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1 Introduction

We investigate the space of abnormal or singular extremals of nonlinear deter-
ministic control systems linear in the controls. This article began as an attempt
to understand some unpublished work of U. Hamenstädt’s [7] on the space
of singular curves for left-invariant systems on Lie groups. We found that a
“symplectic” approach espoused by Hsu [8] clarified the situation and simplified
calculations.

Fix an initial state. By the endpoint map we will mean the map that
assigns to each control the corresponding final state. The critical “points” of this
map are the controls corresponding to abnormal extremals. (See, for example,
Sontag’s text [14] p. 56, or that of Pontrjagin et al [12].) We will call the
corresponding curves in state space the singular curves.

Introduce a running cost function which is quadratic positive-definite in the
controls. The corresponding optimal control problem is known as the “subRie-
mannian” geodesic problem and is a special case of the problem of Lagrange in
the calculus of variations. A basic, unanswered question is “are all subRieman-
nian minimizers smooth?” Since normal extremals are automatically smooth,
this is equivalent to the question “are all singular subRiemannian minimizers
smooth?” This question motivated our work. By the way, for this particular
optimal control problem, the class of singular and abnormal extremals coincide,
so there will be no confusion by our use of the term singular curve or singular
extremal. (See an appendix to [10] for more on this.)

Our main result concerns the singular curves for a class of systems whose
state spaces are compact Lie groups. We show that each such extremal lies in
a lower dimensional subgroup within which it is regular. We use this result to
prove that all subRiemannian minimizers for such a system are smooth.1



A central ingredient of our proof is a symplectic geometric characterization
of the singular curves. Lucas Hsu [8] found this characterization in the case
of smooth singular curves. In order to make it useful, we must extend his
characterization to nonsmooth singular curves, which we do in propositions
1 and 2 of §3. We have found the symplectic point of view quite useful in
performing calculations and believe that it is essential for further understanding
of singular curves.
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2 SubRiemannian Geometry and Characteris-
tic Submanifolds

Consider a system of the form

q̇ = Σk
a=1u

a(t)Xa(q) (1)

with cost functional

E[u] =
∫ T

0

1
2
Σ(ua(t))2dt (2)

Here q is the state variable, a point on an n-dimensional manifold Q. The Xa

are a family of smooth vector fields on Q. We write u for the control vector
(u1, . . . , uk). The goal is to find controls t → u(t) which steer between two given
points, say q0 to q1, in time T , and in such a way as to minimize E[u] over all
such controls.

We prefer to rephrase this problem in the language of differential geometry.
We will suppose that the vector fields Xa are linearly independent at each point
q and so define a field of k-planes Dq ⊂ TqQ , where TQ denotes the tangent
bundle to Q. (Assume k < n so that the problem is different from Riemannian
geometry.) The union D = ∪q∈QDq ⊂ TQ of these k-planes forms a distribution
on Q. Declaring the vector fields Xa to be an orthonormal frame for D defines
a fiber inner product 〈·, ·〉 on D. A geometric structure consisting of such a
pair (D, 〈·, ·〉) is called a subRiemannian metric [15], or alternatively a singular
Riemannian [5], or Carnot-Caratheodory [6] metric.
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In these terms our optimal control problem becomes the subRiemannian
geodesic problem: Find a path γ : [0, 1] → Q which minimizes the integral

E(γ) =
1
2

∫
〈γ̇, γ̇〉dt

subject to the constraints

• (a) γ̇(t) ∈ D whenever this derivative exists

• (b) γ̇ is square integrable (and in particular the derivative γ̇(t) exists for
almost all t)

• (c) γ(0) = q0

• (d) γ(1) = q1.

We will call a solution to this problem a minimizing subRiemannian geodesic or
simply a minimizer. A basic open question is, “are all minimizers smooth?”

Let ΩD, ΩD(q0), and ΩD(q0, q1) be the space of all curves satisfying the
constraints (a)-(b), respectively (a)-(c), and (a)-(d). These path spaces do not
depend on the choice of inner product 〈·, ·〉 on D for if γ̇ is integrable with
respect to one smooth metric on D then it is integrable with respect to any
other. Bismut [3] shows how to give ΩD(q0) the structure of a Hilbert manifold.

Definition 1 The endpoint map is the map end = endq0 : ΩD(q0) → Q
which assigns to each curve its endpoint: endq0(γ) = γ(1).

Thus ΩD(q0, q1) = end−1
q0

(q1). Bismut observed that end is a smooth map and
calculated its derivative d(end). This derivative is well-known and can be found
in many places, for example in Bismut’s book, or at the top of p. 57 of Sontag’s
text. The formula for the derivative is repeated later on in this paper.

Definition 2 A singular curve γ ∈ ΩD is a singular point of endγ(0). A
curve γ ∈ ΩD is regular if it is not singular, i.e. if end is a submersion at γ.

