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R. Montgomery, 11/1/88

Shortest Loops with a Fixed Holonomy.

§1. The Problem and an Introduction.

The physical chemist AleX Pines posed the following constrained
variational problem:

Pines’ Problem for loops: Among all loops ¥ based at xg, and with a
fixed holonomy H[¥] = Hg. find the loops of minimum length.

Here ¥ is a loop in a Riemannian manifold M, which is the base space of a

principal bundle Tt:P—M with structure group the connected Lie group G. P
is endowed with a fixed connection A. (Pines’ interest is in the quantum

Berry phase. Here the relevant bundle is Vi 5 — Gk n. the bundle of

hermitian orthonormal k-frames over the Grassmannian of complex
k-planes in complex k+n space, with its canonical connection.)
The curve ¥ really need not be.a loop in order to define Pines’

problem. A curve ¥ = M joining Xo to Xy defines a parallel translation
map

H[b’] Pg"’ P1

where P, P; are the fibers of P over xg, Xy respectively. Recall the
definition of the parallel translation H[Z]. Let & denote the horizontal
lift of ¥ with initial condition 2(0) = p € Pg. Then HITI(p) = J(ty) € Py,
where ¥(t;) = x,; is the endpoint of the base curve. H[¥] satisfies H[Z1(pg)
- HIZ)p)g. In case ¥ is a loop we call H¥] the holonomy of &, and by
fixing the initial condition p, we can identify it with an element g of G.
This is done by writing 3(t;) = pg. We call g the holonomy measured
from p. 11 G is non-Abelian, this identification depends on p: if we
change p to pg; we find that g becomes g;~'gg;. '
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Pines' Problem, general: Fix points p € Py and q € Py. Among all

horizontal curves ¢ = P joining p to q, find those curves for which the
length of & = TIc is minimized.

Note that H{&lp =q since ¢ is horizontal. Consequently we can
restate the deneral problem:

“minimize the length for a fixed parallel transport Hy = H{ZL"

Shapere and Wilczek {19871 pose a similar problem in their beautiful
paper on the self-propulsion of microorganisms. Define the efficiency of
a curve to be

E[F] = X(HIZD/ 1/ fuan?

where X {s a given class function on G. Recall that a class function is a .'
conjugation invariant function: X(ghg™1) = X(h). Shapere and Wilczek take

X(h) = distance from the identity to h
with respect to a bi-invariant metric on G. (Actually they use an
infinitesimal version of our E's numerator,namely X'(6H/8%).) In Shapere
and Wilczek's situation the numerator of E is the distance travelled by
the organism, and the denominator is the power output.

Problem of Shapere and Wilczek. Find the loops of maximum efficiency.

!soperi_metric Problem. -
In the case G = U(1) and & bounds a disc D, we have the formula

HIT = explifpF}

where F is the curvature of the connection, thought of as a two-form on _
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M. In case M is two-dimensional and F = const.xarea form, Pines’ problem
then becomes the isoperimetric problem: among atl loops enclosing a
fixed area, find those of minimum length. The solutions to this problem

are curves of constant geodesic curvature. Incase P — M is the Hopf

fibration S3—S2 with its standard connection, these loops are “small
circles”, eq. lines of lattitude. Each such circle is the projection of a
geodesic on S°.

This suggests the following “Kaluza-Klein” approach to Pines’
problem. Recall that a Kaluza-Klein metric (K-K for shortlon P.is
constructed by declaring vertical and horizontal subspaces to be
orthogonal, putting a fixed bi-invariant metric on the fiber G of P, and
putting the base metric ds?y on the horizontal subspaces. We write d?sp =

d?smq@ dzsﬂ. Alternatively, a K-K metric on P is one for which G acts by

isometries, and such that the fibers are all isometric to G with a fixed
bi-invariant metric. Given such a metric on P, the connection is _
reconstructed by defining the horizontal distribution to be the orthogonat
comptement to the vertical, and the metric on M is reconstruced by
insisting that the projection 7t is a Riemannian submersion.

Theorem 1. Assume that G admits a bi-invariant non-degenerate
metric, and use this to put a Kaluza-Klein metric on P. Then the
projection ¥ of every Kaluza-Klein geodesic ¥ on P s anextremal
for Pines’ constrained variational problem. If the connection is fat, or
flat, the converse is true: every extremal loop, and in particular every
minimal loop ¥ = M for Pines’ constrained variational problem Is the

projection onto the base manifold M of a Kaluza-Klein geodesic ¥ on the
principal bundle P.

