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1 introduction

SubRiemannian geometry is the geometry of a distribution of k-planes on an
n-dimensional manifold with a smoothly varying inner product on the k-planes.
When k = n we recover Riemannian geometry. Much of the work in subRieman-
nian geometry has concentrated on developing similarities with Riemannian ge-
ometry. However, there are major differences between the two geometries. The
following phenomena occur in subRiemannian geometry but not in Riemannian
geometry.

• The Hausdorff dimension is larger than the manifold dimension Mitchell
[33] , Pansu [44].

• The conjugate locus of a point contains that point. That is to say, the
exponential map is never a local diffeomorphism in a neighborhood of the
point at which it is based [46].

• The space of paths tangent to the distribution and joining two fixed points
can have singularities. These singular curves can be minimizing geodesics,
independent of the choice of inner product [34], [8], [31].

In this review we concentrate on this last phenomenon.
In the next section we give basic examples, definitions, and theorems of the

subject, and set up our notation. We also illustrate the first two phenomena.
§3 describes subRiemannian geodesics and singular curves and presents the first
example of singular minimizers. In §4 we present computational tools for find-
ing and understanding singular curves. §5 is devoted to rank 2 distributions
where the singular minimizers are ubiquitious. In §6 we describe some generic
properties of distributions: the rareness of stability and symmetry. In §6 we
describe fat distributions which are distributions admitting no singular curves.
In §8 and §9 new results are presented. The first states that for a large class of
distributions the distribution is determined by its singular curves. The second
concerns the impact of singular geodesics on the spectrum of subLaplacians. We
give examples in which the singular curves dominate the spectral asymptotics
of the subLaplacian. Except for these last two sections this article is of a survey
nature, but with open problems interspersed along the way.
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2 Preliminary examples, definitions and no-
tation

A subRiemannian structure on a n-dimensional manifold is a smoothly
varying distribution of k-planes together with a smoothly varying inner product
on these planes. The dimension of the subRiemannian manifold is the pair
(k, n). The manifold is denoted by Q, and the distribution by D, D ⊂ TQ. The
inner product will be written 〈·, ·〉. A path will be called horizontal if it is
absolutely continuous and its derivatives lie in D wherever they exist. We define
the length of such a path in the usual Riemannian manner:

�(γ) =
∫ √

〈γ̇(t), γ̇(t)〉dt.

The subRiemannian distance d(x, y) between two points x and y is also defined
as in Riemannian geometry:

d(x, y) = inf(�(γ))

where the infimum is taken over all horizontal paths which connect x and y.
The distance is taken to be infinite if there is no such path. In this manner,
every subRiemannian manifold is a metric space.

Definition 1 A path which realizes the distance between its endpoints is called
a minimizing geodesic or simply a minimizer.

The example which motivated my interest in the subject is:
example 1: Q is the total space of a principal bundle over a Riemannian

base space X. The distribution D is the horizontal distribution for a connection
on the principal bundle and the metric is obtained by using the connection to
lift the metric from B. That is to say, for each q ∈ X the differential dπq of the
bundle projection π : Q → X , is a linear isomorphism between the horizontal
space at q and the tangent space to B at π(q). We declare that this differential
is an isometry, thus defining the metric on the horizontal space.

Suppose that both endpoints q0, q1 of a geodesic lie in the same fiber. Then
there is a g ∈ G, the structure group of the bundle, such that q0g = q1. The
problem of finding a minimizer is then the isoholonomic problem: Among
all loops based at π(q0) whose holonomy (with respect to q0) is g find the
shortest one. If the group G is the circle group, if X is a two-dimenisonal
Riemannian surface and if the curvature of the connection is a nonzero constant
multiple of the area form on S, then the isoholonomic problem is the (dual of
the) isoperimetric problem: Among all loops in S of a given area find the
shortest one. The solutions to this problem have a very nice description in terms
of the Kaluza-Klein type models from high energy physics and will be described
in §3.3.
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At least three questions of interest in physics can be phrased as isoholonomic
problems. What is the most efficient way to flip the phase of a quantum me-
chanical sample using an imposed magnetic field? (See [63]), What is the most
efficient way for a microorganism to swim? ([48]) What is the most efficient way
for a falling upside-down cat to move so as to right itself? ([38].) In addition
to the references given, [35] and [49] discuss these examples and others in this
context.

2.1 presentations of subRiemannian structures

There are various natural presentations of a subRiemannian structure, each
having its own advantages.

presentation 1: Q is a Riemannian manifold with distribution D. The
inner product 〈·, ·〉 on D is the restriction of the Riemannian inner product.

Conversely, we can consider a family of Riemannian metrics of the form
ds2

ε = 〈·, ·〉 ⊕ 1
ε2 (·, ·) with respect to a splitting, TQ = D ⊕ V of the tangent

bundle, where V is a distribution complementary to D and (·, ·) is a fiber inner
product on it. Let dε be the corresponding distance function. Then

limε→0dε(x, y) = d(x, y),

the subRiemannian distance function. Thus we can think of subRiemannian
structures as the limits of Riemannian ones.

In the case of example 1, there is a natural choice of such a splitting. Take
V = ker(dπ) to be the vertical bundle. Each fiber Vq is naturally isomorphic
to the Lie algebra of G. Fix an adjoint invariant inner product on the Lie
algebra. This defines the metric (·, ·) on V . we call such metrics Kaluza-
Klein metrics. If G is semi-simple then, up to scale, there is only one
adjoint invariant inner product on its Lie algebra. So in this case we arrive
at a canonical one-parameter family of Riemannian metrics converging to our
subRiemannian structure.

presentation 2. Let θa, a = 1, . . . , c be a collection of linearly independent
one-forms. Here c = n − k. Their vanishing defines a distribution

D = {v ∈ TQ : θa(v) = 0, a = 1, . . . , c}

of rank k. The inner product on the distribution can be expressed in the form

ds2 = Σ(ωµ)2 mod {θa : a = 1, . . . c}

where the ωµ, µ = 1, . . . , k form a complementary set of one-forms so that
together the θ and ω form a coframe field on Q.

If θ̂, ω̂ are another such collection of forms then they are related to the
original collection by (

ω̂

θ̂

)
=

(
R ∗
0 g

) (
ω
θ

)
,
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where R is an orthogonal n−k×n−k matrix , ∗ denotes and arbitrary k×n−k
matrix and g is an invertible k × k matrix. This illustrates the G-structure
associated to a subRiemannian manifold.

In the case of example 1 we take the θ to be the components of the connection
form, and the ω to be the pull-backs to Q of a coframing of the base.

presentation 3. A control system:

q̇ = Σk
a=1u

a(t)Xa(q) (1)

linear in the controls defines a subRiemannian structure. Its solution curves
q(t) are the horizontal curves. The Xa form a basis for the distribution D. If
we declare them to be orthonormal then the minimizing geodesics are those
solution curves which minimize the square of the L2 norm

∫
Σ(ua(t))2dt of the

controls.
This exhibits the manifold structure of the space ΩD(q0) of all horizon-

tal paths starting at q0. Namely, it is coordinatized by the controls u ∈
L2([0, 1], IRk) by solving eq (1) with initial conditions q(0) = q0.

In the case of example 1 the Xa are the horizontal lifts of an orthonormal
frame on the base.

2.2 the heisenberg group

The simplest nontrivial example of a subRiemannian structure lives of the three-
dimensional Heisenberg group, denoted H3. The Heisenberg algebra is the three-
dimensional Lie algebra with basis {X, Y, Z} and with the only nonzero bracket
between the basis elements being [X, Y ] = Z. Think of X, Y, Z as left-invariant
vector fields on the corresponding simply connected Lie group H3. H3 is diffeo-
morphic to IR3. The exponential map provides the diffeomorphism. We define
the distribution D on H3 to be the span of X and Y which we declare to be
orthonormal.

Z generates the center of the group. By modding out by the center we obtain
a principal IR-bundle: IR → H3 → IR2. D is the horizontal distribution for a
connection whose curvature is the area form on the plane and so is a particular
case of example 1.

This distribution can be easily visualized. In appropriate exponential coordi-
nates {x, y, z} on H3 the distribution is the kernel of the form dz− 1

2 (xdy−ydx) =
0 which in cylindrical coordinates is dz − 1

2r2dθ = 0. We visualize this distri-
bution as a kind of continuous family of propellor blades. Along the z axis the
distribution is parallel to the xy plane. As we move out radially from the axis in
any direction the distribution 2-planes tilts in a monotonic way. They continue
to contain the radial vector field ∂

∂r and the angle between their normal vector
and the unit z-vector increases monotonically from zero to ninety degrees.

The metric on the distribution is dx2+dy2|D. The projections of the Heisen-
berg geodesics to the xy plane are circles and straight lines. Given our realiza-
tion, described above in example 1, that the problem of finding Heisenberg
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geodesics is a restatement of the isoperimetric problem of Dido, these geodesics
have been known for over 2,000 years.

2.3 bracket generation and chow’s theorem

If the distribution is involutive, then the distance between two points will be
infinite if they do not lie on the same leaf of the distribution. For in this
case they cannot be connected by a horizontal path. At the opposite extreme
of involutivity is the condition of bracket generation which is the situation of
interest to us.