Remarks.
• The condition that a curve is singular depends only on the distribution

and not at all on the inner product on the distribution.
• (fatness.) Most of the work on subRiemannian geometry assumes that

the underlying distribution is “fat” which is synonymous with “strong bracket
generating”. (See [17].) Fat distributions are ones for which there are no singular
curves besides the trivial constant curves. They are rare objects. For example,
Rayner [13] showed that if n−m �= 1 then the rank m of a fat distribution must
be a multiple of 4 and also must be less than n(n − 1)/2.

Lemma 1 If a minimizer is regular then it is smooth.
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This is proved by using the implicit function theorem, together with the method
of Lagrange multipliers. See for example Hamenstädt [6].

In view of this lemma, the question of the smoothness of minimizers reduces
to the question of the smoothness of the singular minimizers. Hamenstädt
suggested the following idea in order to investigate this last question. Try to
associate to every singular curve γ some smooth submanifold M = M(γ) ⊂ Q
containing it and such that γ is regular as an integral curve for the restriction
DM := D∩TM of D to M . (For simplicity, assume also that DM has constant
rank and so forms a smooth distribution on M .)

Definition 3 We will call such a submanifold M(γ) a “characteristic subman-
ifold” for the singular curve γ.

Now (M, DM ) is a subRiemannian manifold in its own right, with inner product
inherited from D. If γ ⊂ M is a minimizer for the subRiemannian geodesic
problem on Q it is automatically a minimizer for the problem on M . So we can
apply Lemma 1 to conclude

Corollary 1 If every singular curve has a characteristic submanifold then every
minimizing geodesic is smooth.

To prove our main result we use this corollary.
Sussmann [16] gives an example of a singular curve which admits no charac-

teristic submanifolds. ( It is a nonsmooth characteristic curve for a smooth rank
2 distribution on R3.) Thus characteristic submanifolds don’t always exist.

If a singular curve is a smooth embedded curve then it is a characteristic
submanifold for itself. In order to try to make the characteristic submanifold M
of a curve unique, at least as a germ of a submanifold in a neighborhood of the
curve, one should add the condition that M be maximal among the class of all
connected characteristic submanifolds of the curve. If G is a Lie group and D is
invariant under left multiplication, then it is sensible to look for characteristic
submanifolds which are Lie subgroups.

Definition 4 (Hamenstädt) Suppose Q = G is a Lie group and D ⊂ TG is a
left-invariant distribution. Let γ ⊂ G be a D-curve passing through the identity.
A closed connected subgroup K of G is called a characteristic subgroup of
γ if it is a characteristic submanifold and is the largest connected characteristic
submanifold which is also a Lie group.

In the examples presented at the end of this paper every singular curve
through the identity lies in a characteristic subgroup. However Bryant and
Hsu [4] give an example of a distribution on the group G of rigid motions of
three-space for which the points of a general singular curve through the identity
generate the entire group. Thus characteristic subgroups do not exist for these
curves. (Their curves are smooth.)

A Speculation. If D is analytic or appropriately generic, then every every
singular curve lies in a characteristic submanifold.
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3 Singular Curves

The goal of this section is to describe Hsu’s characterization [8] of the smooth
singular curves and extend it to all singular curves.

3.1 Microlocal Characterization

Let
D0 ⊂ T ∗Q

be the annihilator of the distribution D. It is a smooth subbundle of the cotan-
gent bundle and its sections consist of one-forms which annihilate the control
vector fields Xi. Let ω be the restriction of the canonical two-form (Σdpi ∧ dqi)
to D0.

Definition 5 A characteristic for D0 is an absolutely continuous curve in D0

which never intersects the zero section and whose derivative lies in the kernel
of ω whenever it exists. The characteristic will be called an Hp

1 characteristic if
its derivative is in Lp.

To be explicit, an absolutely continuous curve ζ : [0, 1] → D0 is a character-
istic if

• ζ(t) is never zero; i.e. if when we write it in standard cotangent coordinates
(q(t), p(t)) on T ∗Q, we have p(t) �= 0 for all t between 0 and 1, and if

• ω(ζ(t))(ζ̇(t), v) = 0 for each t for which the derivative ζ̇(t) exists and for
each v ∈ Tζ(t)D

0 (Recall that absolutely continuous curves are differen-
tiable almost everywhere and their derivatives are measurable functions.)

3.2 Pontrjagin’s abnormal extremals

Define the momentum functions Pi on T ∗Q associated to our control vector
fields Xi by

Pi(q, p) = p(Xi(q)), i = 1, . . . , k.

Here p ∈ T ∗
q Q is a costate. In other words, the Pi are the given vector fields

viewed as fiber-linear functions on the cotangent bundle. Choose k measurable
functions ui(t), 0 ≤ t ≤ 1 and define the time-dependent Hamiltonian

Hu(q, p, t) = Σui(t)Pi(q, p).

