ve kerTTl, then w( Xpeqp¥) = of-TR-v = 0. But kerTN -TpGp > [imTilo,

50 Xgopy € [kerTHIIO € tmTi. If we can now show that
@Xpe, TV) = wlTiXgapypeq TV, forallve TgS (13.3]

then we will have shown {1.3.2] ( since imTi is a symplectic subspace
of TpP, $0 that the pairing defined by oljmTi IS nondegenerate ). But

“’(Tixf'[i]'n, Tiv) = I*w(xf.m.ﬂ'v)
= QpefippV)
= d(fefilom)v
= d(fellei)v
=d(f.MTiv

= (I)(Xron, TIV)

This completes the proof of lemma and hence of Theorem 1. o
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Remarks.

1. Up to coverings, the investigation just completed is the
investigation of Poisson vector bundles whose base space is a
symplectic homogeneous space G/K with associated principal bundle
G—G/K admitting 2 G-iwariant connection. This is because all
homogeneous symplectic spaces are coverings of co-adjoint orbits
= G/G (see Guillemin and Sternberg [1984] for a proof of this).

2. Since the exponential map N—g,* is a Poisson map,

abstract theory tells us that it is the momentum map for a left action
on N. This action on N is the one which is induced by the co-adjoint
action on g*.

Conversely, we could have noted that this G action is
Hamiltonian with respect to the connection-induced structure on N.
Guillemin and Sternberg [1985, ch. 40) did this and calculated the
corresponding momentum map. (However, they did not state that
Ad®(G) = N(9).) By inspection, their expression for the momentum
map, is Molino’s expression for the exponential map. As a momentum
map then, it is automatically a Poisson map onto g.*. This provides

an alternative proof of Theorem 1.

3. Consider the case where G is compact. Then § has a
bi-invariant positive definite inner product which induces an
tsomorphism g*—g intertwining the co-adjoint and the adjoint
actions. So an adjoint orbit ® has both a symplectic structure and a
Riemannian structure as a submanifold of §. The curvature F (of
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formula [NB1] ) 15 expressible in terms of the Riemannian curvature of
© (if for no other reason than that both connections are G-invariant).
The Riemannian volume form is a constant multiple of the Liouville
form w@k, k = dim0, since both forms are G-invariant. (For principal
orbits the constant of proportionality is 1/nKe'(11)e2(p)...e(y))
where ji ¢ @ and the @' are the roots which are elements of ™) In
case O is a principal orbit, then N(©) = ©Oxt, where t =g, is the Lie
algebra of the maximal torus Gu. And for e ¢ t small enough,

exp*dvol(p,e) is a constant multiple of (w0-<e,F>)kd“'kt where dvol

is the volume formong and d" Kk the volume form on | (n=dimg, n-k
=rankg ). IT our curvature conjecture is correct, then this seems to
say that the pull-back of the volume form is expressible completely
in terms of the metric and the Riemannian curvature of 6. Integrating -
this over © x {elleli < a), we should obtain a special case of the Weyl
Tube Theorem [Wey1,1939], which says that the volume of this tube is
polynomial of degree n-k in a, whose coefficients are integrals of
traces of the Riemannian curvature of 0.

4. The symplectic embedding i:Gxgu*‘—-aT*G 1S closely related
to the embedding j:Bxg*—B*xg*—T*B of remark 5, §1.2, where in
ourcaseB=06,9 = Sy and (under left trivialization) B* = G* =Gxnu*‘
To see this relation, note that i is the composition

id.xOxid. shift by u
Gxg *—— Gxm *xg, *=G*xg) * —Oxg* ——>—0x g =T*G.
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where “shift by u” means the map (g,8»— (g,u+8). And note that  is
the same composition, except with the"shift by u* map omitted. Thus
J = (shift by -u).  The push-forward of the canonical two-form wg
on T*G=Gxg* by the shift by - map IS wg*T*wg, which corresponds
to the general wg*(pr)*wg of remark 5, §1.2. This demonstrates that §
is a symplectic embedding (with degeneracies) of Gxgy* into T*G

with the shifted symplectic form wgtM*wg.

Singularities of the Poisson Structure,

The Poisson structure on N blows up precisely at those points
({,e) where we(l) of formula [NB1] above is degenerate. This was
noted in remark ! of the previous section. The blow-up is as 1/¢ as
(u,(1+e)e) approaches (u,e), since W(,(1+¢)e) degenerates as e.

Since Molino's Poisson structure equals the connection-induced
structure, this leads us to formulate the

Singularity Theorem .
The critical points of exp:N(8)—g*, ® a reductive
orbit are precisely the points where wa(lt) is degenerate ,

and hence where the Poisson structure blows up. As
{(n,(1+¢)e) approaches a critical point (p,e) the Poisson
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tensor blows up as 1/¢.

We will prove the theorem after presenting some examples. As
an illustration that this theorem is not obvious, consider the
following example where the exponential map has critical points but
the induced Poisson structure on the normal bundie easily extends
through these critical points. Let P be the Poisson manifold 52 with
the trivial, ie. identically zero, Poisson structure. Let L be the
symplectic leaf (n} where n is the north pole. The exponential map for
the standard metric on 52 simultaneously linearizes the leaf [n},

since the single fibre of its normal bundle N = T,52 and 52 both have

the trivial Poisson structure. Thus the Poisson structure induced on N
by the exponential map is trivial. Even though the map has a critical
vaiue at the south pole s, the induced Poisson structure on N can be
continued trivially across the circlie of points exp"(s) in order to
make a smooth giobally defined Poisson structure. One can imagine
concocting simiiar, less trivial examples by relating, at the critical
values of exp, the singular directions of the exponential map to
sub-Casimirs on the leaf.

Before going ahead to the proof of the theorem, it is instructive
to understand the following exampie.

The exampile N(52).
The standard metric on IR3 =g9(3)* is bi-invariant and we use it
to identify the abstract norma! bundie with the geometric normal



bundle of S2. The co-adjoint orbit through u € IR3 is the sphere
SZ(liul) containing 1. Take liull = 1 50 that we have the standard
sphere. As a homogeneous space 52 = S0(3)/50(2)and we may think of
the SO(3) as the orthonormal frame bundle for S2. One checks that
the invariant connection constructed above for the general case G—6
is in our case the Riemannian connection for SO(3) —S 2. The
curvature of this connection is F = -w, where w is the standard
symplectic form on 52 Since kerw = 0, the kernel of the curvature is
pot co-tsotropic, so by Theorem 2 of the preceding section there will
be cross-curvature terms in the formuia [PB.2] for the brackets on N =
N(S2). Now N 1 the trivial bundle, S24IR where the fibre IR has the
trivial Poisson structure. So according to Theorem | of the preceding
section the Poisson tensor on N at (j1,e), which is a linear map
T*usleR — Tu52le, 1s given by J,®0 where J, 15 the inverse to w,

= w-eF=(1+e)w. Thus the Poisson structure blows up as 1/¢ as e
=-1+¢ approaches -1. [This calculation can easily be done by hand ‘by
using the exponentiai map N—iR 3 to pull back the Lie-Poisson
structure on IR3 .J Note that the points {(y,~1) are the critical points
of the exponential map. All these points are mapped to the origin
under the exponential map. The same situation, rescaled, occurs for a
sphere of radius r: the Poisson structure is singular at the focus
points (u,-r) with singularity of the same form.