By abuse of notation, let D also denote the space of smooth horizontal vector
fields. Form

D2 = D + [D,D]

D3 = D2 + [D,D2]

...

where the brackets denote Lie brackets. Now evaluate these spaces of vector
fields at a point q ∈ Q thus obtaining a flag of subspaces:

Dq ⊂ D2
q ⊂ D3

q ⊂ . . . ⊂ TqQ (2)

Definition 2 The distribution is said to be bracket-generating if for each
q there is a positive integer h such that Dh

q = TqQ. The first such h is called
the degree of nonholonomy.

remark Many authors use the phrase “satisfies Hormander’s condition”
instead of “bracket-generating”.

remark Bracket generation is a generic property for distributions. On the
other hand, the set of involutive distributions has infinite codimension within
the space of all distributions.

Theorem 1 (chow) If the distribution is bracket generating and if x and y lie
in the same connected component of the underlying manifold then there exists a
smooth horizontal path connecting them.

Chow was led to his theorem by a result of Caratheodory, which is Chow’s
theorem for the case of a three-dimensional contact distribution. Caratheodory
was in turn inspired by work of Carnot in thermodynamics. Consequently,
subRiemannian manifolds are also called Carnot-Caratheodory metrics.

example 1, revisited The Ambrose-Singer theorem (cf. Kobayashi-Nomizu,
ch. 2) is Chow’s theorem applied to example 1. The bracket generating condi-
tion is equivalent to the condition that the values F (q)(X, Y ) of the curvature F
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at a point q, together with all of its covariant derivatives DZF (X, Y ), DZDW F (X, Y ), . . .
span the Lie algebra of the structure group.

remark/warning In the theory of exterior differential systems there is a
flag called the derived flag which is closely related but not the same as
the flag just discussed. It is defined recursively as opposed to iteratively. Set
E1 = D, E2 = D2, E3 = [D2, D2], and generally, Ej+1 = [Ej , Ej ]. Note
Dj ⊂ Ej .

Definition 3 The jth derived flag is the ideal of differential forms generated by
the annihilator of Ej+1.

2.4 Hausdorff dimension

Definition 4 Consider the flag of eq 2 and let ni(q) = dim(Di
q) so that n1 = k.

The list (n1, n2, . . . , nh) is called the growth vector at q. The distribution
D of k-planes is called regular if the growth vector is independent of the point
q.

The integers ni(q) are the most basic numerical invariants associated with a
distribution.

Let Gr(TqQ) denote the graded vector space corresponding to this filtration
(2) of TqQ:

Gr(TqQ) = V1 ⊕ V2 ⊕ . . . Vh

where
Vj = Dj(q)/Dj−1(q).

We assume that D is bracket generating so that nh = n where h is the degree
of nonholonomy. Then Gr(TqQ) is a vector space of the same dimension as Q.
Set

dimVi = di = ni − ni−1.

Then k = d1 and
n = d1 + d2 + . . . + dh.

Theorem 2 (Mitchell [33]; Pansu [44]) Let Q be a subRiemannian mani-
fold whose underlying distribution is bracket generating and regular. Then the
Hausdorff dimension of Q with respect to the metric induced by the subRieman-
nian structure is

|d| = d1 + 2d2 + 3d3 + . . . + hdh.

And the |d|-dimensional Hausdorff measure dµHaus is absolutely continuous with
respect to Lebesgue measure dnx on Q (as defined by any smooth coordinate
system or Riemannian metric on Q): there is a positive Lebesgue-L1 function
f such that dµHaus = fdnx.
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example The three-dimensional Heisenberg group has (d1, d2) = (2, 1) and
so its Hausdorff dimension is 4 = 2 + 2 × 1. The corresponding 4-dimensional
Hausdorff measure is a constant multiple of the usual three-dimensional Lebesgue
measure dxdydz since both are Haar measures on this group.

open problem Calculate the Hausdorff measure for the three-dimensional
Heisenberg group. In other words, calculate the constant of proportionality
relating it to Lebesgue. (For a nice description and introduction to Hausdorff
measure see the book by Falconer [12].)

3 geodesics

In the bracket generating case Chow’s theorem guarantees us that the subRie-
mannian distance between two points is finite. A minimizing geodesic or
simply minimizer is a horizontal curve whose arclength realizes the distance
between its endpoints.

“Most” minimizing geodesic are characterized as solutions to a differential
equation of Hamiltonian type. This equation can be derived either by an appli-
cation of the method of Lagrange multipliers or by the maximum principle. In
order to describe the Hamiltonian let Xi, i = 1, 2, . . . , k be a local frame for the
distribution and define the matrix-valued function gij(q) = 〈Xi(q), Xj(q)〉 and
let gij be the inverse matrix. Think of the Xi as fiber-linear functions on the
cotangent bundle according to

Xi(q, p) = p(Xi(q)) q ∈ Q, p ∈ TqQ
∗

Set
H =

1
2
ΣgijXiXj . (3)

H is a fiber-quadratic positive semi-definite form T ∗Q → IR whose rank is k.
One easily sees that it is independent of the choice of frame.

Theorem 3 Let γ ⊂ Q be the projection of an integral curve ζ ⊂ T ∗Q for
the Hamiltonian vector field with Hamiltonian H. Then every sufficiently short
subarc of γ is a minimizing geodesic.

Definition 5 The curves γ of this theorem will be called normal or regular
geodesics.

We now come to the third major difference between Riemannian and sub-
Riemannian geometry. If the distribution is the entire tangent space then sub-
Riemannian geometry becomes Riemannian and theorem 2 is well-known. It is
a basic fact of Riemannian geometry that all geodesics are characterized by this
theorem. In subRiemannian geometry this is false: there are minimizers which
are not the projections of integral curves for the Hamiltonian vector field of H.
These extraneous minimizers will be described momentarily.
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3.1 cometric and subLaplacian

By polarization, the Hamiltonian H defines a symmetric covariant two-tensor
g : T ∗Q × T ∗Q → IR. This contains all the information of the subRiemannian
structure. Think of such a tensor as a vector bundle map g : T ∗Q → TQ.
Then im(g) = D, the distribution, and ker(g) = D⊥, the bundle of covectors
annhilating the distribution. The fiber-inner product on the distribution is
regained by setting 〈v1, v2〉 = p1(g(p2)) whenever v1 = g(p1), v2 = g(p2) ∈ D.

Our formula for the Hamiltonian H can also be thought of as defining a
2nd order differential operator. As an operator it does depend on the choice
of framing Xi, since XiXj �= XjXi as operators. Just as in Riemannian ge-
ometry, first order terms will have to be added in order to have a well-defined
subLaplacian. To date no such operator has been defined. (For more see our
final section.) But whatever the ”subLaplacian” of a subRiemannian metric is,
its principal symbol will have to be the Hamiltonian H : T ∗Q → IR.

3.2 the geodesics of example 1: Kaluza Klein theory

If the bundle is a circle bundle with connection form A then H is the Hamiltonian
governing the motion of a charged particle in the magnetic field dA. The charge
λ corresponds to the momentum in the fiber direction which in turn has the
interpretation as the Lagrange multiplier corresponding to the constraint that
the paths be horizontal. It is a constant of the motion. If the base is a two-
dimensional Riemannian surface X2 then we can write dA = B(areaform),
thus defining the scalar magnetic field B : X → IR as the Hodge dual of the
curvature two-form. Hamilton’s equations are then equivalent to

kg(x(s)) = cB(x(s))

where x(s) is the projection to the base space of an extremal curve, s is arc
length, and kg is the geodesic curvature of x(s), and the constant c = λ/|v|. Here
|v| is the particle’s speed and is easily seen to be a constant of the motion. (H =
1
2 |v|2.) The normal geodesics are the horizontal lifts of the trajectories
of charged particles in the magnetic field B.

This characterization of the normal geodesics can be seen nicely by using
the method of Lagrange multipliers. Consider the functional

S =
∫
{1
2
‖γ̇‖2dt − λγ∗A}

where λ = λ(t) is a Lagrange multiplier introduced to impose the constraint that
the curve γ be horizontal. The norm ‖γ̇‖ of the bundle velocity is taken with
respect to a Kaluza-Klein metric on the circle bundle. (See presentation 1, §2.1.)
The functional is invariant under the circle action and the Noether-conserved
quantity corresponding to this action is the multiplier λ. This means that dλ

dt = 0
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along any solution curve. We interpret λ as electric charge. Set λ equal to a
fixed constant. Then S defines a Lagrangian dynamics on the two-dimensional
base space X. (We may ignore the exact differential term λdz coming from
A = dz − A1dx − A2dy.) This is the standard Lagrangian description found
in almost any physics books for the motion of charged particles in (electro-)
magnetic fields. This method of obtaining the motion in space(-time) by adding
an extra dimension is attributed to Kaluza [28] and Klein, hence the name.

If B is constant, then fixing the holonomy is the same as fixing the area
enclosed by the loop. So the minimization problem is the isoperimetric problem
(actually its dual): find the shortest loop enclosing a fixed area. The extrema
are well-known to be the curves of constant geodesic curvature.

Heisenberg group revisited (See §2.2) The base space X2 is the Eu-
clidean plane with its standard metric. The constant curvature curves on the
plane are circles and straight lines and these are the projections of the Heisen-
berg geodesics. These are well-known to be the trajectories of nonrelativistic
charged particles in a constant planar magnetic fields. The bundle is the circle
bundle (or IR bundle) whose curvature is the area form. If we choose a gauge
(section) so that the connection form is A = dz − 1

2 (xdy − ydx) where x, y are
coordinates on the plane and z is the fiber coordinate then as the planar circles
are traversed the height z changes according to the area swept out by a line
from the origin to the moving point on the circle.