Introduce coordinates qµ, µ = 1, . . . , n and dual coordinates pµ, µ = 1, . . . , n
so that together they form canonical coordinates on the cotangent bundle with
typical covector being written Σpµdqµ. Then the Hamiltonian equations for Hh

take the canonical form:

q̇µ = Σui(t)Xµ
i (q)

ṗµ = −Σui(t)∂Xν
i

∂qµ pν .
(3)
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The first equation simply says that q(t) = Φt(q(0)) where Φt is the flow of
the time-dependent vector field Σui(t)Xi. We will call any such time-
dependent flow a horizontal flow. (This terminology arises because we think
of the distribution planes as the choice of “horizontal planes” and so such a flow
is one for which all integral curves are horizontal.) The second equation says
that p(t) is the push-forward of p(0) with respect to this flow:

p(t) = dΦt(q0)−1T p(0).

Definition 6 An H2
1 -abnormal Pontrjagin extremal is a solution t → (q(t), p(t))

of the above equations (3) which also satisfies the constraints

Pi(q(t), p(t)) = 0, i = 1, . . . k

and for which the u defining the equations (3) is in L2([0, 1],Rk)

3.3 The Characterization

Proposition 1 Let ζ : [0, 1] → T ∗Q be an absolutely continuous path which
never intersects the zero section and whose derivative is square integrable. Let
γ = π◦ζ : [0, 1] → Q be the curve over which ζ lies. Let q0 and q1 be the starting
and ending points of γ. Then the following are equivalent.

• (i) ζ(t) annihilates the image of the differential , R(t) = d(end(γt)) for
0 ≤ t ≤ 1, where γt is the restriction of γ to the interval [0, t].

• (ii) γ ∈ ΩD, ζ(t) ∈ D0
γ(t), and ζ(t) = dΦt(q0)−1T ζ(0), for 0 ≤ t ≤ 1 where

Φt is any t-dependent horizontal flow which generates the curve γ.

• (iii) ζ is an H2
1 abnormal Pontrjagin extremal.

• (iv) ζ is an H2
1 characteristic for D0.

As an immediate corollary we have

Proposition 2 A D-curve γ ∈ ΩD is singular if and only if there is a continu-
ous everywhere nonvanishing H2

1 -characteristic curve ζ(t) ∈ D0 which projects
onto γ. Let R(γ) denote the image of the differential of the endpoint map at γ.
For fixed γ , the set of all such characteristic curves with the zero curve included
forms a vector space Γγ whose dimension is n− dim(R(γ)). The annihilator of
R(γ) is {ζ(1), ζ ∈ Γγ} .

remarks.
• If, in the definition of ΩD, we had used curves with derivative in Lp, p ≥ 1,

instead of L2, i.e. Lp as opposed to L2 controls, the same theorem would hold,
the only change being that the characteristics would be in the Sobolev space
Hp

1 instead of H2
1 .
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• Parts of these propositions can be found in standard control literature,
almost always for L∞ instead of L2 controls. For example see Sontag’s text,
[14], p. 56-57.

• If a singular curve is smooth then so is any characteristic projecting onto
it. In this case Proposition 2 is due to Hsu [8]. Of course Hsu’s result is of no
help in regards to the question of whether or not every singular minimizer is
smooth.

3.4 The differential of the endpoint map

The derivative of curve γ ∈ ΩD can be expanded as

γ̇ = Σhi(t)Xi(γ(t)). (4)

Let Φt = Φt(·;h) : Q → Q denote the time-dependent (local) diffeomorphism
defined by the time-dependent vector field ΣXi(q)hi(t). Then

γ(t) = Φt(q0)

where q0 = γ(0), and end(γ) = γ(1) = Φ1(q0). The differential, or Jacobian
matrix, dΦs(q0) : Tq0Q → Tγ(s)Q of Φs is an invertible linear map. Then the
derivative of end in the direction u at γ is

d(end(γ))(u) = dΦ1(q0)
∫ 1

0

dΦ−1
s (q0)(ΣXi(γ(s))ui(s))ds. (5)

Another way to express this derivative is

d(end(γ))(u) = Z(1)

where Z(t) = Z(t, u(·)) is a vector field along γ which satisfies a certain 1st order
inhomogeneous linear ordinary differential equation defined by u. In terms of
coordinates qµ on Q this equation is

dZµ

dt
= Σ

∂Xµ
i

∂qα
|γ(t)h

i(t)Zα(t) + ΣXµ
i (γ(t)ui(t) (6)

with Z(0) = 0.

Observe that the curve Z(t) is an H2
1 vector field along γ. (More generally,

if the ui are in Lp then Z(t) is a continuous vector field along γ whose derivative
is in Lp.)

remarks.
• Versions of this formula for the derivative of the endpoint map can be

found in many places. See for example [2], [12], the first chapter of Bismut [3],
or chapter 2 of the text by Sontag [14].
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• The square-integrable functions hi are the coordinates of the curve γ with
respect to a chart for the Hilbert manifold structure on ΩD(q0) defined by
Bismut.

• The image R(γ) of the differential of the endpoint map is independent of
the parameterization of γ. The formula for the differential of the endpoint map
does depend on the choice of frame Xi. However Bismut shows (p. 23-24) that
its image is independent of frame. Bismut’s formula on the top of his p. 24
is essentially the formula for the Jacobian of the coordinate transformation of
L2([0, 1],Rk) which is induced by taking a new frame for D.