Note that by putting the product Poisson structure on N = S2xIR
we would have obtained another realization of N, but it would not
have been Poisson isomorphic to the one just described.
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Proof of the Singularity Theorem.
We will prove the theorem through a series of observations.

Observation 1. If ee Nu=au' and ¥« LM then ady*(ure) e ’u'-

Forify e Sy, then

ady™(ure)y =<, [¥,3b + ce, [¥,9b
=<e, (5,9 (since ¥ ¢ g,,)

=0 (since[¥,¢]¢ ®yandecm")

Observation 2. T (1,e)8%P Is singular if and only if there is a
nON-2ero ¥ ¢ W, such that ad, *(u+e) s zero .

To see this, we decompose the differential of exp. Note that
¥r—¥ge = ad *y identifies u, withg,* =Tu(9.' (This is because un,is
the compiementary subspace to gy, which is the kernel of this map.)

Using the connection we can decompose T( u efNas B, 08" where the

first factor represents horizontal vectors and the second factor
represents vertical vectors. From the formula for exp, we see under

this Identification that Texp(, ¢)0®a =a.  To calculate the
horizontai derivative, note that the horizontal lift .of the curve

Adexpty™H, ¥ € W, is the curve (Aﬁexptx'“"“’exptx*e)- Therefore,

Texp( o) ¥®0= /0l Adgyne ™K+ Algypt ™€) =ady*(u+e). From
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gbservation |, we know that ady™(uve) e §y° So as a linear

transformation nuet,{—o l“'Qlu', Texp(u,e) has block matrix

form

ad(.)*(u*e) 0

and hence is inverible if and only if ¥—eady*(juve) IS invertible.

Observation 3, wg(y) is degenerate if and only if there is a
non-zero ¥ ¢ m, such that ad,*(u<e) = 0.

Again identifying 7,6 with m,, formula [NB1] reads walpX¥ L)
=<ute ¥ LD, for ¥l e M. Thus w,(i) is non-degenerate if and only
if for all ¥e B, ady™(u+e) is nonzero when restricted to LT

But according to ghservation 1, the latter is equivalent to ady*(u+e)

being non-zero.

Comparing gbservation 2 with observation 3, we see that we

have proved the theorem. e
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Eocal Points and Reqular Qrbits,

A focal point is a critical value of exp. Using the fact that
the symplectic leaves for the connection-induced Poisson structure
on N(O) all have dimension 2 dimo, using the Singularity Theorem, and
using the fact that exp is a Poisson map where it is not critical, we
can deduce that

lJ ©  cthe set of focal points

dime~< dimo

In the case where © is regular (and reductive) we can obtain the
sharper result

U 6~ = the set of focal points {1.35]

dimo~< dim®

To see this, recall that in the regular case that gy is Abelian. A
calculation shows that this implies that $u CIpee foreecm . Thus
dimyu.e-dimyu = dim (m (A Jy+¢)- But dim g, = codim 6 , for any
o ¢ g% It follows that codim Opve < codim 6 if and only if

dim(luﬂ Jy+¢) > 0. But observation 3 of the preceding paragraph
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says that this latter condition is precisely the condition that
T(y,e)exp be singular, since ), 1 gy, = (¥ € W, : ad*(u+e) = 0).

So we have demonstrated the equality [1.3.5]

In the case where G is compact the non-regular orbits are those
which lie on Weyl hyperplanes. As usual in the compact case, we use
a bi-invariant positive definite inner product to identify g with g*.
This identification intertwines the adjoint with the co-adjoint

action. Under this identification NM = §i;) which is the Lie algebra of

the maximal torus G, and 7,0 = wy~ g0 It follows from [1.35]

that

{critical points of exp) = {(j1,e) € N: u+e ¢ a Weyl chamber in [m

The picture of the critical points in Ny, for p areguiar point in sw(3)

is
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$1.4.  The Gauge Group.

The gauge group G=Aut(B) is the group of bundie automorphisms
of B which cover the Identity on the base X. G acts naturally on both
the reguced phase space T*B/G and on the co-adjoint bundle Ad*(B*).

An T € G acts on T*B/G according to

Nl = [T%0™ o))

(This transformation is well defined because T commutes with the
right action of 6, so that the equivalence class on the right hand side
of this equation is independent of the representative, oy picked from
the left hand stde.) We will denote this transformation by [T*7~ 1t
is a canonical transformation since T*n" is a canonical
transformation of T*B.

The automorphism maqe Which 7 induces on Ad*(B) is
described as folows. 7 induces a bundle automorphism on any
pull-back bundle of B, in particular it induces the automorphism n*
of B*cT*B, the pull-back of B to T*X. One easily checks that n* is
the restriction of T#1~! to B*. In turn, n* induces a vector bundle
automorphism on any vector bundle associated to B*. In particular it
Induces the vector bundle automorphism T 5qx ON AG*(B*)= B*xgg*.

By construction,
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Tagx =[n* xid} .
The notation means

TlAdu[o(.O] = [Tl‘(O().Q]
= (1% (e0,Q]
where [o,Q] € B*xgg* denotes the equivalence class containing

(0,Q) ¢ B*xg™.

On the unreduced level we have the diagram

diagram 1.4.1
This diagram commutes:

T otANey W) = Tn 18+ A %)
= T*‘r]"'ar; T*'q"Ab*u

= THq” 1 By* (n"ATl(b))' u
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= HTMxAXT *(Bp), 1),

Put the minimally coupled symplectic forms corresponding to A and
Ti=A on B* x g*  Then, by definition of these forms, the above

diagram is a commutative diagram of symplectic manifolds. So if we
divide by G we get the following commutative diagram of Poisson

manifolds:
[${A))
{hg=(2=1, !} ) ———T*B/5
; A
i
‘ trx. -1
e bt
AL i |
I . .
i :‘:“f’ﬂ"‘-}] l
T L N D r————y TRE G
i, A
diagram 1.4.2

Remark. In the more general setting of §1.2 an analog of T*B

may not exist but 7 Agn 15 still a Poisson map. To see this, recall the

general setting. We have a principal G bundle P—S over a symplectic

manifold (S,ws) with a connection I'. The Poisson bracket { , l,— on

Ad¥P) = PxG’* is obtained by reducing the symplectic form
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m,—=n*w5-a<u,r> on Pxg* by the ‘diagonal’ action of the structure
group G. An automorphism T of P induces the automorphism
Nage=inx 1] of Ad®(P). [when P was the puli-back bundle B*—T*M

=S5 of abundle B—M1 as in the beginning of this section, we took I to
be A* the pull-back of a connection A on B, and our present T was

called N*.] Thus to show that a4« is a Poisson map between
(AG*(P), {, J) and (Ad%(P), (, ]'qf)' 1t suffices to show that wp is

the puilback of wnr by nx id:

(nx ld.)*mm- = %0y - (R*X 0%, Nl
(Mo - HNEX A%, nwl>
Rt L B R T B

Tur
The Momentum Map for the G action.

We now calculate the momentum map j for the action of the

gauge group on the reduced cotangent bundle. (There is no point in
trying to calculate a momentum map for the G action on Ad*(B*)
since, by diagram 1.4.2, this action is not canonical relative to any
fixed bracket on Ad*(B*) which corresponds to a fixed connection on
B.)