The bundle with connection is said to be "fat” (Weinstein[1980])) if for
every x e M and Qz 0 in the co-adjoint bundle at x, QF(-,- ) is a
nondegenerate two-form. Here F is the curvature of the connection.
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Theorem 2. Every piecewise C' extremal ¥ for the problem of
Shapere and Wilczek , with X(HI¥1) = O, is the projection of a
Kaluza-Klein geodesic. '

Remark 1.1. The K-K geodesic & will generatly not be horizontal.
In fact, a curve & in P is a horizontal geodesic if and only if its
projection & = Tt¥ is a geodesic on M. If & is a geodesic in P. then the
horizontal 1ift, & ,of its projection 7, is

F(t) = F(texp{-tQyh, .
where Qg = A"d3/dt € 4 {1.11.

See figure 1. To check this, first note that Qq is independeht of 1. (This
is Clairut's theorem, or, conservation of the momentum map for the action
of the structure group on TP.) Differentiate [1.1]:

da(t)/dt = (dF(t)/dt)g - FqQ,

Here g = exp(-tQq). pQq denotes the infinitesimal generator corresponding
to Qq, evaluated at p. And for v € TP, vg means TRgv. Now apply A:

A dT(t)/dt = AUdF(t)/d)g] - Qg
= g71Qgg - Qq
Qo - Qg = O.

where we have used the fact that g commutes with Q.

Formula [1.1] is very helpful in applying the Theorems, as it allows ~

one to calculate the holomomy H[Z]. given the geodesic ¥. This formula
has a Berry phase interpretation: exp(tQq) is the "dynamic phase”, and H{¥]
is the "geometric phase”. See Berry [198S].

Remark 1.2. The Pines’ minimizer ¥ is not unique. This can be
seen in the case 6 = S, M = R? or S? discussed above. There are an
infinite number (a circle’'s worth) of circles through x, with fixed area.

Remark 1.3. In the next section we will give a counterexample to -+

the converse in Theorem 1 for the non-fat case.

Outline of Paper. The theorems will be proved by using Wong's
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equations. These are the classical equations of a particle in a Yang-Mills
field A, and can be viewed as the Poisson reduction of the K-K geodesic
equations. |

we discuss Wong's equations in §2. We also state Theorem 3 there,
which says that extremals are solutions to Wong's equations. A precursor
of Theorem 3 appears in Shapere and Wilczek. Their equation {(30), the
Euler-Lagrange equations for their efficiency functional (an infinitesimal
version of ours), is Wong’s equations!  Theorem 1 follows from Theorem
3 and various lemmas proved in §2. it is proved at the end of §2.

In §3 we prove Theorem 3. The proof is by the method of Lagrange
multipliers. In §4 we prove Theorem 2. This proof requires calculating
the derivative of the holonomy with respect to variations of the loop.

In §5 we calculate some of the extremals for some of the bundles

Vi n — Gy n mentioned at the beginning: the bundle of k-frames over the
Grassmannian Gy o of k-planes in cN, N = k«n, with its canonical
connection. Gy  can be viewed as a space of projection operators

occuring in quantum mechanics, and for this reason these bundles are of
pasic physical interest. These bundles-with-connection are homogeneous,
and for this reason we can give fairly explicit formulas for the
extremals: they can all be expressed in terms of exponentials of constant
skew-hermitian NxN matrices. See Theorem 5. However this answer is
far from complete, as it is rather difficult, if not impossible, to
analytically exponentiate an arbitrary NxN matrices. We end up computing
all the extremals for the Abelian case, k = 1, and certain classes of
extremals for the first non-abelian case, (k,n) = (2,1).

In §6 we list some open problems. In the appendix we present a
pleasing, but unfortunately heuristic, geometric “proof” of Theorem 1.
This involves letting the fiber part of the Kaluza-Klein metric go to
infinity, and arguing that the resulting geodesics become horizontal. This
appendix is joint work with Alan Weinstein.

§2. _Wong's equations.