3.5 Proof of Proposition 1

A proof of the equivalence of items (i)-(ii)-(iii) is basically contained in Sontag
[14], ch. 2.8, the only real difference being that he works with L∞ as opposed
to L2 controls.

We will prove the equivalence of (iii) and (iv) which is Hsu’s characterization.
Suppose that ζ is an H2

1 abnormal Pontrjagin extremal. Then it must satisfy
the constraint Pi(ζ(t)) = 0. Also, ζ must satisfy Hamilton’s equation for Hu.
This equation can be written ω(ζ̇, v) = dHu(v) = Σui(t)dPi(v) (a.e.) for any
tangent vector v. Now a vector v ∈ T (T ∗Q) is tangent to D0 if and only if
dPi(v) = 0, i = 1, 2, . . . , n− k. It follows that ω(ζ̇, v) = 0 for all such v; i.e. ζ is
an H2

1 characteristic curve of D0. This logic is easily turned around: suppose ζ
is an H2

1 characteristic curve, that is, its derivative is in L2 and ω(ζ̇, v) = 0 (a.e)
for all v tangent to D0. Now the one-forms dPi ∈ T ∗(T ∗Q) span the annihilator
of TD0 ⊂ T (T ∗Q). It follows that we must have ω(ζ̇, ·) = ΣuidPi (a.e) for
some functions ui of t. But this is Hamilton’s equation for the time-dependent
Hamiltonian Hu. Finally note that the ui are in L2 (or for that matter Lp) if
and only if ζ̇ is in L2 (resp. Lp).

QED.

3.6 Contact and Symplectic Considerations

3.6.1 The case of odd rank

The dimension of D0 is 2dim(Q) − rank(D). Skew-symmetric bilinear forms
on odd-dimensional spaces always have kernels. Consequently, if the rank of D
is odd, then there is a characteristic vector passing through every point of D0.
If we knew that these vectors were tangent to actual characteristic curves we
would know that a characteristic passed through every point of D0, and hence
a singular curve through every point of Q. But we do not know this. However,
by using Darboux’s theorem (for closed two-forms of constant rank), and the
fact that the locus of points on which a two-forms attains its maximal rank is
open we can easily show:
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Corollary 2 Suppose the rank of the distribution is odd. Then smooth charac-
teristics pass through an open dense set of D0 and consequently smooth singular
curves pass through an open dense subset of Q.

open problem: Is this open dense set all of Q?
To illustrate the difficulties here we must recall that the set of two-forms is

stratified by rank (see Martinet [11]). For typical distributions this stratification
induces a stratification of D0 according to the rank of ω. The big open stratum is
the one on which the kernel of ω is one-dimensional and so we have a smooth line
field on this stratum. The central difficulty is that this field typically does not
extend in a continuous manner to the lower dimensional strata. For numerous
examples of this phenomenon, see the book [18] by Zhitomirskii. We now present
an example not found there (it is not a generic degeneration) which illustrates
the phenomenon in a striking way.

Example.
The manifold is R4 with coordinates (x1, x2, y1, y2). The distribution is the

three-plane field annihilated by the one-form:

θ = dy1 + Sdy2

where
S =

1
2
(x2

1 + x2
2).

The rank of dθ restricted to {θ = 0} is two away from the plane {S = 0}. It
follows that there is a unique singular curve passing through every point with
S �= 0. (For distributions of corank 1 we can directly study the singular curves
through points as opposed to the characteristics in D0, because the character-
istics through θ and through tθ ∈ D0 are related by dilation and project to the
same singular curves.) The kernel of this restricted two-form is spanned by the
vector field

x2
∂

∂x1
− x1

∂

∂x2
.

Every characteristic in {S �= 0} must be tangent to this field. This vector field
cannot be extended to the locus {S = 0}. In fact, if γ is any curve not contained
in {S = 0} but passing through it, then γ cannot be tangent to the direction
field.

At any point of {S = 0} the restriction of dθ to the distribution is zero.
Now the distribution 3-planes intersect the tangent space to {S = 0} along the
line spanned by the vector ∂

∂y2
. It follows that the singular locus {S = 0}, is

also foliated by singular curves, namely the lines within it which are parallel to
the y2-axis. So in this example there is a unique singular curve passing through
every point, but the corresponding direction field is discontinuous.

It may be possible to create a singularity of elliptic type for the direction
field on the surface {S = 0} by changing S (and perhaps adding dimensions and
more forms). No singular curve could pass through such a point.
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3.6.2 The case of even rank

In the remainder of this paper we will restrict ourselves to the case where the
rank k = 2l is even. Recall that a two-form ω is called symplectic at a point if
it has no kernel there.

Definition 7 The characteristic variety, Σ ⊂ D0 \ 0 is the set of nonzero cov-
ectors in D0 at which the two-form ω is not symplectic.