The Lie aigebra of G is [(Ad(B)), the space of sections of the
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adjoint bundle B xgg. This Lie algebra will be denoted ¢. It is

naturally isomorphic to the space of equivariant functions B—g
(where the action on § is the adjoint action, made into a right action).
The tsomorphism takes the equivariant function &: B—g to the

section
x=n{b}—Ib,l(D)]) = &(x) e g .

Under this identification, the infinitesimal action on B corresponding

to & is given by
£g(b) = opl(b) e T,B (1.41)

(Recall that opg— TDB is the infinitesimal generator map for the

right G action.)
The momentum map j must be a function with values in g* =
F*AUB)= [(AI*(BNeCP(X)*.  Here C®(X)* Is the space of

distributions on X . The pairing between an £ ¢ [(Ad(B)) and peA ¢
T(Ad*(B))eC ®(X)* is

Koo D» = 95>,

Here @£ ¢ C*(X) denotes the function obtained using the pointwise
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pairing between Ad*(B) and Ad(B) and the outer brackets, "<, >* on the
right hand side denote the pairing between C*®(X)* and C®(X) and.

The formula for the momentum map J" for the action of G on
T8 is

<« Jlog),&» = <o), Eglbh>  (pairing between T*B and TB).

From [1.4.1) we see that

<« Jlog).8»> = op*oq, E(D)  (pairing between g* and g).
= [b,J(ay)] *[0,£(b)] (pairing between Ad*B and AdB)
= «[b,op*(ap)es(x-x), £

(pairing between ['(Ad(B))and (Ad*(B))eC 2(X)*)

SO that
ey = [bop*(ap)les(n(b)-x) .

Note that this function is invarfant under the action of G. The §
function factor is clearly invariant, since 7 is-G-invariant. The first
factor is also G-invariant: [bg,ob*(T*Rg-lub)] = [bg, Adg*ab*ub] =
(b,ob*db]. ( Recall that o* is the equivariant momentum map for the

right G action on T*B) So |” descends to the quottent, T*B/G. Let |
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denote the function on the quotient. it is automatically the
momentum map for the action of G on the reduced cotangent bundle.
Summarizing

PROPOSITION. The momentum map for the G-action on
T*B/6 is givenby

Jlop) = [b,op*aples(x-x') .

Local and physical expressions for actions and the
momentum map.
From a physical point of view, the gauge group acts on
Ad*®(B*) by “rotating the color charge, while leaving the position and
velocity fixed. Specifically, ah | ¢ G acts on Ad*(B*) according to

the local expression

Nad
(x,p, @ ——— {x,p, Q= (xp, Adg(x)-l*O)

where 1(x,h) = (x,g(x)h) is the local expression for .
To describe the action of G on T*B/G from a physical point of
view, recall that connections transform under gauge transformations
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according to the local formula A—A= gAg™'+gdg™!. Velocities and

rest mass are unchanged by gauge transformations and 5o the kinetic
momenta p are unchanged. Color charges are “rotated” by gauge
transformations. Thus canonical momenta must transform according
to

peaN = pa A BN puF K
%* -
=p*Adg-1"0(AdgA+gdg™")
=p+Q-As Q-Adg-lgag"
= pCan., ng' Ig
- pcan._ Qg‘ ]dg .

The transformation (x, p*@ Q)—(x, p¢@ &) is the coordinate

expression for [T*n”!]  To see this, note that the transformation

was defined so as to make the following square commutative

[9(A)]

(%,9,0) ————— (x, p¢a".9)
Tage | Ia
| (x,p,B}——— (x, 0%, )
[d(nxA)]

All the maps in this diagram, except for possibly the transformation
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7 in question, are the local versions of the corresponding maps in
the intrinsic diagram 1.4.2 above. Since both squares commute,
this proves that T :(x, p®@™ Q)—«(x, @ &) is the coordinate version
of [T*n"1] (One can also check by direct calculation that this fs

correct.)

We end this section by stating the local version of our

proposition

PROPOSITION. The momentum map for the G-action on
T*B/6 has local expression:

1(x, p€3"- Q) = a§(x-x") . n1}

This follows directly from our intrinsic description for I
because the expression for the fibre coordinate of [b,op*ap) € AG®(B)

in our local trivialization is Q. (See §1 of this chapter for how a
trivialization of B induces trivializations of all the other bundles.)
Alternatively, one could check by direct calculation that this local
expression satisfies the defining property of a momentum map. This
IS done using the expression for the brackets in (x, p¢a" Q), the local
expression for the action of the gauge grodp, and noting from the local
expression for j that ’

18, pS Q) = @, E(xp

From a gauge theorist's point of view this local expression for
the momentum map 1S obvious, since it Is well known that the
conserved quantity corresponding to the action of the gauge group is
the color charge. '
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$§2.1.  Wong's Equations.

Some history.

Wong's equations are the equations of motion for a classical
colored spinless particle in an external Yang-Mills field A wong
(1970} derived them by taking classical limits of the quantum
mechanical Yang-Mills equations. The equations reduce to the Lorentz
equations in the Abelian case. Their physical relevance to the
non-Abelian case s debatable, but -they seem to be of at least
qualitative use. See Arodz {1982] for further discussion, and the
generalization to the case where the particles have spin. | recomend
Balachandran et al. [1983] as a well-done, detailed treatise on the
subject.

Besides Wong's equations, there are various geometric
formulations of the motion of such a particle. These are: the
formulation of Kaluza-Klein as generalized by Kerner [1968], the
formulation of Sternberg [1977), and the formulation of Weinstein
[1978] Weinstein [1978] showed how his formalism s equivalent to
Sternberg's. A nice presentation and application of the Weinstein and
Sternberg's works is given by Sniatycki [1979].

In Montgomery [1984], | showed how these four formalisms
were all equivalent. In so doing, a Hamiltonian structure for Wong's
equations was derived. The present section is mostly a revision of
this earlier paper. One of the main additions is that more attention is
paid to the difference between the relativistic and non-relativistic
versions of Wong's equations.
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The Equations.
The relativistic Wong's equations are

dxH 7dr = ¥ [wa]
dp, /T = QyF 2 B {wo]

0,7t = - Qe AP Ut [we).

K

where
Py = muy

is the particle's relativistic momentum, m its rest mass, u¥ its
space-time velocity, and z its proper time. Throughout, Greek indices

i, B, etc. are space-time indices and Roman indices a, b, et¢. are for
the Lie algebra. The xH are the particle's space-time coordinates.

The Q, are the particle's color-charges. The Faus are the components
of the Yang-Mills field strength, i.e. the curvature of A. The cdab are

the structure constants for the structure group G of the theory. The
speed of light, Planck’s constant, and the coupling constant have all
been set equal to unity.
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Equations [wa)] and (wb] for the particle’s world-line are the
equations of a particle under the influence of a generalized Lorentz
force which is parameterized by the color charges Q,. Equation {wc]
says that the color charges or internal variables are parallel

translated over this wgrld line. The @, are to be thought of as

fibre-coordinates for the co-adjoint bundle X x g* over space-timeX.

Hamiltonian structure.

Let X denote Minkowsk1 space and B = X x G denote the principal
bundle on which A is a connection. The generalization to arbitrary
space-times and principal bundies over them affords no difficuities.