For a general principal bundles with connection, the Hamiltonian of theorem
2 has the form H = 1

2ΣgijXiXj where the Xi are the horizontal lifts of coor-
dinate vector fields ∂

∂xi on the base space X and the matrix gij is the inverse
of the base metric gij in these coordinates. If we locally trivialize the bundle:
Q ∼ X × G (locally) then

Xi(b, g; p, λ) = pi − ΣλaAa
i (b)

as a fiber-linear function on T ∗Q. Here (b, g) ∈ B×G, (p, λ) ∈ T ∗
b X×(Lie(G)∗,

and A = ΣAa
i (b)Eadxi is the pullback of the connection one-form with respect

to the local section which defines the given trivialization. The Ea form a basis
for the Lie algebra Lie(G). p = pidxi and λ = Σλaθa where θa is the dual
basis to Ea. This Hamiltonian is the Hamiltonian which describes the motion
of particle with non-Abelian charge λ traveling over the Riemannian base space
X under the influence of the gauge field A. If x(t) denotes the projection of
such a minimizer to the base X, and if ∇ is the Levi-Civita connection on X,
and F the curvature of the connection A then these equations are equivalent to
Wong’s equations:

∇ẋẋ = (λ, F (ẋ, ·))#

Dλ

dt
= 0
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The curvature F can be thought of as a two-form on X with values in the adjoint
bundle of Lie algebras over X. The multipliers or “color charges” λ are sections
along x(t) of the dual vector bundle, the co-adjoint bundle. Thus (λ, F (ẋ, ·))
defines a one-form, or force, along x(t). The superscript # indicates that we
turn it into a vector field along x(t) by raising indices with respect to the metric.
The second equation says that the color charge is covariantly constant.

These normal subRiemannian geodesics have an appealing description in
terms of Riemannian geometry. Recall from Presentation 1, §2.1, that a Kaluza-
Klein metric on Q is a Riemannian metric which agrees with the subRiemannian
structure on the horizontal planes, and yields a fixed bi-invariant metric on the
group fibers of Q.

Proposition 1 The normal subRiemannian geodesics are the horizontal lifts of
the projections to X of the Kaluza-Klein geodesics. The charge λ measures the
angle of the corresponding Riemannian geodesic with the vertical.

remark We called the above subRiemannian geodesic equations Wong’s
equations, in honor of the physicist [58] who wrote them down as a classical
limit of the quantum dynamics of a Yang-Mills particle. They were written
down earlier by Kerner [29], and in various forms by Sternberg [51], Weinstein,
[57] and probably many others.

3.3 singular geodesics

We finally come to the third and final major difference between Riemannian
and subRiemannian geometry. A basic fact of Riemannian geometry that all
geodesics can be characterized as solutions to the geodesic equations. In subRie-
mannian geometry this is false: there are minimizers which are not the projec-
tions of integral curves for the Hamiltonian vector field of H. Such extraneous
minimizers will be described in detail §2.8.

We begin by describing the possible candidates for these extraneous or sin-
gular minimizers. They depend only on the distribution, and not at all on
the inner product on it. Let ΩD be the space of all absolutely continuous paths
γ : [0, 1] → Q which are horizontal (γ̇ ∈ D) and square integrable. For q0 ∈ Q let
ΩD(q0) ⊂ ΩD denote the subset consisting of the paths starting at q0. (Strictly
speaking the derivative need only lie in D almost everywhere. These path spaces
do not depend on the choice of inner product 〈·, ·〉 on D for if γ̇ is square inte-
grable with respect to one smooth metric on D then it is square integrable with
respect to any other.) ΩD(q0) is a Hilbert manifold with charts as described in
Presentation 3 above. (See for example, Bismut [4], ch. 1 for details concerning
this Hilbert space structure. Also see Ge Zhong [16].)

Definition 6 The endpoint map is the map end = endq0 : ΩD(q0) → Q
which assigns to each curve its endpoint: endq0(γ) = γ(1).

11



Thus
ΩD(q0, q1) = end−1

q0
(q1)

consists of those horizontal paths beginning at q0 and ending at q1. It is the
space over which we minimize when we define the subRiemannian distance and
minimizing geodesics. end is a smooth map and its derivative d(end) can be
calculated by using the variation of parameters formula for ODEs. ([4], ch. 1,
or p. 57 of [50], or below.)

Definition 7 A singular curve γ ∈ ΩD is a singular point of endγ(0); that
is to say, it is a horizontal curve for which the image of the differential dendγ

is not all of Tγ(1)Q. A curve γ ∈ ΩD is regular if it is not singular; that is
to say, if end is a submersion at γ.

Remark: The condition that a curve is singular depends only on the dis-
tribution, not on the inner product on the distribution. An inspection of the
proof in §3.6 yields the fact that the singular curves correspond to those curves
for which the linearization of the control system (eq 1, §2.1) is not control-
lable. Thus the singular curves are intimately related to the critical points of
the input-output map.

Anyone who has taught multivariable calculus should know to be careful in
applying the method of Lagrange multipliers in the presence of singular points
for the constraining function. If F is the constraining function, and E is the
function to be minimized then the correct statement of the method is that every
constrained minimizer is a critical point of the function λ0E+λF for some choice
of multipliers (λ0, λ) �= (0, 0). The singular extremals are the those for which
λ0 = 0 and they correspond to singular points of the constraint functional. They
may or may not minimize E. In our case E is the length or integrated kinetic
energy, and F summarizes the constraints γ̇ ∈ D, γ(0) = q0, γ(1) = q1.

Theorem 4 Every minimizing geodesic is either a singular curve or one of
the normal geodesics described by theorem 2. The two possibilities need not be
mutually exclusive.

This theorem is a particular instance of Pontrjagin’s maximum principle. It
can also be proved using standard methods of the calculus of variations, and
was well-known to Bliss, Caratheodory, Morse and others. In this earlier litera-
ture and in the control literature the singular curves are often called abnormal
extremals.

3.4 a singular minimizer

We now describe the first and simplest example of a strictly singular subRie-
mannian minimizer. This is a curve which, in addition to being a minimizing
geodesic and a singular curve, is not a normal geodesic. That is, it is not the
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projection any integral curve for the Hamiltonian H. This example is due to
the author [34]. Let Q be IR3 with rank 2 distribution defined by the Pfaffian
equation

dz − y2dx = 0.

This is a bracket generating distribution which is of contact type away from the
plane y = 0 and which has growth vector (2, 2, 3) on this plane. The singular
curves of this distribution lie on the plane and are lines parallel to the x axis.

Theorem 5 (montgomery;see also Kupka; Liu-Sussmann) Let 〈·, ·〉 be any
metric on the above distribution and let γ be any of the singular curves. Then
every sufficiently short subarc of γ is a minimizing geodesic. For almost all
choices of metric, these are not projections of normal extremals.

To see what is so special about these singular curves, notice that

z(t) = z(0) +
∫ t

0

(y(t))2
dx

dt
dt

for any horizontal curve. The singular curves are those for which y(t) is identi-
cally zero. Let γ(t) = (t, 0, z0) be such a curve and α(t) = (t+a(t), b(t), z0+c(t))
be a perturbation of γ with α(0) = γ(0) and α a horizontal curve. If |da

dt | < 1
then dx

dt > 0 along α so that z(t) ≥ z0 with equality holding if and only if the
second coordinate b(·) is identically zero. It follows that such an α cannot
have the same ending height as γ unless it is a reparameterization of
γ. This shows that each singular curve is C1-rigid, where we use the definition:

Definition 8 (C1 rigidity; definition introduced by Bryant-Hsu [8]) A hori-
zontal curve γ for a distribution D is called C1-rigid or C1-isolated if it
is isolated with respect to the C1-topology on the space ΩD(γ(0), γ(1)) (modulo
reparameterization) of all horizontal curves sharing its endpoints.

The usual calculus of variations breaks down for C1-rigid curves since they
admit no smooth variations.

The fact that these curves are C1-isolated does not in itself prove minimality.
For it is a general fact that for any distribution of rank greater than 1, there
are no C0-isolated or even Sobolev H1-isolated curves in ΩD(q0, q1).

Lest this example seem too special, we observe that it is stable in the sense
of singularity theory: there is a Whitney-open set of distributions diffeomorphic
to it. This was proved by Martinet. More precisely he proved:

Theorem 6 ((Martinet)) . Let D be a distribution on a three-manifold which
is defined in the neighborhood of some point P as the kernel of a nonzero one-
form θ. Suppose that in this neighborhood we have

θ ∧ dθ = fd3x
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where d3x is a volume form, and where

f(P ) = 0

df(P ) �= 0

Also suppose that the distribution is transverse to the degeneration surface

Σ = {f = 0}

which is equivalent to the assumption that θ ∧ df �= 0. Then there exist coordi-
nates (x, y, z) centered at P such that θ = dz − y2dx.

3.5 proof: motions in magnetic fields

My proof of the length minimality of the preceding singular curve is a rather
brute force proof. By theorem 4 it suffices to show that every normal geodesic
having the same endpoints is longer. So I “sort through ” all normal geodesics.