Σ is defined by the equation ωn−l = 0 where 2l is the rank of D. Now ωn−l

is a form of top dimension and so has the form fdNx, where f is a function
and dNx is a local volume form on D0. Thus Σ is defined by the single scalar
equation f = 0 and we expect it to be either empty or a hypersurface.

Warnings.
1. Typically Σ is not a smooth submanifold. However it appears that gener-

ically its a smooth stratified subvariety, the strata being points where the rank
of ω is constant.

2. The intersection of the kernel of ω with the tangent space to Σ, or to
one of its strata, may be smaller than the kernel of the restriction of ω to Σ.
Consequently, even when this intersection kerω∪TΣ defines a distribution on Σ
it can be a noninvolutive distribution. This is what happens in our examples at
the end. We make this warning to deter the reader from making the following
error. In the next section we show that at each point σ = (q, p) the kernel of ω
projects in a 1-to-1 manner onto a subspace of Dq. Consequently, if kerω ∪ TΣ
were involutive, the projection of its leaves would provide us with characteristic
submanifolds for every singular curve.

4 Calculating Characteristics

We follow Hsu’s notation. Set c = n − k = corank(D) and pick a local framing
θa, a = 1, 2, . . . , c for D0. Thus an arbitrary element of D0 can be written
uniquely as

θ = Σλaθa. (7)

This defines fiber coordinates λa, a = 1, . . . , c on D0 and shows that D0 has
dimension 2n − k = n + c. On the other hand, we can think of the θa as
one-forms on D0 by pulling them back from Q by the projection π : D0 → Q.
Then this equation (7) is the expression for the restriction of T ∗Q’s canonical
one-form to D0. Thus

ω = dθ = Σdλa ∧ θa + λadθa (8)

is the restriction of the canonical two-form to D0.
In particular

i ∂
∂λa

ω = θa
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where ∂
∂λa

are the vertical vector fields dual to the dλa. Since the θa are nonzero,
this implies that the intersection kerdπ ∩ ker(ω) is zero. This equation can be
read in another way. The spaces kerω can be defined by the Pfaffian system
iY ω = 0, as Y varies over all vector fields tangent to D0. ( A solution to this
Pfaffian system is, by definition, a curve ζ such that ζ∗(iY ω) = 0 for all such
Y .) Taking Y = ∂

∂λa
we find that

θa = 0

along any characteristic. This simply says that the projection of a characteristic
must be a D-curve. Together these two facts imply

Lemma 2 Let (q, λ) ∈ D0 and let dπ = dπ(q,λ) denote the differential at (q, λ)
of the canonical projection π : D0 → Q. Then dπ maps the kernel of ω at the
point (q, λ) isomorphically onto some subspace of Dq.

In order to obtain more detailed information we now complete the frame θa

to form a (local) coframe θa, ωµ , µ = 1, . . . , k of Q, i.e. local trivialization of
T ∗Q as a vector bundle. Let ea, eµ be the corresponding dual frame of TQ.
Then the eµ form a basis for D and, ( ∂

∂λa
, ea, eµ) forms a local basis of vector

fields on D0. Relative to this frame, ω has the block form

 0 −I 0

I 0 −∗T

0 ∗ w(λ)




where
w(λ) = Σλadθa|D

is the restriction to D ⊂ TQ of the form Σλadθa to D ⊂ TQ and where “∗” and
its negative transpose “−∗T ” denote matrices whose precise form do not matter
for us. It follows from linear algebra that the kernel of ω projects
isomorphically, as in the above lemma, to the kernel of w(λ). Define
the structure functions ca

bc, c
a
µc, c

a
µν relative to our frame by

dθa = Σca
µνωµων + Σca

µcω
µθc + Σca

bcθ
bθc.

(We suppress the ∧s.) Then, since w(λ) = Σλadθamod{θa} we have

w(λ) = Σλaca
µνωµων . (9)

remarks.
• There is a simple basis-independent description of w(λ). Recall that the

fiber coordinates λ represent a point θ of D0 sitting in some fiber D0
q . Extend

this covector to form a local section of D0, still denoted by the same symbol.
Then w(λ) = dθ restricted to Dq. One easily sees that the bilinear form is

11



independent of the choice of extension. See, for example, Rayner [13] for this
calculation.

• We can express the characteristic variety Σ as the solution variety to the
equation w(λ)l = 0, 2l = dim(Dq). For fixed q this is a single homogeneous
polynomial equation of degree l for the variable λ ∈ D0

q
∼= Rn−k. This shows

that
Σq = Σ ∩ T ∗

q Q

is a real algebraic variety. (It may be desirable to projectivize thus obtaining
PΣq ⊂ PD0

q .)
As just described, the equations for the kernel of ω can be written as a

Pfaffian system {iY ω = 0}. By linearity, it suffices (locally) to restrict the set
of vector fields Y to our framing ( ∂

∂λa
, ea, eµ). The resulting Pfaffian system is

θa = 0

dλa + λbc
b
µaωµ = 0

λaca
µνων = 0.