See remark 2 below.
The variables (xH, pg, Q) or simply (x,p,Q) € X x X% x g*

coordinatize the co-adjoint bundle Ad*((X x G)*) = X x X* x g* over
T*X = X x X*. As such, their brackets were recorded in S1.1. Take as
the Hamiltonian the the “kinetic” Hamiltonian

h= pup”/2m )

Straightforward calculations show that Hamilton's equations:

dx¥ 7dt = (xH, h)

dp,/dt= { Py h)
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d0,/dz = (Q,, h}

are the relativistic wong's equations.

It 1s important to also understand how these are equations on
the reduced cotangent bundle T*B/G. This understanding will be
neccessary for the next section on Yang-Mtlis plasmas. Recall that
the reduced cotangent bundle is T*B/G = (T%*X XT*G)/G = T*X x g* The
Canonical map relating co-adjoint bundie variables (x,p,Q) to reduced
cotangent bundle variables (x,p0¢3",Q) Is the minimal coupling
procedure: p@ = peQ-A, (x and Q remain unchanged). This was
shown in S1.1. In that section, we aiso showed that the Poisson
bracket in terms of the (x, p®2,Q) was a product Poisson bracket: the
(x, p©@n-) are Canonically conjugate coordinates on the T*X factor, and
the Q have Lie-Poisson brackets for §*. The Wong Hamiltonian,
rewritten in terms of (x, p3M Q) is '

h=(pta - Q-A)2/2m.

Hamilton's equations are then wong's equations, rewritten in these
variables:

dxHsar = M

dp @ /a7 = Qa/axH(AY, b



)
d0,/dz = - Qe pA° uk

where
WH=(p-Al/m.

This canonical version of Wong's equations was described by
Gibbons, Holm and Kupershmidt [1984). They actually presented the
non-relativistic version of these equations, but the canonical
formalisms for both the relativistic and the non-relativistic cases
are essentially the same, as we will see below.

Non-relativistic and 3+1ed Wong's equations.

The non-relativistic Wong's equations are obtained by replacing
T by t, and replacing the relativistic kinetic momentum p = mu
(respectively canonical momentum p®@") by the non-relativistic
kinetic momentum p = mv ( respectively non-relativistic canonical
momentum p€3M- = mp+QA), where v is the standard velocity. The
resulting equations are: W

a/dtix) =v

a/dt(p) = Q(E+vxB)

d/dat(Q) = -ad*(AooA-v)O .

These are the equations originally written down by Wong [1970]. Here
the spatial Yang-Mills potential A is defined by A= A,dt + Adx. The
“electric” and "magnetic” fields can be defined as in
electromagnetism by Fq2axkax® = E -auat + (1/2)eB;axlax,
where 1, §, and k are spatial indices.

Note: these equations are pot equivalent to the relativistic
wong's equations. The relativistic kinetic momentum is my =
(m¥,myv) where ¥ = dt/dr =1/¥1-v2. If we then write out the

components of the relativistic wong's equations we obtain
a/dt(x)=v
a/dt(myv) = Q(E+vxB)
a/dt(m¥)=QEv
0/dt(Q) = -ad*(Ay*AVIQ

We call these equations the 3+ 1ed relativistic wong's equations.
The Poisson structure for the non-relativistic equations in

the (x,p,Q) variables is the same as that for the four-dimensional

wong's equations provided that Ag and the electric field are
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zero . That is, the Hamiltonian is p2/2m and the variables have the
same brackets as above, except that all space-time indices are
replaced by purely spatial indices. Note that the p brackets are

These are time-independent, if and only if the magnetic field B
is time-independent. A sufficient condition for this to be the
Case is our condition that Aq and the electric field be zero. (This
can be seen by using the four-dimensional Bianchi identity, DF = 0.)

The Potsson brackets in (x,p¢3™ Q) variables are always time
independent, with the same form as the relativistic version: x, pca"
canonically conjugate, Q Lte-Poissonand Poisson commuting with x
and p®3. This allows one to keep the canonical formalism for the
non-relativistic Wong's equation. These equations, rewritten in
canonical variables, are

a/dt(x) = v
0/dt(p®a" ) = QgltaaTjsax' ) + a9, rax)
0/0t(Q,) = - 0gc%,,(APv+AD )

where mv = p¢a - g-A
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If one takes as Hamiitonian the (generally time-dependent)
Hamiltontan h = (1/2mXp©@" - 0'A )2-GA then Hamilton's equations
are the non-relativistic Wong's equations. Because the (x, pca", Q)
brackets are time and .connection-lndependent, they seem to be
indispensable in studying the canonical structure of Yang-Mills
piasmas (next section) where the connection in general varies with
time.

Remarks

1.To get the 3+1ed relativistic Wong's equations in the
(x,p%",Q) variables as Hamilton's equations, use the same bracket
but use the Hamiltonian (1/m){( p<3N -Q-A )2+m2}'"/ 24Q-Ag. The

variable p = p®3" -QrA is now the spatial component of the
relativistic momentum. See Barut [1979] or Bialnyicki-Birula,
Hubbard and Turski [1984] for the Abelian case.

2. If the space-time (or space) X is not fiat, then the only
change to Wong's equations is to the equations [wb] where the
geodesic correction term -(1/2m)ag™®/axH]p,p, must be added to
get the correct evolution for the velocity. Here g is the metric on X.
The Hamiltonian structure of the equations remains the same: that is,
the local expressions for the Poisson bracket relations are the same

and the Hamiltontan 1s (1 /2m)g°‘°pdpa, Also, the bundle B need not be

trivial. The local expressions for the equations, and their
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Hamiltonian structure remains identical.
The Hamiltonians on Ad*(B*) or T*B/G which we used are
obtatned by pulling back the kinetic Hamiltonian (1/2m)g°‘°n,p° on

T*X by the appropriate projection (see diagram 3, ch.1, §1). Due to the
nature of these projections, the Hamiltonian on the co-adjoint bundle
is “universal”, i.e. connection independent, whereas the one on the
reduced cotangent bundie depends on the choice of connection. This
procedure for obtaining the Hamiltonians was suggested by Weinstein
(1978] A different procedure for obtaining Hamiltonians was
suggested by Kaluza and Klein as generalized by Kerner [1968] In the
next paragraph we show that these other Hamiltonians also produce
wong's equations.

Relationship to Kaluza-Kiein and Kerner.

The Kaluza-Kiein formalism , as generalized by Kerner {1968],
states that the classical “path” of our colored particle is a geodesic
on the principal bundle B. The metric on B is put together from the
metric g on X and a bi-invariant metric ¥ on G by using the connection
to declare that horizontal and vertical vectors are perpendicular. The
geodesic flow of this metric is generated by the Hamiitonian on T*8
whose local expression is

h(x,p..0) = (1/2m)g®®(x)ppg + (1723200 0,

where as usual
= nCan. a
P =P g QAT

Here we have trivialized T*B as in ch. 1, §1, so that (x,p®" g Q)

THXxGxg* = (locally) T*B. This Hamiltonian is G-invariant, 5o induces

Hamiltonians h(x, p, @) and h{x, p@" Q), with the same local
expressions, on the co-adjoint and reduced cotangent bundles. These
Hamiltonians differ from the ones which we used above by the term

(n/z)xaboaob. Since ¥ s bi-invartant, this term 1s a Casimir on g*.

(By definition a Casimir is a function whose Poisson bracket with all
others function is zero.) Then, according to the local expressions
given in §1.1 for the Poisson brackets on Ab*(B*) and on T*B/G, this
term is also a Casimir as a function on these spaces. So, the
Kaluza-Klein-Kerner Hamiltonian and the pulied-back Hamiitonian
used earlier must generate the same equations of motion: Wong's

equations.
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§2.2  Quagmas (quark-gluon plasmas).