To do this, I assume that the subRiemannian structure has some symmetry.
Suppose that translations in z are isometries of the subRiemannian structure.
In effect, this is assuming that the structure is of the bundle type of example
1. So, think of Q as a circle bundle over the two-dimensional Riemannian base
space X, with X coordinatized by x and y, and the fiber being coordinatized
by z. The distribution is then

D(x,y,z) = ker(dz − A1(x, y)dx − A2(x, y)dy)

If
√

gdxdy is the surface area element, then the scalar magnetic field is given by

B =
1√
g
(
∂A2

∂x
− ∂A1

∂y
)

which is negative of the Hodge dual of the curvature of the connection form
dz − A1(x, y)dx − A2(x, y)dy. We assume, then, that there is a point P for
which B(P ) = 0 and dB(P ) �= 0. This is equivalent to the Martinet conditions.
The singular curves are precisely the horizontal lifts Ĉ of the zero
locus

C = {(x, y) : B(x, y) = 0}
of the magnetic field. As discussed earlier, the normal geodesics satisfy the
equations of motion of a particle with charge λ traveling on the base in the
magnetic field B. Recall that these equations are equivalent to

kg(x, y) = λB(x, y)

where kg is the geodesic curvature of the curve (x(t), y(t) with respect to the
metric on the base space. Thus the curves Ĉ are the projections of a normal

14



geodesic iff the zero locus C is a geodesic on the base X. Typically this is not
the case.

To prove minimality, I argue by contradiction. Assume that every sufficiently
short subarc of a singular curve Ĉ is not minimizing. Let the two endpoints
approach each other along Ĉ, thus obtaining a sequence γi of normal geodesics
with endpoints along a fixed Ĉ and each shorter than the corresponding arc of
Ĉ. I first show that the corresponding sequences of charges λi must
tend to ∞ in order for these regular curves to be shorter, or even of
the same order of length (in powers of 1/λ) as the corresponding arc
of Ĉ. The above proof of C1-rigidity shows that in order for such a sequence
of curves to have the correct initial and final z values, their projections to the
xy plane must have double points or “kinks”. The projected curves are divided
into arcs, where the endpoints of each arc lies on the zero locus. The crux of
our argument involves showing that in order for the boundary conditions to be
satisfied, the kinks of each arc must “take up enough length” to force arcs to
be longer than the corresponding arcs of C. The analysis is based on analyzing
the normal geodesic equations in the limit λ → ∞.

Liu and Sussmann [31] have found a short real analysis proof based on an
inequality which allows one to easily prove the general case. It also allows them
to prove a generalization of this theorem to rank 2 distributions in arbitrary
dimensions which we will discuss later.

3.6 singular curves and characteristics

The singular curves have a nice “microlocal” description. discovered by Lucas
Hsu. Let

D⊥ ⊂ T ∗Q

be the annihilator of the distribution D and ω be the restriction of the canonical
two-form (Σdpi ∧ dqi) to D⊥.

Definition 9 A characteristic for D⊥ is an absolutely continuous curve in D⊥

which never intersects the zero section and whose derivative lies in the kernel
of ω whenever it exists.

(Recall that absolutely continuous curves are differentiable almost everywhere
and their derivatives are measurable functions.) To be explicit, an absolutely
continuous curve ζ : [0, 1] → D⊥ is a characteristic if

• ζ(t) is never the zero covector

• ω(ζ(t))(ζ̇(t), v) = 0 for each t for which the derivative ζ̇(t) exists and for
each v ∈ Tζ(t)D⊥.

Theorem 7 (Hsu) A horizontal curve is singular if and only if there is an
absolutely continuous everywhere nonvanishing characteristic curve ζ(t) ∈ D⊥ ⊂
T ∗Q which projects onto it.
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remark. Hsu proved this under the assumption that the horizontal curve
was smooth. I extended his theorem [36] to the case where the derivative of the
curve is square integrable, (or more generally in some Lp, p ≥ 1). This gener-
alization is essential in order to understand analytic properties of minimizing
geodesics. In some rough sense this theorem is well-known to the nonlinear
control community (cf. Sontag’s text) and is contained in Bismut’s book. The
characteristics are precisely the abnormal extremals of Pontrjagin’s maximum
principle.

proof A 1-parameter family of horizontal curves

γs(t),−ε ≤ s ≤ ε, 0 ≤ t ≤ L

satisfies the system
dγs

dt
(t) = Σua(s, t)Xa(γs(t))

following ”Presentation 1” above. Let

δγ(t) =
∂

∂s
γs(t)|s=0.

Using ∂
∂s

∂
∂t = ∂

∂t
∂
∂s and introducing coordinates qµ so that Xa = Xµ

a
∂

∂qµ we
derive the first variation of endpoint formula

d

dt
δγm = Σua(t)

∂Xm
a

∂qβ
δγβ + ΣXm

a δua,

an inhomogeneous linear differential equation. Here

δua(t) =
∂

∂s
ua(s, t)|s=0.

This equation can be solved in integral form by using the variation of param-
eters formula from ODEs and introduing the 1-parameters family φt : Q →
Q of diffeomorphisms defined by integrating the time dependent vector field
Σua(t)Xa(q). Note φt(q0) = γ(t). We obtain:

dend(γ) · δγ = dφ1(q0)
∫ 1

0

dφt(q0)−1(Σδua(t)Xa(γ(t)))dt.

Now suppose that the image of the differential of the endpoint map is not all
of TqQ. Then there is a covector p1εTqQ which annihilates all the dend(γ)δγ’s.
Write p1 = dφ1(q0)T p0 where T denotes the transpose (dual) of the differential
dφ1(q0) : TqQ → TqQ and

p(t) = dφt(q0)T p0, 0 ≤ t ≤ L. (4)

One easily calculates that:

< p1, dend(γ)δγ >=
∫ 1

0

< p(s),ΣXa(γ(s))δua(s) > ds.
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It follows from the fundamental lemma of the calculus of variations that that

p(s) ∈ D⊥
γ(s) (5)

One checks directly that the two conditions, eq 4 and eq 5 are equivalent to the
statement that the curve (γ(s), p(s)) is a characteristic for D⊥. For more details
see [36].

the singular geodesics of example 1
Let F be the curvature two-form. The singular curves are precisely the

horizontal lifts to Q of the curves x(t) on X for which there exists a nonzero
section λ of the coadjoint bundle along x for which

λ · F (ẋ, ·) = 0

Dλ

dt
= 0

We can think of these as the limit of the Wong equations as the multiplier
λ tends to infinity.

For the case of circle bundles λ is a constant (the co-adjoint bundle is canon-
ically trivial.) And the equations are simply

B = 0

That is, the singular curves lie in the zero locus of the magnetic field. Assuming
that 0 is a regular value for B this is a collection of smooth curves. In a
neighborhood of each one we can choose a gauge so that the connection form A
is the normal form of Martinet:

A = dz − (A1 + y2)dx

Then the zero locus of the magnetic field is given by y = 0 and x parameterizes
the points of the singular curves. A1 is a constant. This is the case of theorem
5.

4 finding characteristics

The dimension of D⊥ is 2n− k = 2c + k where c = n− k is the corank of D. So
this dimension has the same parity as the rank k of D. Bilinear skew-symmetric
forms on odd-dimensional spaces always have kernels and on even spaces they
generically have no kernel (they are symplectic). Hence the case of even k is
markedly different from odd k.

If k is odd then there is a characteristic vector passing through every point of
D⊥. If we knew that these vectors were tangent to actual characteristic curves
we would know that a characteristic passed through every point of D⊥, and
hence a singular curve through every point of Q. But we do not know this.
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However, by using Darboux’s theorem (for closed two-forms of constant rank),
and the fact that the locus of points on which a two-forms attains its maximal
rank is open we can easily show:

Corollary 1 Suppose the rank of the distribution is odd. Then smooth charac-
teristics pass through an open dense set of D⊥ and consequently smooth singular
curves pass through an open dense subset of Q.

open problem: Is this open dense set all of Q?

To proceed further, we will need an efficient tool for finding the characteristic
curves. This is provided by exterior differential systems [7].

We follow Hsu’s notation [[27]]. Pick a local framing θa, a = 1, 2, . . . , c for
D⊥. Thus an arbitrary element of D⊥ can be written uniquely as

θ = Σλaθa. (6)

where the λa, a = 1, . . . , c are fiber coordinates for D⊥. We can also think of
the θa as one-forms on D⊥ by pulling them back from Q by the projection
π : D⊥ → Q. Then eq (6) can also be viewed as the formula for the restriction
of T ∗Q’s canonical one-form to D⊥. Thus

ω = dθ = Σdλa ∧ θa + λadθa (7)

is the restriction of the canonical two-form to D⊥.
In particular

i ∂
∂λa

ω = θa

where ∂
∂λa

are the vertical vector fields dual to the dλa. This says that the
intersection of the space of vertical vectors, kerdπ, with ker(ω) is zero. We can
read this equation in another way. The space of characteristic vectors (kerω) are
defined by the Pfaffian system iY ω = 0, as Y varies over all vector fields tangent
to D⊥ , or equivalently, as it varies over any (local) framing Y1, . . . , Y2n−k of
D⊥. Taking Y = ∂

∂λa
we find that

θa = 0

along any characteristic which simply says that the projections of characteristics
must be horizontal curves. It follows that the differential of the projection
π : D⊥ → Q maps ker(ω) linearly isomorphically onto a subspace of Dq.