Here the summation convention is in force and in deriving the second equation
we used the first equation to get rid of an additional term. We can now easily
write down the characteristic equations for a curve ζ. Write ζ̇ = λ̇a

∂
∂λa

+ γ̇aea +
γ̇µeµ. Then the first set of Pfaffian equations simply say γ̇a = 0,i.e. again, that
the projection of ζ to Q is tangent to D. The next two sets become

λ̇a + Σλbc
b
µaγ̇µ = 0 (10)

and
Σλaca

µν γ̇µ = 0 (11)

which are the characteristic equations.
The second of these equations says that γ̇ is in the kernel of the skew sym-

metric form w(λ) on Dγ(t). It is an algebraic condition which is necessary, but
not sufficient, for the existence of a characteristic tangent to the direction γ̇.

5 Lie Group Examples.

Many of the calculations of this section can be found in Lerman [9] who did
them for reasons internal to symplectic geometry. (See also Weinstein [17].)

Let G be a Lie group with left-invariant distribution D ⊂ TG ∼= G×G. D is
defined by choosing a linear subspace of the Lie algebra of G. More specifically,

D ∼= G × De

and its annihilator is
D0 ∼= G × D0

e .
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The identifications “∼=” are by left translations. e denotes the identity element
of G and we identify the Lie algebra G of G with the tangent space to G at
e. De ⊂ G is a fixed linear subspace of the Lie algebra and D0

e ⊂ G∗ is its
annihilator.

Let θ denote the canonical one-form on T ∗G and let Θ : TG → G denote the
(left) Maurer-Cartan form. (For matrix groups, Θ = g−1dg.) Then

θ(g, µ) = µ(Θ(g))

It follows that the canonical two-form, ω = dθ satisfies

ω = dµ ∧ Θ − µ([Θ,Θ])

where we have used Cartan’s structure equation dΘ = −[Θ,Θ]. Applying this
two-form to vectors (ξ1, µ1), (ξ2, µ2) ∈ T(g, µ)(T ∗G) = G × G∗ we obtain

ω(g, µ)((ξ1, µ1), (ξ2, µ2)) = µ1(ξ2) − µ2(ξ1) − µ([ξ1, ξ2]).

Restricting the form to D0 means that µ, µ1, µ2 ∈ D0
e .

If (ξ1, µ1) represents a characteristic direction then for all (ξ2, µ2) ∈ G ×D0
e

the above expression is zero. Setting ξ2 = 0 we find that −µ2(ξ1) = 0 for all
µ2 ∈ D0

e ; i.e.
ξ1 ∈ De. (12)

which is in accord with §4, lemma 2. Using this information we now have

ω = µ1(ξ2) − µ([ξ1, ξ2]) = 〈µ1 + ad∗ξ1
(µ), ξ2〉

Or
µ1 + ad∗ξ1

(µ) = 0. (13)

Equations (12) and (13) describe the kernel of ω(g, µ). Replacing (ξ1, µ1) with
the tangent (ġ, µ̇) = (ξ, µ̇) to a curve (g(t), µ(t)) in D0 we find that such a curve
is characteristic if and only if

ξ(t) ∈ De

and
µ̇(t) + ad∗ξ(t)µ(t) = 0 (14)

where
g(t)−1ġ(t) = ξ(t).

Now suppose that G admits a bi-invariant inner product, for example a
nondegenerate Killing form. We will then identify D0

e with D⊥
e , the orthogonal

complement to De relative to the inner product. Then ad∗ is identified with ad
and so equation (14) for the evolution of µ becomes

µ̇(t) + [ξ(t), µ(t)] = 0.

13



If, moreover, D⊥
e is a subalgebra, say H, of G then the two terms in this equation

are orthogonal to each other, and hence individually zero. Thus the character-
istic equations become

µ̇ = 0 (15)

ξ ∈ Gµ ∩ De (16)

where
Gµ = {ξ : [ξ, µ] = 0} (17)

is the isotropy algebra of µ under the adjoint action. (To see that the two terms
are orthogonal, observe that µ̇ ∈ H, and [ξ, µ] ∈ H⊥ = De since if µ2 ∈ H then

〈[ξ, µ], µ2〉 = −〈ξ, [µ, µ2]〉

and the last term is zero since ξ ∈ De.)
Now suppose that G is a compact connected Lie group and that H = T

is the Lie algebra of its maximal torus T . (See Adams [1] for example.) For
example, if G is the group of all n× n unitary matrices then T is the subgroup
of diagonal ones. We take De = T ⊥. Now

G = T ⊕ De

is an orthogonal decomposition of G which is invariant under the action of T
by Lie bracket. Upon decomposing De into irreducibles under this action we
obtain

De = ⊕a∈∆+Va.