Quark-gluon plasmas, sometimes called quagmas are thought
to be the state of matter existing immediately after the Big Bang, in
heavy-ion collisions provided energies are high enough, and perhaps
within neutron stars. A simpie introduction to the sub ject is given in
the Scientific American article by McHarris and Rasmussen [1984].
More technical references are the article by Heinz [1983] and the book
by Mutler [1985].

The quagma equations that we deal with are the non-Abelian
versions of the Maxwell-Viasov equations and are listed below as
[YMV1-4] We call them the Yang-Mills-Vlasov equations. They are
the equations for a collisionless non-relativistic quagma in the
self-consistent field approximation. More realistically, collision
terms shouid be added, and the equations should be made relativistic.
See Heinz {1983] for an account of this. Also, spin effe_cts should be
added, and of course quantum effects.

The present work was inspired by the paper ‘The Hamiltonian
Structure of the Maxwell-Viasov Equations' of Marsden and Weinstein,
[1982], in which the Abelian case, i.e. electromagnetic plasmas, were
investigated. Their starting point, which will be our starting point,
is the phase space @ =T*@x$* = AxExs*. A typical element of @ is
written (AY,f). AeQis a connection (Yang-Mills potential) for the
trivial bundle B = IR3xG — X = RS, Y is an element of § =
r (T*IR3oAdB)4 This is the vector space on which the affine space @
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of connections is modelied. E= -Y is the “electric* field. Finally f e
$* is a quagma density. By this we mean a (generalized) function f(x,
pc@, Q) of position x , canonical momentum pC@™., and color charge
Q. Yo avoid a profysion of indices we now will drop the superscript

The Poisson structure on @ is obtained by identifying & with £%
o that @ is identified with @xE*x$* = T*@Ax$* and then putting the
product Poisson structure on T*@x$*. The identification of & with §*
is done using the L2-pairing on & which is induced by the standard
metric on IR3 and a fixed bi-invariant metric on g In coordinates this

pairing 1s (E, K) — fE3;00K!,(x)a%x. Here, and throughout, space

indices "i" and Lie algebra indices “a" are raised and lowered by their
respective metrics.

If one takes the standard (see below) Hamiltonian on this phase
space, then Hamilton's equations are the dynamical part of the
Yang-Mills Viasov equations [YMV1-3] below. This was noted by
Gibbons, Holm, and Kupershmidt [1982]. However, these authors did
not concern themselves with the conservation equation [YMV4) which
states that the divergence of the color electric field is the color
current. We will show here that this conservation law is the equation
J=0, where J is the momentum map for the action of the gauge group §
one.

Marsden and Weinstein [1982] showed this for the Abelian J. in
addition to this, their main results are
(i) that the reduced phase space for the G action can be identified
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with the space of magnetic fields (curvatures of connections),
electric fields, and plasma densities (now as functions of position
and velocity ), and

(i1) The calculation of the Poisson bracket on this reduced phase
space.

To perform the calculation (ii) in the non-Abelian case we are
forced to fix a choice of gauge in order to get local coordinates for
the quotient space. We opt for the Coutomb gauge.

re i i i i -Abeli
case.  This is due to the following basic, but not so well-known
result:

In the case where G is non-Abelian, there are gauge inequivalent
connections on IRSXG with the same curvatures and the same
holonomy groups (both local and global) on all of |R3.

This was pointed out by Gu [1977] and later by Mostow [1979).
(These authors also show that the connection is in fact determined by
its curvature and some finite number, depending on G, of its covariant
derivatives, under the proviso that the dimension of the holonomy
algebra is constant.)

Thus, there is no way to recover the (gauge equivalence class of
the) connection, hence no way to even state the Yang-Mills
€quations, given only the E and B fields. We Say no way to even state
the Yang-Mills equations because these equations depend on the

covariant derivative, which in turn depends on the connection. (In the
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Abelian case, the covariant derivative on AdB=XxilR is the exterior
derivative, so this connection-dependence is not present.)

Remark: In the Abelian case when the base space is not
simply connected one runs into a problem similar to the one pointed
out by Gu and Mostow . in this case global holonomy data is needed,
in addition to the curvature, in order to reconstruct the cannection
from its curvature. This is true even when the bundle is trivial. For
example, sixslo s! supports inequivalent flat connections. In fact
such a connection is used to account for the Bohm-Aharanov effect.

The equations.

Before stating the equations, we must clarify the nature of
non-Abelian plasma densities. A plasma density is a generalized
function f(x,0,0) on the phase space T#B/6 so that p means pc3" |ts
interpretation is

f(x,p,Q)dxdpdQ = amount of color-charged matter in the volume x to
x+dx with canonical momenta between p and p+dp
and color charge between Q and Q+dQ.

(In the Abelian case Q is identically constant, as opposed to
covariantly constant, so that one may simplify f(x,p,Q) to f(x,p).)

Let

F = dA +[A,A]
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denote the curvature of A,
=¢.JK
B = ¢,/ i
denote the "magnetic field", and

D'd‘adA

denote the covariant derivative on Ad(B). D's components are .
Dy =a/ax' + [A, )
D will be manipulated like the usual “del” of vector calculus. For
instance
(0xB); = «;}%D,(B, )
and

DE = D(E")

Define the Lie elgsbra valued current jlf] and density pif] by the

following moments of the plasma density:
1;%00 = [p;0%1(x,p,Q)dpdq
Palx) = [Q,f(x,p,Q)dpaq.

Now we can state the

Yang-Mills-Viasov Equations:

0/aUN=lv(d/ax1+Q,(2/x A2 var ap-04c 0, ARV 2700, )t

where v! = (p-aA) [YMvi)
d/at(E) = DxB - jlr) [ymv2]
d/dt(B) = -DxE fymv3)

with conservation law

(DE), = (plfD), fYMv4) .

106



107

(The equation DB = 0 is a consequence of the definition of B and is
really the Bianchi identity, so we do not include it es one of the
equotions.)

The first equation [YMV 1] seys that f is convected by the flow

on T*B/G of the non-relstivistic Hamiltonian vector field Xy, , h =
(172)v2 which wes dicussed in the previous section. The other
equetions [YMV2-4] are equivelent to the space-time Yong-Mills
equations our"“ =281

Warnings. )

In stating the equations, we have assumed that A= 0. This is
legitimate, because any space-time connection A is gsuge equivalent
to one for which Ao 18 zero. in fact, Ag trensforms to g"Aog +
g"a/at(g). Setling this equal to zero and g = expy yields the soluble
equation A + 3/9t{¢)= 0. However, if we only want to only ellow
gauge transformetions which go to the identity in the infinite past or
future, or are interested in “radiation”, then the assumption thet Ag=
0 is no longer legitimate.

Other conventions: Holm et al use F = dA - [A,Al They also
have D = d - ad,. These differences can mathematically be attributed
to using a left principai bundle. Mathematicians generally use right
principal bundles so that F(X,Y) = dA(X,Y) +]A(X),A(Y)]. ( However,
Freed and Uhlenbeck {1985] consider the Hopf fibration s75%asa
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left principal bundle.) Kobayashi-Nomizu write F = dA +(1/2)[A,A]
because what they mean by the exterior derivative d is twice what we

mean. Arms uses F = dA +[A,A]l = dA +(1/2)A~A  The meaning of A~ A

varies from author to author by factors of 2.