Now complete the frame θa to form a (local) coframe θa, wµ , µ = 1, . . . , k of
Q. Let ea, eµ be the corresponding dual frame of TQ. Then the eµ form a basis
for D and, ( ∂

∂λa
, ea, eµ) forms a local basis of vector fields on D⊥. Relative to

this frame, ω has the block form
 0 −I 0

I 0 −∗T

0 ∗ w(λ)



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where
w(λ) = Σλadθa|D

( The off-diagonal block marked “∗” and its negative transpose “−∗T ” are ma-
trices whose precise form do not matter now.) The following proposition
follows directly from this matrix expression and linear algebra

Proposition 2 Let (q, λ) ∈ D⊥ and let dπ = dπ(q,λ) denote the differential at
(q, λ) of the canonical projection π : D⊥ → Q. Then dπ maps the kernel of ω
at (q, λ) isomorphically onto the kernel of the two-form w(λ) on Dq.

The two-form w(λ) is obviously crucial. It has the following intrinsic de-
scriptions. Define a linear map

w : D⊥
q → Λ2(D∗

q )

as follows. Extend the element λ ∈ D⊥
q to form a local section λ̃ of D defined

in a neighborhood of q. Then

w(λ) = dλ̃(q)|Dq. (8)

This is the map whose kernel defines the first derived system in the theory of
exterior differential systems. Dually, we have

w = δ∗

where the map
δ : Λ2Dq → TqQ/Dq

is given by
X ∧ Y �→ [X̃, Ỹ ](q)modDq

where X̃, Ỹ are any extensions of the vectors X, Y ∈ Dq to sections of D.
(δ is the first term of the nilpotentization – the canonical graded Lie bracket
structure on Gr(TqQ). See §2.6.)

The case of even rank
Suppose that the rank k = 2l is even. Recall that a two-form ω is called

symplectic at a point if it has no kernel there.

Definition 10 The characteristic variety, Σ ⊂ D⊥ \ 0 is the set of nonzero
covectors in D⊥ at which the two-form ω is not symplectic.

Any characteristic must lie completely in the characteristic variety.
Σ is defined by the equation ωn−l = 0 where 2l is the rank of D. Now ωn−l

is a form of top dimension and so has the form fdNx, where f is a function,
N = 2(n − l) is the dimension of D⊥ and dNx is a local volume form on D⊥.
Thus Σ is defined by the single scalar equation f = 0 and we expect it to be
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either empty or a hypersurface. By the above analysis, we can also express Σ
as the solution variety

Σ = {(q, λ) ∈ D⊥ : w(λ)l = 0}

For fixed q the equation w(λ) = 0 is a single homogeneous polynomial equation
of degree l for the variable λ ∈ D⊥

q
∼= Rn−k. This shows that

Σq = Σ ∩ T ∗
q Q

is a real algebraic variety.
Typically Σ is not a smooth submanifold. For generic D it will be a smooth

stratified set in the sense of Whitney. The strata are determined by the rank of
ω and the relative positions of ker(ω) with the rank strata.

5 rank two examples

If D is rank 2, then D⊥ has dimension 2n − 2. The charactersitic subvariety
Σ ⊂ D⊥ is defined by the fiber-linear condition Σλadθa = 0( modD⊥). Using
eq 8 we see that

Σ = (D2)⊥.

The kernel of the form ω on D⊥ is two-dimensional along Σ. This two-plane is
transverse to Σ at λ if and only if λ �∈ (D3)⊥. In this case the intersection of the
kernel with the tangent space to Σ defines a line field on Σ in a neighborhood of
such a point. The integral curves of this line field will be characteristics. (One
can check that these are also the characteristics for the restriction of ω to Σ.)

Definition 11 The projections of the just-described characteristics are called
the generic singular curves. (Liu and Sussmann call them regular ab-
normal curves.)

Theorem 8 (Bryant-Hsu (for rigidity) Liu-Sussmann, (for minimality) )
Every sufficiently short subarc of a generic singular curve is a C1-rigid curve
and a minimizing geodesic.

growth vector (2,3,4)
There is only one such distribution up to local diffeomorphism. It is called

the Engel distribution

Definition 12 An Engel distribution is a rank 2 distribution on a 4-manifold
which is regular and bracket generating.

The growth vector of an Engel distribution is necessarily (2, 3, 4). So any point of
an Engel manifold is contained in a neighborhood for which the distribution ad-
mits a local framing by vector fields X, W such that {X, W, [X, W ], [X, [X, W ]]}
span the entire tangent space TQ. Write Y = [X, W ], Z = [X, [X, W ]].
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Theorem 9 ((Engel)) The framing {X, W} can be chosen so that the defining
relations for Y and Z are the only bracket relations among these four vector
fields. In fact, centered about any point of an Engel manifold we can find local
coordinates x, y, z, w so that W = ∂

∂w and X = ∂
∂x + w ∂

∂y + y ∂
∂z .

This assertion is the Darboux theorem of Engel manifolds. See, for example,
the text [7] for a proof.

EXAMPLE: Engel manifolds can be constructed out of any three-manifold
Y as follows. Every three-manifold Y admits a contact structure E ⊂ TY . The
four-manifold Q consists of all contact directions. In other words Q4 is the total
space of the projectivization of the 2-plane bundle E which is a circle bundle
over Y . The Engel distribution on Q is defined by declaring that a curve is
tangent to this plane field if its projection to the three-manifold is tangent to
the corresponding contact direction there.

foliation by singular curves
An Engel distribution D admits an unique line field L ⊂ D with the property

that [L, [D,D]] ≡ 0 (mod[D,D]). L is the span of the vector field W of the
standard frame {X, W} above. The integral curves of L are exactly the singular
curves of D. According to theorem 8 these are C1-rigid locally minimizing
geodesics. In the above example these curves are the circle fibers.

Bryant and Hsu [8] have shown that each such curve admits an intrinsic
real projective structure. Here is a geometric re-interpretation of the structure
which they discovered. Let Y be the quotient of M by the foliation of singular
curves. (The analysis is local in a neighborhood of an arc of a singular curve,
so the quotient need only be local.) Since [L,D2] ⊂ D2, and L ⊂ D2 the rank
3 distribution D2 descends to a rank 2 distribution, say π∗D2, on Y . D itself
does not descend. Let y ∈ Y and write C = π−1(y) for the corresponding
singular curve. For each point q ∈ C, the subspace dπq(Dq) forms a line in the
two dimensional vector space π∗D2

y. In this way we get an intrinsically defined
development map

δ : C → IRIP 1

where the IRIP 1 is the set of lines in π∗D2
y. Now observe that such a development

map δ for a curve is equivalent to a real projective structure on it. Using the local
normal form (Theorem 9) one checks that δ is monotonic: its derivative never
vanishes. Bryant and Hsu proved the following remarkable theorem relating the
real projective structure to C1-rigidity.

Theorem 10 ((Bryant-Hsu)) Let A ⊂ C be an arc of a singular curve C.
Then A is C1 rigid if and only if the restriction of the development map to A
is one-to-one.

In other words, as soon as the curve C begins to wrap more than one time
around the projective line, it fails to be C1 rigid.
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existence of engel structures The existence of L implies that we have
a well-defined full flag

L ⊂ D ⊂ D2 ⊂ TQ

of subbundles of the tangent space. Modulo problems of orienting these sub-
bundles, this implies that every Engel manifold must be parallelizable. (Put a
metric on Q and use Graham-Schmidt to make a frame field {e1, e2, e3, e4} with
L = Span(e1), D = Span{e1, e2}, etc..)

Conversely, Gershkovich [17] has claimed to have shown that every paral-
lelizable 4-manifold admits an Engel structure. This should be compared to the
result that every 3-manifold admits a contact structure.

dimension (2,3,5)
In this case there is a unique generic singular curve tangent to every hori-

zontal vector vq ∈ Dq. We have a kind of “singular exponential map” and can
get from any one point to any other via concatenations of singular geodesics.

This case was studied in detail by E. Cartan in his “five variables paper” [9].
Among other things, he showed how to construct the complete diffeomorphism
invariants of such a structure. It is a 4th order symmetric covariant tensor on
the distribution; that is, a section of the bundle S4(D∗).

Goursat case: (2,3,4,5, . . . ) The space Q = Jk(IR) of k-jets of a real
function y = y(x) of a real variable x inherits a natural rank 2 distribution whose
integral curves are the k-jets of a function, together with the “vertical curves”
described below. Let yj stand for the jth derivative so that x, y, y1, . . . , yj form
coordinates on Q. A curve (x, y(x), y1(x), . . . , yk(x)) is the k-jet of a function
iff

dy − y1dx = 0

dy1 − y2dx = 0

. . .

dyk−1 − ykdx = 0.

These j one-forms define a rank 2 distribution in the j+2 dimensional jet space.

Theorem 11 (Goursat normal form; see: [7], [42] Thm 3) Suppose that
a distribution has growth vector (2, 3, 4, 5, . . . , k + 2). Also suppose that the
rank vector of its recursively defined flag : Ej+1 = [Ej , Ej ] with E1 = D
is also (2, 3, 4, 5, . . . , k + 2); or, what is the same thing, that Ej = Dj. Then
the distribution is locally diffeomorphic to the the above distribution on the jet
space.

For k = 1 this distribution is the standard 3 dimensional contact distribution
and for k = 2 it is the Engel distribution. For k > 1 the Goursat distribution has
the property that exactly one singular curve passes thru each point. These are
the integral curve of the vector field ∂

∂yk
. They are the vertical curves referred

to above and correspond to varying only the kth derivative.
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the Goursat case in infinite dimensions The Goursat distribution is
spanned by the vector fields

X =
∂

∂x
+ y1

∂

∂y
+ y2

∂

∂y1
+ . . . yk

∂

∂yk−1

and the ”vertical vector field”
∂

∂yk

This last vector field disappears upon letting k → ∞. Formally, in the infinite
variable limit the rank of the distribution drops from two to one: it becomes a
line field!. The integral curve thru the point with coordinates (0, y0, y1, y2, . . .)
is represented by the function whose Taylor coefficients at 0 are the yj . Note
the relevance of whether or not a curve is analytic here.