This is called the root space decomposition and the a’s are called the positive
roots. They are elements of T ∗. Each Va is a two (real) dimensional subspace
and admits an orthonormal basis Xa, Ya such that for each h ∈ T we have
[h, Xa] = a(h)Ya, [h, Ya] = −a(h)Xa. In other words adh acts on Va by a(h)J
where J is rotation by 90 degrees. If a is a root, then so is −a. Making this
change amounts to reversing the orientation on Va. Thus, ignoring orientations,
Va = V−a. The set of all roots is denoted ∆ and is the disjoint union of ∆+,
−∆+ and the 0 covector (whose corresponding root space is T ). We have the
bracket relations

[Va, Vb] ⊂ Va+b ⊕ Va−b

and
[Va, Va] = Span(a)

where we use the bi-invariant inner product to identify a ∈ Lie(T )∗ with an
element of Lie(T ) which we also denote by a. If there is no two-dimensional
subspace corresponding to a ± b , i.e. if a ± b is not a root, then Va±b = 0. It
follows from the second relation that

su(2)a := Va ⊕ Span(a)

14



is a subalgebra of G. It is isomorphic to the Lie algebra su(2) and is called the
root-su(2) corresponding to the root a.

For µ ∈ T set
∆(µ) = {a ∈ ∆+ : a(µ) = 0}

and
Wµ = ⊕a∈∆(µ)Va

It follows directly from the definitions and the bracket relations that

Gµ = Wµ ⊕ T

(compare with eq. (17)) so that

Gµ ∩ De = Wµ

It follows immediately from this, equation (16), and a remark in §4 that

ker(w(µ)) = Wµ.

Combined with equation (15) this shows that ker(ω(g, µ)) = Wµ ⊕ {0}. In
particular this means that (g, µ) ∈ Σ if and only if there is an a ∈ ∆+ such that
a(µ) = 0. ( Σ is the characteristic variety defined at the end of §3.) Now the
root hyperplanes are, by definiton, the hyperplanes ker(a) ⊂ T . They form the
walls of the Weyl chambers and their union is sometimes called the infinitesimal
diagram of G and will be denoted

Σe = ∪a∈∆+{µ : a(µ) = 0}.

It follows that Σ = G × Σe is the characteristic variety.
Now, let

G(µ) = Lie algebra generated by Wµ.

It follows from the bracket relations for the Va that

G(µ) = Wµ ⊕ Span(∆(µ)) = ⊕a∈∆(µ)su(2)a.

( It follows that G(µ) is contained in the isotropy algebra of µ.) Let G(µ) denote
the closed connected Lie subgroup of G whose Lie algebra is G(µ). From what
we have just said and the above calculations it follows that every characteristic
passing through the fiber over e has the form (g(t), µ) where µ ∈ Σe is constant
and where g(t) is an H2

1 -curve in G(µ) which is tangent to

D(µ) := D ∩ TG(µ).

We have proved
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Theorem 1 The characteristic variety of D is G×Σe where Σe is the infinitesi-
mal diagram of G described above. Every characteristic passing through the fiber
over e has the form (g(t), µ) where µ ∈ Σe is constant and g(t) is an H2

1 -curve
in G(µ) which is tangent to

D(µ) := D ∩ TG(µ).

Conversely, every such curve is a characteristic. Consequently a D-curve γ(t)
through e is singular if and only if it lies in one of the closed proper subgroups
G(µ) of G.

As a corollary to this theorem we have the following regularity theorem.
Recall from §2 that if γ ∈ ΩD(e) then a characteristic subgroup for γ is a closed
connected subgroup containing γ within which γ is regular.

Theorem 2 Let G be a compact connected Lie group and D the left-invariant
distribution generated by the orthogonal complement to G’s maximal torus.
Then every singular D-curve is contained in a characteristic subgroup which
has dimension less than that of G. These characteristic subgroups are of the
form G(µ) for some µ ∈ Σe \ 0.

Proof. By induction on the dimension of G. The first nontrivial (D �= TG)
case is dimension 3 which occurs when G = SU(2) or SO(3). The distribution
is of rank 2 and of contact type (it is the canonical connection for the Hopf
fibration G → S2 = G/T ) thus every nonconstant curve in ΩD is regular so
there is nothing to check.

Now suppose we have proved the statement for all connected compact Lie
groups of dimension less than n and let G be such a group of dimension n. Let
γ be a singular curve through e ∈ G. By theorem 1, γ lies in some characteristic
subgroup Gµ of G. Now Gµ is compact, connected, and has dimension less
than n. Its maximal torus is Lie(Tµ) = Lie(Gµ) ∩ Lie(T ) and hence D(µ) =
D∩TGµ is the distribution generated by G(µ)s maximal torus. By the inductive
hypothesis, γ lies in a characteristic subgroup K = (G(µ))(ν) of G(µ). K ⊂ G is
the characteristic subgroup of γ.

Finally, we must show that K = G(β) for some β ∈ T . To do this observe
that the roots of G(µ) are ±∆(µ), restricted to T µ. We are to think of ν as
an element of T (µ)∗. Extend ν to a linear functional β : T → R in such a way
that a(β) �= 0 for any root a not in ∆(µ). One checks from the definitions that
G(β) = (Gµ))(ν). QED.