Canonical structure.

The space $* of plasma densities is to be thought of as the dual
of the Lie aigebra of the space of Hamiitonian vector fields on T*B/G.
We put the + Lie-Poisson bracket on it. The Poisson bracket on &=
T*Qx$* is the product Poisson bracket,that is, the sum of the
canonical bracket on T*Q plus the Lie-Poisson bracket on $*.

Take as Hamiltonian

H(AE,f) = kinetic + Yang-Mills
=(1/2)f1(x,p,Qp-C All2dxdpaQ + (1/2) flEN2s B2 dx.

It was noted by Gibbons, Holm, and Kupershmidt [1982] that with this
set-up Hamilton's equations are equivalent to the dynamical
equations, [YMV1-3]). We will not repeat their calculation.

We now prove our claim that the conservation equation [YMV4]
is the equation J=0, where J is the momentum map for the action of G
on®. Age § actsaccording to g(A,Y,f) = (gAg™ 'ﬁgdg' 3 Adg- e,
1°[T%g™']). Recall that [T*g™ 1] is the canonical transformation of
T*B/6 induced by g € G and described in §1.4. The action on the

A
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(A,Y)'s is the cotangent 1ift of the usual action of G on Q. The
momentum map for such a diagonal action is the sum of the
momentum maps for each individual factor.

J 'JT*a + Js* .

It takes values in ¢* = I™(Ad(B)). See §1.4 for details concerning
this space.

Jrxg i calculated using the cotangent 1ift formula for

momentum maps. The result is well known ( see Arms{1981],
Moncrief[1982)):

Jrxg(AY) =DY = - DE .

Jg* is calculated using the momentum map j for the action of G

on T*B/G which is given locally by (see S1.4);
J(%.p.Q)=Q8(x-x").

One finds that

XY = <, = [1(x,p,Q)Q,0xdpdQ = pl]

Here the brackets "< , 2" denote the natural pairing between
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distributions f on T*B/G, and functions j on T*B/G with values in the

vector space ¢* of generalized sections of Ad(B). Localiy this pairing
is the one between distributions on T*Xx g* and functions on T¥Xx g*

with values in the vector space C®(X,g*)*. This first equality is

general: if a group acts on a Poisson manifold with momentum map j
then J(f) = <f,}> is the momentum map for the induced action on the

(Lie-Poisson) space of distributions on that Poisson manifold. (This
calcuiation for Jg* has also been checked directly.)

Putting together these expressions we get the desired result:

JAY,D) = -DE+plf]

so that J = O is the equation [YMV4).

Reduction using the Couloumb gauge.

Here we give a local formula (local within the space of
connections) for the Poisson bracket on the reduced space #/G. This
Is achieved by making a choice of gauge in @, that 1s, a choice of loca!
slice & c @ for the G action. The choice of gauge we take is called the

Coulomb gauge. This gauge is described nicely by Freed and Uhlenbeck
(1984, esp. pp.51-58] and Singer [1978]. We review it now in the
context of generai principal bundies.

FixAed. Then@=A+§,and

Dy T(AQ(B))— T(T*XeAd(B)) = 8.



D, has L2 adjoint Do*: 8 — I(AXB) . The negative of Dp* is the
operator which we called "D-" above. The § orbit through A and

kerD * are Lz-orthogonal complements at A. Note that I'(Ad(B) = q is

the Lie algebra of the gauge group G. D,* can be viewed as the

connection one-form for a connection on the “principal bundle®

0—Q/G. This connection is called the Coulomb connection.

If g is the metric on the base space X then D* is given locally
by .

Dp*a = ~(1/y/g)%, ¢ (2,(g*Bag/g) + g*BlA,,25])
ForB=IR3xG {or, in normal coordinates at the point in question)

Da*a = - /ax'a; - [A,.a')

Here a; is a g-valued function so that the local expression for a¢ & is

aidx', 3 g-valued one form on X. (This shows that -Dp* is the

operator we called "D-" above.)
The Coulomb gauge & through A is defined by

d=A+F
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where
£=(ae8:D %a=0,andais "small enough’}  §

The smaliness of a in the definition of & depends on Sobolev norms of
a. & is aslice for the § action on 8 if and only if Aisan L
irreducible connection (has no infinitesimal symmetries). This fact
is fundamentai to the work of Unhlenbeck, Taubes, and Donaldson which
led to Donaldson's celebrated result that there are topological R%s
which are not diffeomorphic to the standard IR“. The proof that d is a
good siice basically boils down to the fact that the covariant
Laplacian®ap = Dp*D,: T(Ad(B)) — [(Ad(B)) is elliptic.

The fact that & is a slice means that U, = &G is an open

neighborhood of @ and that the map
(3, 1) — "A*2) = A- D'~ teqan !

is a diffeomorphism of £xG onto this neighborhood. Moreover, this
map provides a local trivialization of the principal G-bundle i— G/G ,
where (c @ denotes the open dense subset of irreducible
connections.

This show us that locally T*1/G = T*§ x g* = ExkerDp*x g*

with the product Poisson bracket (see the local discussion of §1.2).
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From this it follows, either by direct calculation, or by invoking the
general theory of semi-direct product bundles as in [Montgomery,
Marsden, and Ratiu, 1985), that locally (T*ax$*)/G =

BxkerD,*x(qis)*. The second factor is the dual of the semi-direct

product Lie algebra ['(Ad) X3, where the action of G on $ is the one
described above. Explicitly, the local bracket is

(F.6)aY,0,0) = [ 1(6F/52)66/6Y)-(56/52)5F /5Y)lax
+ [ wlsF/5a86/8¥lox + [ 1(6F/51,86/81)axapaQ

+ jr[ax(sr/w)ap(se/u ) -ax(SG/S«p)ap(SF/Sf)]dxdde .
where
(aY.0,1) € BxkerD *xquxs*
The last four terms are the Lie-Poisson brackets on ( QX8I The

final term occurs because the local expression for the infinitesimal

action of gon$ is given by ¢-f = axcpapr where this expression means

zia/ax‘(tp)a/api(r ). This concludes our reduction of quagmas.
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Remarks.
1. Global bracket formula.

A global bracket formula for the quagma Poisson brackets can
be achieved by using the Coulomb connection for the bundle a—0a/G.
As In §1.2, the Coulomb connection lets us decompose T*@ into Cxq*

where C = {(A[E) ¢ T*@: D,*E = 0) and g* is the dual of the Lie
algebra of G. Then P = Cxg*x§* and #/G = ng(q“xS"). A giobai
bracket formula for Cxgq™ is given by PB.1 at the end of §1.2. A
similar formula applies to our situation, the only change being that
the fiber term of PB.1, which is the Lie-Poisson bracket on q". is
replaced by the semi-direct product Lie Poisson bracket on gz$*. v
This replacement is detailed by Montgomery, Marsden, and Ratiu
[1964].

We did not write down the global formula for the quagma
bracket for the following reason. This bracket contains a term
which is essentially the canonical bracket on T*(0/G). 0/G is
topologically a very complicated space when 6 is non-Abelian.
There is no choice of global coordinates, so although this canonical
bracket on T*(0/G) can be written down abstractly, it is of little
practical value. A similar problem occurs for the curvature term
of PB.1.