This phenomenon was pointed out to us by A. Shnirelman. He argues that
it can be related to the problem of free will in philosophy.

The Goursat system describes the kinematics of a truck-trailer system con-
sisting of the front truck containing the 2 control actuators: “steer” and “drive”,
together with k − 2 (passive) trailers attached. When we let k → ∞ it appears
that we can read off the entire past history of the system from its current state,
(assuming the control inputs to be analytic) and that this state in turn deter-
mines the future motion. A truck driver pulling an infinite string of trailers can
no longer steer his vehicle!

6 necessary and sufficient conditions for rigid-
ity

Agrachev and Sarychev [1] have found simple necessary conditions and sufficient
conditions for a horizontal curve γ to be C1- rigid. In order to state their
conditions observe that if λ(t) ∈ (D2

λ(t))
⊥ then the quadratic form

Qλ(t)(v) := λ(t)([v, [γ(̇t), v]]) ; v ∈ Dλ(t)

is well-defined. This is because the Lie-bracket induces a well defined map
D2

q ×Dq → D3
q/D2

q . (See § 2.5 on nilpotentization.)

Theorem 12 (Agrachev-Sarychev [1]: theorems 4.3 and 5.5) Let γ be a
singular C1-path. If γ is C1 rigid then there exists a nonzero characteristic λ(t)
along γ(t) such that for each t

λ(t) ∈ (D2)⊥ (9)

Qλ(t) ≥ 0 (10)
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Conversely if there exists a nonzero characteristic λ along γ with λ(t) ∈ (D2)⊥

and if for each t the quadratic form Qλ(t) is positive-definite transverse to γ̇
(which is to say it is positive-definite on some, and hence any, k−1 dimensional
subspace transverse to γ(̇t)) then every sufficiently short subarc of γ is C1-rigid.

remark: These conditions hold trivially for the characteristics of the rank
2 case governed by the theorems of Liu-Sussmann and Bryant-Hsu.

remark: There theorem is actually slightly stronger, as it is stated purely
for Lipshitz curves

example: For a typical distribution their will be no rigid curves if the corank
n − k ≤

(
k
2

)
. For in this case D2 typically spans.

Sketch of proof
If a smooth function F : H → IRn, where H is Hilbert space, has an isolated

zero at 0 ∈ H, then 0 must be a critical point for F. Let λ ∈ (IRn)∗ be a
corresponding non-zero Lagrange multiplier: λ · dF (0) = 0. We may think of
λ as reading off the first component F1 of F relative to some basis for IRN .
Thus λd2F (0) = d2F1(0). If this is a positive-definite quadratic form then
F1(h) ≥ c||h||2 for some positive constant c, so that 0 is an isolated zero for F1

and hence for F . A similar argument shows that if λd2F is of mixed sign for all
λ ∈ (im(d2F (0)))⊥ then 0 is not an isolated zero.

We apply these considerations with F being the endpoint map and H param-
eterizing a Lipshitz neighborhood of the given curve γ. The parameterization
is by bounded measurable controls ua(t) and is defined by a frame field Xa for
the distribution near γ as in presentation 3, §2.1. The multiplier λ = λ1 is a
covector attached at γ(1) which can be propagated backwards along γ as in as
in § 3.7, eq (4), using a horizontal flow φt with φt(γ(0)) = γ(t). The resulting
covector λ ∈ D⊥ is a characteristic along γ. The second variation formula can
be written:

λ1d
2end(γ)(v) =

∫ ∫
0≤s≤t≤1

λ(s)([v(s), φ∗
t−sv(t)]|γ(s))dsdt.

In order to obtain the two conditions of the theorem expand v(s) = Σfa(s)Xa(γ(s))
in terms of the frame field to obtain the second variation in the form∫ ∫

0≤s≤t≤1

Kab(t, s)fa(t)fb(s)dsdt

where the kernel K is Kab(t, s) = λ(s)([Xa, φ∗
t−sXb]|γ(s)), t ≥ s.

Lemma 1 Consider a quadratic form of the above type where the matrix kernel
K is continuous in (t, s) and is skew-symmetric on the diagonal: Kab(t, t) =
−Kab(t, t). If this quadratic form has finite index then K is identically zero on
the diagonal. If this condition holds and if the quadratic form is also positive
then the “interior derivative” of the kernel on the diagonal must be positive :
∂Kab

∂t |t,t ≥ 0.
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proof of lemma: Suppose K12(t, t) = −K21(t, t) �= 0. Take f of the form
δ(t − t1)e1 + δ(t − t2)e2 where e1, e2, . . . is the standard basis for IRk and with
t1 < t2. One calculates formally that the corresponding second variation is
K12(t2, t1). Switching e1 and e2 we get K21(t2, t1). For t2, t1 close to t one
of these variations will be postive and the other negative. Letting t vary, we
see that the span of the set of such f , or more precisely, of approximate delta
function families for such f , is infinite-dimensional. Hence the index is infinite.

If the symmetry condition holds on the diagonal then we can expand the
kernel K in a Taylor’s expansion near the diagonal to get the second condition.
QED

A simple calculation shows that the two conditions of this lemma correspond
to the two conditions of the theorem of Agrachev and Sarychev.

7 stability and asymmetry of distributions

classification of the stable regular distributions

Definition 13 A distribution is called stable if any nearby distribution is lo-
cally diffeomorphic to it.

Here “nearby” is in the sense of the Whitney Ck-topology, k at least 1, on the
space of all distributions.

Theorem 13 (( Gershkovich and Vershik) [55]) The only stable distribu-
tions occur in dimensions (1, n), (n − 1, n), and (2, 4). In each of these dimen-
sions there is exactly one stable regular distribution and these are the line fields,
contact or odd-contact distributions, and the Engel distribution described in the
previous section.

The idea behind this theorem is a simple and fundamental one which goes
back at least to Riemann in his famous first lecture on differential geometry:
the idea of counting functional dimension. Locally a distribution of k-planes
on an n-manifold is a map from IRn to the Grassmannian Gk(IRn) of k-planes
in n-space. The Grassmannian has dimension k(n − k) and so a distribution is
specified by this many functions of n variables. A diffeomorphism is specified
by n functions of n variables. So the quotient space, which is the space of
distributions up to diffeomorphism equivalence, is specified by k(n − k) − n
functions of the n variables. In order for there to be any stable distributions
this number has to be zero or negative. For if the number were positive, then
the space of nearby inequivalent distributions is parameterized by an infinite-
dimensional function space. k(n− k)− n ≤ 0 exactly for the (k, n) in the range
of the theorem.

The proof can be made rigorous by working on finite jet bundles of distribu-
tions. The space of polynomials of degree r in n variables has dimension

(
n+r

n

)
.
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It follows that the space Jr(Gk(IRn))0 of r-jets of rank k-distributions at 0 has
dimension

g(r; k, n) = k(n − k)
(

n + r

n

)

and that the space Diffr+1(IRn)0 of r+1 -jets at 0 of diffeomorphisms of IRn

taking 0 to 0 has dimension

d(r, n) = n[
(

n + r + 1
n

)
− 1].

The group Diffr+1
0 acts on Jr(Gk(IRn))0. If a distribution D is stable then

the orbit of its r-jet jr(D)0 at 0 must be open. But the dimension of at orbit
cannot be larger than that of the group so this is possible only if

d(r;n) ≥ g(r; k, n).

A simple calculation shows that this is possible for all r only if k(n − k) ≤ n.
See [54] [39].

Asymmetry of distributions
It is well-known that contact distributions admit infinite-dimensional sym-

metry groups. So do Engel distributions as is easily seen from their relation to
contact distributions. As soon as we are away from the stable range, the situa-
tion changes drastically. An argument along the lines of the previous dimension
count strongly suggests the validity of the following.

[folktheorem] The typical bracket generating distribution whose dimen-
sion (k, n) is outside the stable range k(n− k) ≤ n admits no local symmetries.

heuristic proof:[following Bryant]
A distribution on M is a section of the bundle Gk(TM) → M whose typical

fiber Gk(TxM) is the Grassmannian of k-planes in the tangent space TxM .
The r-jet of a distribution then defines a section jr(D) : M → Jr(Gk(TM))
or the corresponding jet bundle. Now the Lie group Diffr+1

x of r + 1 jets of
diffeomorphisms fixing x acts on the fiber thus defining a singular foliation of
the jet bundle. We expect that the Thom transversality theorem holds
in this context. In other words, we expect that a Whitney open and dense set
of distributions have the property that their r-jets are transverse to the leaves
of this foliation.

Coordinates in a neighborhood of a point on M induce a local fiber preserving
diffeomorphism between Jr(Gk(TM)) and Jr(Gk(IRn))0 × IRn which takes the
leaves of this foliation to the orbits of the Diffr+1

0 -action. (The group acts
trivially on the second factor.) The r-jet of a distribution then becomes a map
jr(D) : IRn → Jr(Gk(IRn))0. The distribution cannot have local symmetries if
there is a neighborhood of 0 such that in this neighborhood jr(D)(x) �= O for
x �= 0 in this neighborhood, where O denotes the orbit of jr(D)(0). This will be
true if the orbit has codimension n or greater and if jr(D) is transverse to the
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orbit at 0. But the codimension of an orbit is at least g(r; k, n) − d(r;n). An
easy calculation shows that for r large enough we have g(r; k, n) − d(r;n) ≥ n

provided k(n − k) > n. (This inequality holds as soon as r ≥ n(n+1)−k(n−k)
k(n−k)−n .)