Using corollary 1 of §2 we have as an immediate corollary

Theorem 3 Let G, D be as in the previous theorem. Then, no matter what the
inner product on this distribution D, all subRiemannian minimizing geodesics
are smooth.
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Example. G = SU(n). The nontrivial Gµ are all of the form SU(n1) ×
. . . × SU(nj) where ni ≥ 2 and n1 + . . .nj ≤ n. The induced distribution on
such a Gµ is a product of the distributions Lie(Tj)⊥ on each SU(ni).(Lie(Ti)
denotes the diagonal matrices in Lie(SU(ni)).) Now on a product of manifolds
with distributions the singular paths γ = (γ1(t), γ2(t), . . . , γj(t)) are those paths
for which at least one component γi is singular. And if each of the distributions
has an inner product so that the product has a subRiemannian structure, then
γ is a minimizing geodesic only if each of its components γi are minimizing
geodesics, as the reader can easily check.

So in this case the last two theorems can be proved by induction on the n of
SU(n), beginning with n = 2 as before. The case SU(3) is the first interesting
one.

5.1 The case of SU(3)

Let Q = SU(3) = G be the group of 3 × 3 unitary matrices with determinant
one. Let T ⊂ G denote its usual maximal torus, the diagonal matrices. Define
the left-invariant distribution D on G by left-translating Lie(T )⊥ ⊂ Lie(G)
about G. Here the superscript ⊥ denotes the orthogonal complement relative
to the Killing form 〈X, Y 〉 = Re(tr(XY ∗)). Thus a typical element of D lying
over the identity e ∈ G is of the form

 0 −ā −b̄
a 0 −c̄
b c 0


 .

Let {e1, e2, e3} denote the standard basis for C3 so that T is diagonal with
respect to this basis. Define subgroups Gi ⊂ G, i = 1, 2, 3 by g ∈ Gi iff gei = ei.
These are the “root SU(2)’s” of G. They are isomorphically embedded copies of
SU(2) in G. Under this isomorphism Di = TGi ∩D is mapped to the canonical
left-invariant rank 2 distribution E on SU(2).

Using the Killing form and left translation, identify D0 with G × Lie(T ).
Corresponding to each i, i = 1, 2, 3, define the ith root αi ∈ Lie(T ) by αi(ei) =
−2ei, αi(ej) = ej , j �= i. Thus, for example α3 = diag(1, 1,−2). And define the
root hyperplanes to be the three lines Li = Rαi. Then, according to theorem 1
of the previous subsection the characteristic variety is

Σ = G × (L1 ∪ L2 ∪ L3) \ 0.

The characteristics passing through a point (e, µ) ∈ Σe, with µ ∈ Li \ 0 are
precisely the curves of the form (γ(t), µ) with γ a Di-curve in Gi. Consequently,
a D-curve passing through e is singular relative to D if and only if it is contained
in one of the Lie subgroups Gi. In this case it must be a Di-curve. But for
(SU(2), E), every nonconstant E-curve is regular. (As mentioned in the proof of
theorem 2, E is of contact type.) The following theorem now follows immediately
from Corollary 1, and is a special case of theorem 3.
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Theorem 4 Every minimizer on (SU(3), D) is smooth. This is true regardless
of the choice of the inner product D, in particular, it need not be left-invariant.

remarks.
• The set of endpoints of singular curves passing through the identity is

G1 ∪ G2 ∪ G3

which is the wedge of three three-spheres, since the pairwise intersection of the
Gi’s is the base point e. It is curious that the projections of these three S3

generate the homology of the flag manifold.
• The tangent space to D0 at (g, µ) can be canonically identified with

Lie(G) ⊕ Lie(T ). If µ ∈ Li \ 0 as above then the kernel of ω at (g, µ) is
(Lie(Gi) ∩ D) ⊕ {0}. For example when µ = α3 the vectors in this have the
form (ξ, 0) where the first component ξ has the form


 0 −ā 0

a 0 0
0 0 0




( a varying over C). The subspace of matrices ξ of this form is not a Lie
subalgebra of Lie(G). At first glance this might seem to contradict the basic
result that the kernel of a closed two form is an involutive distribution. Compare
this with the warning at the end of §3. But it is not a contradiction, for the
result is only true when the kernel has constant rank. The basic result is proved
using the formula dω(X, Y, Z) = ω([X, Y ], Z) + . . . and to reach the desired
conclusion X , Y, and Z must be vector fields which are defined in an open set
and are in the kernel of ω. In our case any such vector field is identically zero
since ω is symplectic off of Σ.

The subspace generated by the space of matrices Lie(Gi) ∩ D is precisely
Gi. An alternative way to construct Gi is to recognize that if ωi denotes the
restriction of ω to G×Li, then the kernel of ωi at any nonzero point is Lie(Gi)⊕
{0} . This has constant rank and so the hypothetical construction of the warning
at the end of §3 can be applied. Every leaf of the distribution ker(ωi) through
{e} × Li projects onto Gi.
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