2. Concerning Ghost Fields.
Carifena and Ibort [1985) have investigated the Coulomb



115

connection induced symplectic structure on Cxg* which we
mentioned in the above remark. They have shown that the g* factor
should be interpreted as the set of ghost fields introduced by Popov
in quantizing Yang-Mills. They also have shown that the BR.S.
transformation, another tool in the quantization of Yang-Mills, is the
infinitesimal action of g on Cxg* corresponding to the diagonal action
of G. As noted in §1.4, the momentum map for this action is the

projection onto the g factor.

3.Regarding irreducibility.

The flat connection is s0¢ irreducible (in fact it has the
maximum possible amount of symmetry). So one is not able to
perform the reduction as above in a neighborhood of this connection
The instanton connections for the Hopf bundle 57—54% are irreducible.
It is not Clear though how these would apply to a physical quagma.

From general considerations (see Marsden [1981]), one expects
that symplectic reduction in the neighborhood of a reducibie
connection should resuit in a stratified symplectic manifold, with the
strata corresponding to the various symmetry types. The specific

case of Jrxg ™ '(0)/G c T*0/G was worked out by Arms [1979], [1980]

and [1981] We expect that the quagma situation is very similar to
this one.
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§23 Water Drops.

In this section we state the Hamiltonian structure for the flow
of an incompressible fluid with free boundary and surface tension, eg.
a water drop. There are two versions of the Poisson bracket, one
corresponding to T*B/G and onhe to Ad*(B*) Both generalize the
canonical brackets which Zakharov [1968] found in the irrotatior;al
case. For proofs and more details of the material stated here, see
Lewis, Marsden, Montgomery, and Ratiu (1985]. For applications of
this work to the stability of rotating water drops, see Lewis,
Marsden, and Ratiu {1985]

The configuration space € for an incompressible water drop is
the manifoig EmbvoI(B,IR3) of volume preserving embeddings of a the
three-dimensional reference ball B into |R3. For definiteness, assume
that the ball is the standard bal so has volume 4/3m. The boundary of
B is the unit sphere S2 If 1 ¢ C then 1:B—IRS and 7(S2) =3 Is the
free boundary of the water drop. The phase space for the water drop
is the cotangent bundie T*C of €. This is the fluid mechanicians
space of Lagrangian variabies (m,i). So 7 assigns to each reference

point X ¢ B a spatial point x = n(X) and j ¢ T.,]*c is a divergence-free
vector-field over 7: that is, p assigns to each reference point X ¢« B a
momentum (covector) based at the spatial point x = 7(X). ( As always,

we identify vectors and covectors on IR3,) The corresponding energy
of the drop is
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HML D) = Yofg | 0] 263X + TfgdA X}

where the density of the drop 1s assumed to be 1, and its coefficient
of surface tension, T is assumed to be constant over the surface of
the boundary.

The energy is invariant under the right action of the particle

relabelling group G = Dif fyol(B), the group of volume preserving

diffeomorphisms of the ball. Here a ¥ ¢ G acts on the pair (n.u) by
right composition on each factor. This is the cotangent 1ift of the
actionm — M on C. So, the dynamics descends to T*C/G. This

quotient space can be identified with pairs (3,v) where I is an
embedded SZ in IR3 ( forgetting about the embedding) which bounds a

region D = Dy of volume /37, and where v is a divergence-free vector
field on Dy.  The identification map is [m,u] — (3 = N(SDy =
p.n']). Using this identification map and the canonical brackets on

T*C one calculates that the reduced Poisson bracket on the (Iv)sis

(F, 6)Z) = [ [ 8F /8 x 56/8v >0 +

J s r53x66/80) - GO/5TXEF /50000A  [3:2]

118

where

w = Vxv

Is the vorticity. The definition of the functional deriviatives is as
follows. §F/8v is a divergence free vector field on Dy which is

defined by

DF(0,6v) = fpy <6F/8v, swax.

The interpretation of §F/53 takes some care. Denote the space of free
boundaries, i.e. 3's, by $m (for images). Think of § Tsdmas a

normal variation of %, that is, a function on 5. Since the volume of

the Dy's must remain constant, we have that 3 (82)dA = 0. Then
DF-(82,0) = [ (SF/8E)85dA .
Finally, given a function f on S whose integral over Z is zero, let N(f)

gdenote the harmonic function ¥ on Dy obtained by solving the

Neumann problem

Ay =Oon02
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y/ov=fonk.
Here v= vg is the normal vector to £. Then

8F /8¢ = N(SF/8v restricted to I) [3.3)

One checks that &F /8¢ is the variation of F with respect to potential

variations. Note that in the irrotational case, w = 0, S0 the bracket is

given by the second term alone, which is exactly Zakharov's bracket.
The energy in the reduced variables is

H(Z V) = ‘/zjolvlz &3x + tfsz.

One may check directly that with the Poisson brackets [3.2], this

Hamiltonian generates the correct equations of motion, namely
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v/t + (vV)v = -Vp

82/8'. = V'Uz

divv=0
p = Tx on the boundary £

where X is the mean curvature of Z. ( As usual in the incompressible
fluids, the occurrence of the pressure p may be seen as a mechanism
forcing av/dt to remain divergence free, rather than as another
variable to be soved for in addition tov and 3.)

We have seen that the (I,v) brackets [3.2] correspond to the
Poisson brackets on T*C/G. To obtain the co-adjoint bundie
description, we begin by noting that C — Jm is a principal G-bundie
where the projection is M2 = n(52). This principal bundle has a
natural connection, the "Neumann connection”. The horizontal 1ift for

this connection is

hy (82) = VNG ™! .

The co-adjoint bundle Ad*{C*) is identifiable with triples (Z,o.w)

where ¢ is a harmonic function on Dy and w is a divergence free
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vector field paraillel to I.
The Weyl-Hodge theory states that any divergence free vector

field on Dy can be decomposed uniquely as
ve=w+ Ve

The map (Z,¢,w)— (Zv) /5 the minimal coupling procedure, [O(N)],
for the Neumann connection. One finds that the brackets induced on
Ad*(C*) are

(F.6)E.0.w) = [ I(6F/BIX5G/5¢) - (6G/5INEF /6 ldA
+ J 5 .05 X IV(NGF/5¢)) x DNGG/5¢))b dA

+ ] o l8F /5ws VNGF /60)] X [56/5w VNG5 bax

These terms correspond respectively to the canonical brackets on
T=gm, the curvature term, and the Lie-Poisson term on the f ibre, just
as in the intrinsic formula PB.1 of §1/2. Note that in the fixed
boundary case only the Lie-Poisson term is present. This is the fixed
boundary bracket found by Marsden and Weinstein [1983). And in the
irrotational case the bracket again reduces to Zakharov's.
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Appendix: Dual pairs and some facts concerning reduction.

Let 5 be a symplectic manifold with symplectic form wg.
Suppose the Lie group G acts canonically on the right on S with
equivariant momentum map J:S—g*, and suppose that ji ¢ g* s a
regular value of J. (This is equivalent to the G action being locally

free near J"(u). For the definition of momentum maps and some
basic facts concerning them see Marsden [1981]) J is then a Poisson

map from S to g.* (§* with its minys Lie-Poisson structure). Let @
denote the co-adjoint orbit through p and Wy~ its minus orbit

symplectic structure. The quotient manifold S/6 is a Poisson
manifold. (See Weinstein [1983] for a nice exposition on Poisson
manifolds.) Let x ¢ J"\(w ¢ J"(b), let [x] be its projection by.
T:5—5/6 , let L denote the symplectic leaf throgh [x], and let w
denote the symplectic form on this leaf. Let i denote the inclusion

J ()5, The Marie-KKS formula states:

Mg = TT*w) + Mg . [MKKS]

This formula was used in the proof of theorem | of S1.3. We will
prove this formula as a corollary to a more general formula
concerning dual pairs.