No complete rigorous proof of this folk theorem has been written down.

8 Fat distributions

Fatness is the only simple condition which rules out the existence of singular
curves. Weinstein [56] coined the use of the adjective ”fat” in the bundle context
of example 1 where it is the strongest opposite to a connection being flat. Many
authors assume fatness to obtain their results .

Definition 14 A distribution is called fat or strong-bracket generating
if the restriction of the canonical two-form to its annihilator D⊥ ⊂ T ∗Q is a
symplectic form.

Proposition 3 The following are equivalent

• (i) D is fat

• (ii) For each q ∈ Q and nonzero λ ∈ D⊥
q the two-form w(λ) is symplectic

on Dq

• (iii) For each q ∈ Q and each nonzero vector v ∈ Dq we have

Dq + [V,D]q = TqQ

where V is any horizontal extension of v.

Item (iii) is the origin of the phrase strong bracket generating as a
synonym for fat. The equivalence is proved using Cartan’s magic formula
dλ̃(V, X) = V [λ̃(X)] − X[λ̃(V )] + λ̃([V, X]).

Obviously we have

Proposition 4 If the distribution is fat then it admits no singular curves.

The converse is false. The simplest counterexample is of the type of ex-
ample 1. Consider a planar magnetic field B(x, y) = x2+y2, with corresponding
distribution

D = ker(dz − A)

in xyz space, where A = A1(x, y)dx + A2(x, y)dy satisfies dA = Bdx ∧ dy. D⊥

fails to be symplectic exactly over the z-axis {x = y = 0}. There can be no
characteristics because any such curve would have to have its projection lie in
the z-axis and also be horizontal, which is impossible.

necessary conditions for fatness The condition of fatness persists un-
der C1-perturbations of the distribution. However the existence of fat distribu-
tions is an extremely restrictive condition on the dimension (k, n) of a nonholo-
nomic maniold.
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Proposition 5 (Rayner [46]) Suppose that D is fat at q and has codimension
2 or greater. Then

• i) n2(q) = n; i.e. D is two-bracket generating

• ii) k is a multiple of 4

• iii) k ≥ (n − k) + 1

• iv) the sphere Sk−1 ⊂ Dq admits n − k linearly independent vector fields

Conversely, for any dimension (k, n) satisfying these numerical restrictions (i)-
(iv) there exists a fat distribution with these dimensions on IRn.

proof
i) The strong bracket generating condition (iii) above implies that TqQ =

Dq + [D,D]q.
ii) The condition that w(λ) be symplectic can be written w(λ)l �= 0 where

2l = k. Relative to a local frame θa for D⊥, w(λ) = Σaλadθa|Dq. So the
equation w(λ)l = 0 is a single homogeneous polynomial equation of degree l in
the λa. If l is odd such a polynomial equation has nontrivial solutions.

iii) Define skew-symmetric operators Ja : Dq → Dq, a = 1, 2, . . . , n − k by

Ja(v) = g(dθa(v, ·))

where g is the cometric. Then fatness implies that for each nonzero covector
(λ1, λ2, ·, λn−k) the operator ΣλaJa is invertible. Thus, for each nonzero vector
v the collection {v, J1(v), . . . , Jn−k(v) is linearly independent in Dq.

iv) These are the vector fields v → Ja(v).
The converse follows from a theorem of Adams which states that condition

(iv) implies that the Clifford algebra Cn−k has a representation on IRk. This
means that there exist n−k linear maps Ja : IRk → IRk, a = 1, 2, . . . , n−k which
are skew-symmetric and orthogonal and skew-commute with each other: JaJb +
JbJa = −2δabI. It follows that any linear combination J(λ) = ΣλaJa of them
satisfies J(λ)2 = −‖λ‖2I. Now put coordinates (x, y) = (x1, . . . , xk, y1, . . . , yn−k)
on IRn and define the distribution D to be the one annhilated by the n−k forms

θa = dya − ΣijJ
ij
a xidxj .

Using the standard inner product on IRk and the linear projections of the D(x,y)

onto IRk we dentify the form w(λ) with J(λ). Hence all the w(λ) are are
symplectic for λ �= 0.

examples The only examples of fat distributions which are not contact with
which I am familiar relate to the quaternions. Distributions of quaternionic,
or more generally, Clifford type, are not the only types of non-contact fat
distributions. This can be seen by a dimension counting argument.
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To define a quaternionic version of a CR manifold let Q ⊂ IHk+1 be a real
hypersurface of a quaternionic vector space. The distribution on Q is defined
by letting Dq be the maximal dimensional quaternionic subspace of TqQ. Thus

Dq = TqQ ∩ iTqQ ∩ jTqQ ∩ kTqQ.

The dimension of (D, Q) is (8k, 8k + 3). For generic hypersurface this will be
a fat distribution. For more on these manifolds see §V. 5 of [3] and references
therein where they are called QR manifolds.

Another class of examples is realized by self-dual connections. The typical
instanton, or self-dual SU(2) connection, over a four-manifold will be fat. In
other words it defines a fat distribution on its principal bundle.

The standard seven-sphere admits a rank four fat distribution which can be
obtained in both ways. To realize it as a QR structure embed S7 in IR8 = IH2.
To realize this distribution as coming from a connection we realize S7 as the
total space for the quaternionic Hopf fibration S7 → S4 and put the standard
instanton gauge field on this bundle. The symmetry group of this distribution
is the 21-dimensional Lie group Sp(2, 1; IH) of quaternionic linear maps of IH3

which preserve the split quaternionic form |q0|2 + |q1|2 − |q2|2. S7 is isomorphic
to the quadric {|q0|2 + |q1|2 − |q2|2 = 0} in the 2-dimensional quaternionic
projective plane IPIH2 and this defines the action of Sp(2, 1; IH) on S7. The
usual symmetry group Sp(2; IH)×Sp(1; IH) of the standard instanton sits inside
Sp(2, 1; IH) in the obvious way.

This 7-sphere can be identified with the set of points at infinity for the
quaternionic hyperbolic plane {|q0|2 + |q1|2 − |q2|2 < 1} ⊂ IPIH. The isome-
try group of this space is again Sp(2, 1; IH) and extends to the action on the
sphere at infinity. The Riemannian metric on this plane kinduces a conformal
subRiemannian structure on the 7-sphere at infinity. This structure has as its
underlying distribution the one just described. Examples of this type under-
lie connections between subRiemannian geometry and rigidity phenomena in
Riemannian geometry which has been explored by Pansu and Hamenstädt.

conformal structures on D⊥ [I am indebted to R. Bryant for the ob-
servations here.]

Given a distribution D of dimension (4, 7) we can define a fiberwise conformal
structure (·, ·) on its annihilator D⊥ by

(λ, ν) = dλ ∧ dν|D

(A choice d4x of section of Λ4D∗ defines a bona-fide fiber bilinear form by:
(λ, ν) = dλ ∧ dν|D/d4x.) The “light-cone” {λ ∈ D⊥ : (λ, λ) = 0} is the char-
acteristic variety Σ. Consequently, the distribution is fat precisely when this
bilinear form is definite.

Bryant (unpublished) has analyzed the possible symmetry groups for non-
degenerate distributions of type (4, 7) and has shown that it is always a finite
dimensional Lie group of dimension at most 21. This maximum symmetry
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is attained for only one elliptic distribution, namely the previous example on
S7, and for only one hyperbolic example. The underlying manifold for the hy-
perbolic example is the Grassmannian of isotropic 2-planes in a 6-dimensional
symplectic vector space. The symplectic orthogonal complement of such an
isotropic 2-plane E is a coisotropic 4-plane E⊥ ⊃ E. The distribution plane DE

at E is spanned by the tangents to the curves obtained by keeping E⊥ fixed and
spinning E within it. The group Sp(3; IR) of linear symplectic isomorphisms of
the 6-dimensional vector space is the 21-dimensional symmetry group.

9 most distributions are determined by their
singular curves

In this section we announce a new result inspired by the the question:

Is a nonholonomic distribution determined by its singular curves?

posed to us in 1992 by Jakubczyck. Details will be provided in a subsequent
publication.

In the generality stated, the answer to Jackubcyk’s question is “no” due
to the existence of moduli of fat distributions. In other words, there exist
continuous families of distributions each of which admit no singular curves and
no two of which are locally diffeomorphic. However the rank 2 examples and
the hyperbolic case in dimension (4, 7) just discussed indicate that for a large
class of dimensions (k, n) the answer may generically be “yes”.

Let us make Jacubcyck’s question more precise.

Definition 15 A distribution germ is strongly determined by its singu-
lar curves if every diffeomorphism germ which takes its singular curves to the
singular curves of another distribution of the same dimension is the germ of a
diffeomorphism which takes this distribution to the other.

Theorem 14 Consider distributions of dimension (k, n) for which the corank
n−k satisfies n−k ≥ 3. There is a Whitney-open set of such distribution which
are strongly determined by their singular curves. These distributions have the
property that the k-plane through any point is the linear hull of the tangents
to the singular curves passing through that point. If (k, n) is outside of the fat
range (see proposition 6 above) then this set of distributions is dense.

remark Zhitomirskii [60] [62] has conjectured that in dimension (n − 1, n)
and (2, 4) distributions are weakly determined by their singular curves. By
this we mean that if two such distributions have orbit-equivalent classes of sin-
gular curves then they are in fact diffeomorphic. But a diffeomorphism which
takes one set of curves to the other need not be a diffeomorphism between the
distributions. (Consider the Engel case or odd-rank contact case.) In these
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papers Zhitomirskii classified the stable nonregular distributions and his con-
jecture holds for them.

sketch of proof of the theorem
[k = 2l + 1 odd.] If k is odd then the annihilator D⊥ has odd dimenison so

that the restricted canonical two-form, ω, has a nontrivial kernel at every point
λ ∈ D⊥. For a generic D and a generic point λ of D⊥ the dimension of this
kernel will be 1. This kernel will vary smoothly in a neighborhood of λ, thus
defining a line-field whose integral curves are characteristics. Recall that the
differential of the projection maps this kernel linearly isomorphically onto the
kernel of the two-form w(λ) on Dq, π(λ) = q. The map

λ �→ ker(w(λ))

thus associates to each generic covector a direction in Dq which is the tangent to
the singular curve corresponding to the characteristic passing through λ. Since
w(tλ) = tw(λ) for t ∈ IR this map is defined projectively as a map

(IPD⊥
q)reg ⊂ IPD⊥

q → IPDq

where the superscript “reg” indicates that we must restrict to the open subset of
such generic (or “regular”) λ. This map is the projectivization of a homogeneous
degree l vector valued polynomial. The theorem is proved by showing that for
generic distribution germs this map is free in the following sense.

Definition 16 A subset of a vector space is called free if its linear span is the
entire vector space. A map into a vector space is called free if its image is free.
A map into a projective space is called free if the corresponding map into the
unprojectivized vector space is free.

example If V = IRk then the curve t → (1, t, t2, . . . , tk−1) is free.
example A representation of a group G on a vector space V is irreducible

if and only if for each nonzero vector v the orbit map G → V given by g �→ gv
is free.

remark Freeness is an open condition. The components of a nonfree map
must satisfy a linear dependence condition, hence the word “free”.

remark For c ≥ k the map is a submersion at typical λ.
[the case k = 2l odd] The main ideas are the same. The proof is signif-

icantly complicated by the fact that at typical points λ the form w(λ) has no
kernel. So we must restrict the entire discussion to the characteristic variety

Σ = {λ ∈ D⊥ : w(λ)l = 0}

which is the set of λ for which w has a kernel. We expect Σ to be a hypersurface
(typically singular). For generic distribution, and for generic point λ ∈ Σ we
expect:
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• 1) Σ is smooth near λ

• 2) the kernel of the restricted two-form at λ is a two-plane,

• 3) this two-plane intersects TλΣ transversely.

The set of such λ will then form an open dense subset, say Σreg ⊂ Σ, typ-
ically the complement of some closed subvariety. And on this subvariety the
intersection of the kernel with the tangent space defines a line field.

In this manner we obtain a map

IPΣreg → IPDq.

It is defined by homogeneous polynomials of degree 2l − 1. This map is gener-
ically free provided the corank is greater than or equal to 3 and the proof is
finished as in the odd rank case. (IPΣreg has dimension c − 2 and hence is a
curve when the corank c is 3.) Details of the argument will be provided in a
future publication.

10 singular curves dominating spectral asymp-
totics

This section is a summary and discussion of a new result which appears in [40].
If subRiemannian manifolds inherited a geometrically natural, smooth, vol-

ume measure dµ then they would have a natural subLaplacian, whose eigenval-
ues would be defined by the Dirichlet (Rayleigh-Ritz) principle for the “hori-
zontal Dirichlet energy”: ∫

g(df, df)dµ.

Here g is the cometric (§3.1), that is, the bilinear form on the cotangent bundle
whose associated quadratic form is the geodesic Hamiltonian H.

When (D, Q) is a principal bundle with connection (example 1, §2) there
is such a measure. It is locally the product of the Riemannian measure on the
base with Haar measure on the fiber. (See §2.5) Its subLaplacian is the covariant
(or horizontal) Laplacian Ĥ which acts on functions ψ on the principal bundle
according to the coordinate formula:

Ĥψ = − 1√
g
ΣDµ(gµν√gDνψ).

Here the Dµ are the covariant differentials in the coordinate directions on the
base, which is to say they are the directional derivative operators in the direction
of the horizontal lifts of the ∂

∂xµ . The gµν are the inverse matrix coefficients on
the Riemannian base space. (If we replace the Dµ by the ∂

∂xµ we would have the
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regular Laplacian acting on functions on the base space.) A change in the Haar
measure merely multiplies the entire measure by a constant, and thus leaves the
subLaplacian fixed up to an overall multiplicative constant.

If Q is a circle bundle then the covariant Laplacian is the quantum Hamil-
tonian Ĥ, or Schrodinger operator, for a nonrelativistic charged particle on the
Riemannian base space travelling under the influence of the magnetic field given
by the curvature of the (given) connection. The charge λ ∈ ZZ indicates what
representation of the circle the quantum wavefunction ψ is in. More specifically,
its charge is λ if

ψ(eiθq) = eiλθψ(q)

where q → eiθq indicates the circle action on Q. Let L∗ = L−1 denote the
Hermitian line bundle whose unit vectors form Q. The set of ψ which transform
in this manner is naturally isomorphic to the space of square integrable sections
of its λth power, Lλ. We will denote this space of sections by Γ(λ) = Γ(Lλ);

L2(Q) =
⊕
λ∈ZZ

Γ(λ)

Since Ĥ commutes with the S1 action it commutes with orthogonal projection
IPλ onto Γ(λ). Thus

Ĥ =
⊕

λ

Ĥ(λ)

where
Ĥ(λ) = IPλĤIPλ = ĤIPλ.

Ĥ(λ) is the standard quantum Hamiltonian for a nonrelativistic particle in the
magnetic field B = ∗dA corresponding to the curvature of this bundle, provided
the particle has spin zero and charge λ . (Actually, there are various units
we have suppressed, eg. the mass, and Planck’s constant. λ corresponds to
(charge)/(Planck’s constant).)

In theorem 4 we saw considered the case Q → X where X is a Riemannian
surface. We saw that the singular geodesics corresponded to the zero locus of a
magnetic field.

question: do singular geodesics persist upon quantization?

In our sketch of the proof of theorem 4 we saw that there is a sense in which
the singular geodesics correspond to the limit of infinite charge of regular sub-
Riemannian geodesics. This suggests that we should investigate the spectral
asymptotics of Ĥ(λ) as λ → ∞ in order to see the quantum effects of the
singular geodesic.

We will make the following assumptions.

33



• (A1)The zero locus C is a compact connected curve

• (A2)If the surface X has a boundary then C does not intersect the bound-
ary. Use Dirichlet conditions on the boundary.

• (A3)If the surface is noncompact then the magnetic field B is bounded
away from zero at infinity.

Theorem 15 Consider the family Ĥ(λ) of covariant Laplacians in the situation
of theorem 4 where the magnetic field vanishes in a nondegenerate manner along
a closed curve C. Make the above assumptions (A1), (A2), (A3). Then the
normalized ground state (= lowest eigensection) for Ĥ(λ) tends to a probability
measure concentrated on C as λ → ∞. Its energy (= lowest eigenvalue) is
O(λ2/3). The same is true for all eigenfunctions and values, with the level j of
the eigenvalue Ej(λ) fixed as we let λ → ∞. If the gradient of the magnetic field
has constant magnitude, say b0, along C then we can be more precise about the
energy asymptotics:

Ej(λ) = λ2/3b
2/3
0 E∗ + O(1)

where E∗ is a universal constant; E∗ � .5698.

In physical terms, the fact that the eigensections concentrate on the zero
locus C means that as the charge becomes very large (or Planck’s constant very
small) it becomes almost certain that the particle is very close to C. The form
of the limiting distribution on C is not known.

This eigenvalue growth specified by this theorem should be contrasted with:

Theorem 16 Suppose that the magnetic field on the surface satisfies |B| ≥ B0

for some positive constant B0. Then

E1(λ) ≥ B0|λ|.

which presumably holds in spirit for a general 3-dimensional contact manifold.
We view the phenomenon of eigenfunction concentration and eigenvalue

growth governed by singular geodesics C as the first instance of a general re-
lation between the spectral asymptotics of a class of second order subelliptic
operators and the singular geodesics of their corresponding symbols – the un-
derlying subRiemannian metric. The charge λ is a measure of the vertical or
transverse part of the gradient of a function. So in a more general treatment
the large asymptotic parameter will be a measure of the size of the components
of the gradients transverse to the distribution.

related results and conjectures Guillemin and Uribe [21] [22] [23]
have related the spectral asymptotics for covariant Laplacians on fat bun-
dles to the subRiemannian geodesic flow corresponding to the normal Hamil-
tonian H. Christ [11] has conjectured that the presence of the singular curves
of the type occuring in Martinet’s normal form (that is, the singular minimizers
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of theorem 4 above) signals the breakdown of analytic hypoellipticity. Their
are hints (Sussmann, private communication; Bismut [4]) that the small-time
asymptotics for the subelliptic heat kernel is dominated by contributions from
singular curves.
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