Recall (Weinstein [1985]) that 2 dual pair is a pair (11,1,

of Poisson maps P +Zi-§ —Z24p, , where S is symplectic, whose
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corresponding function groups 3y = T,*C*(P,) and F, = T,*C*(F,)
are polar . (Polar functi;:n groups are Lie subalgebras of C™(S)
which are each other’s annihilators under Poisson bracket.). A dual
pair is called full if 7, and 7, are both submersions. In the above
paragraph S/G~I-§ sLs g* s an example of a full dual pair.

In the following we suppose that Pj«Ii—§ T2wp, is a full

dual pair. Lety € S and let By:T*yS—oTyS denote the Poisson
structure on S. By abuse of notation, we will write Bu:hc TYS for

Bgd?,‘ Let L(y) denote the symplectic leaf through 11,(y).

Lemma.
keng"T| = ngz, kengﬂ'z = ng; . {A.1.1]
T, ) = B¥:1+ BT, . (A.1.2]
Proof. To prove the first identity, recail that B3, = Bys,l where
1 denotes w-orthogonali complement. So v ¢ BJ, &

y
w(v,Bydr,*F) = 0 for all F onPy & FTryv=0forallFonPy & v

€ kerTn,. This proves that kerTgn, = Bg‘Jz and the proof that

kerTgnz = Bgﬁ, is the same. To prove identity [A.1.2], note that
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B, = B('),,,yc”(P.) = Tyhi), where 81 is the Poisson
tesnor on P,. Thus Ty(‘n,"(L,)) = Tyn,"(Tgh(g)) = By« kerTym,
=B

3|’832.

Y y

Theorem

Suppose that P,+Xi- g H24p, s a full dual pair.
Let x ¢ S, xy = 7(x), and x, = wy(x). Let L denote the
symplectic leaf through Xj, and ®; be the symplectic
form on this leaf. Assume (for simplicity) that 'u'i"(xi)

and ui"(Li) are connected. Then:
Lowy( Mxp)) = Ly w007 Uxyp) = Ly
2. Ml =m ).
3. Let i:xy"1(L,)—S be the inclusion. Then
Pog = "0y + N w,. [A.1.3]

4. The sympiectic manifold n."(l.,)/ker(i“ws) is a

covering symplectic manifold for L,xL,.
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Corollary 1.
Suppose that (1y,75) = (1,9 as in the first paragraph. Then

the leaves of S/6 are the submanifolds J Y e)6

(statement 2 of the theorem) and the Marle-KKS formula
{MKKS] holds (statement 3 of the theorem).

Remark. The symplectic manifold of part 4 of the theorem is
the reduced space as defined by Kazhdan, Kostant and Sternberg
(1978). in the case (T |,n2) = (11,J) part 4 says that this manifold is
isomorphic, up to coverings, to J"(O)/G x©, which is a resuit of

Kazhdan, Kostant and Sternberg [1978].

Corollary 2.
B3 BT, = kerTr nkerTx, = ker(i®wg). These vector
spaces can be identified with the fiber of the co-normal

pundle of L, at x; (or of Lp at xp) i.e to the space of

Casimirs at X,.

Proof. This follows directly from formula [A.1.3] of the

* {heorem and the second inclusion of the lemma. The identification

of 8,30 B,J, with the co-normal bundle N*, Ly = {o € T"MP,: 1

annihilates Ty Ly} is oo—sB,Ty"oc
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Proof of Theorem.

Proof of (1).Lety ¢ nz"(xz) and fet ¥ be a pathin n{‘(xz)
joining x to y.  From the fdentity [A1.1] we have dy(t)/at =
By 8™ Fy- Let ¥,(t) = ¥ (1) denote the projected curve. Then
0% (Ot = T Byt Fy = B Dy oy, and s0 T{g) s i the
same symplectic leaf as Xy. The same argument, with the roles of

the indices | and 2 switched proves the second statement of (1).

Proof of (2). Let y € 7, '(Ly) and let ¥ denote 2
differentiable path connecting x to y. By the above identities we

have O3(1)/dt = By()dm2"Fy ¢ vz where v ¢ kerTr,.  Then
drp¥(t)/at = B(Z)n'zz(t)‘“:t- thus T,(y) is In L. This implies that

ﬂz(ﬂ,"(L,)) C Ly and so 1("‘(L,) c nz"(Lz). A symmetric
argument shows that 7, '(Ly) 7, (L)
Proof of (3). Consider functions fy, gy¢ Jyand f2, G2 ¢ 9.

write X¢ for the Hamiltonian vector field corresponding to the
function f: X¢(x) = B,df. Identity [A.1.2]) of the lemma states that
vectors of the form X¢ I(x) + Xg z(x) span T,T MLy, Thus, to prove

the validity of formula [A.1.3] it suffices, by the bilinearity of both

sides, to verify that both two-forms give the same result when
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evaluated on pairs of vectors of the form (X; '.xgl), (x,z,xgz). or
(xfrxga)' To prove equality for pairs of the first form, write f; =
T*Fy and similariy for g,. Then m(x,'.xg') = {f.04)g = (F,,G.)pl =
(D|(XF'.XG') = 0)|(TT(1X[1,T1(|X0‘) = ﬂ"w'(xt,,xgl). The same
argument works for pairs of the second form. For pairs of the third
form, both two-forms yield zero: w(Xy X, ) = O because, by
definition of dual pair, x,| is in the w-orthogonal compiement to
gy n,*m,(x,‘,xgz) = 0 since Xg, € kerTm, by identity [A.1.2}, and
- " -

similarly 7, mz(xfl.xgz) 0.

Proof of (4). Consider the map m(s) = (7,(s),15(s)) from
n, (L) to LyxLz. From the equality ker(i*wg) = ker T nkerTm; it
follows that 7 induces a map [‘Jr]:ﬂ,"(L,)/ker(i*ms) — L%y, and

that TIx] is injective. Since our dual pair is full, TIn] is also
surjective, so the inverse function theorem implies that [m] is a
local diffeomorphism, and hence a covering map. It is clear that {m]

is symplectic. ®
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Note added‘iri proof

The proof in §7 of the validity of property 1, DI =0, is incorrect for the-
non-Abelian case . (This is because <I> = [.) Property 1 still holds in this
case, and can be proved as follows. Note that [<v>,A] = 0, and apply this Lie

bracket to an arbitrary function f to conclude that DVI7\ is constant. The

proof then continues as betore.

details: [<v>,A]1 = 0 for A € g because <v> is G-invariant.
[<v>Allf] = <v>A[f] - A<v>[f]

= Ay A

= {1.D, 1M

where in the last line we used the fact that Dy, isa derivation with respect to Poisson brackets. Since
this expression is zero for all f, we have that DVIK is constant on the fibers P x{m}. Thus DVI}' =

<DVI7"> . Now as shown before , < DvI7L> = <dMI7L> .

W%{;
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