We will end up proving something more general than Theorem 1,
namely that Pines’ extremals satisfy Wong's equations. Incase G admits
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a bi-invariant metric, Wong's equations are the (Poisson) reduction of the
geodesic equations on P by the action of the structure group. The point is
that wWong's equations, and Pines’ problem, still make sense when G does
not admit a bi-invariant metric, for example when G is the Heisenberg
group. -

wong's equations are:

V¥ = QF(T, ") [1st Wong's eqn]
DQ/dz= 0 [2nd Wong's eqn].

Explanation: F =dA+[A,Al is the curvature of the connection A. Q is
a section of the co-adjoint bundle atong ¥. Recall that the adjoint bundle
is

AdP = Pxad 4

where g is the Lie algebra of G. It is the bundle whose sections are

infinitesimal automorphisms of P. The co-adjoint bundle is the dual
vector bundle,

Ad*P - PxAd* g

where g* is the dual of 4. The curvature F is a two-form on M with
values in AdP. Pairing Q and F(¥, - ) yields a one-form along ¥. Raise the
indices of this one-form (using the metric on M) to form a vector along ¥.
This vector is denoted Q'F(¥, - ), the right hand side of the first wWong's
equation. _

In the second Wong's equation D denotes the covariant derivative on
Ad*P. In a local trivialization DQ/dt = dQ/dt + (a-¥)*Q , the second term
denoting the infinitesimal co-adjoint action of (a-%) € gon Q € 4*, where
a is the local trivialization of the connection one-form A.

Suppose now that g admits an adjoint invariant metric. This metric
induces a fiber metric on AdP, which we use to identify AdP with Ad*P.
It also induces a Kaluza-Klein metric on P as described above. For & a
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curve in P, write
Q(z) = [F(z).A° d¥/dz],

a section of the adjoint bundle along & = Tt¥. Q is essentially the
projection of d&/dz onto the vertical.

Lemma 1. Suppose that g admits an adjoint invariant metric. Then the
curve ¥ in M is the prOJectton of a K-K geodesic ¥ inP if and only if
there is a section Q of the adjoint bundle along ¥ such that (¥,Q)
satisfy Wong's equations. :

This is proved in Montgomery [1984]. and in Kerner [1968]. -We have
called the equations “Wong's equations”, after S.K. Wong who wrote them
down in [1970] as the equations of motion for a classical particle in a
Yang-Mills field. In the Abelian case ( G = U(1)) they were first written
down by Katuza [1921] and Klein. There Wong's equations are the Lorentz.
equations for a particle in an etectromagnetic field.

Theorem 1 can now be stated in the more general way:

Theorem 3.

The projection & of any solution (¥,Q) to Wong's equations which
satisfies the boundary conditions ¥(0) = Xg, ¥{ty) = Xy, is an extremal
for Pines’ problem. Every plecewise C! extremal for the problem of
Pines’ . or for the problem of Shapere and Wilczek, is either

the projection ¥ of a solution (¥.,Q)
to Wong's equations [normal extrematll,

or it satisfies the “singular Wong's equations”:

QF(¥, ) =0, V¥ not identically O
DQ/dz= 0, Q= 0, [abnormal extremall.
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The terminology "normal” and “abnormal” extremal is due to Bliss

[1946]. Consider the holonomy map H: Q—Aut(Py.P;) = G, where Q denotes
the set of piecewise C! curves joining X, to X;. A normal extremal ¥ is
one for which H{%1is a reqular value of H (dyH has full rank) and an

abnormal extremal is a critical point for H. Thus abnormal extremals are
basically extremals at which the set Qy, = H=1(Hy) is not a manifold.

More precisely, they are curves for which the tangent space (or cone) to

Qy, is smaller than kerdyH.

As mentioned in the outline at the end of the first section. Shapere
and Wilczek's equation (30) is Wong's first equation, hence they
discovered a precursor of Theorem 3.

An example of abnormality. Take P = R2xS' | M = R2 |, with 2

connection whose curvature is F = pdxady, where p > 0, and with the
support of p a bounded convex open subset U of the plane. Set

® = [R2 pdxdy, and suppose that 0 < ¢ < 27C. Consider Pines" probiem for - -

loops based at Xg € dU, with holonomy Hy = l®. The minimizer is ¥ = oU.
This does not satisfy Wong's equation, but does satisfy the singutar '
wong's equations, since F = 0 on dU. (If U is not convex, the extremal .
will be the boundary of its convex hull. Note that this example can easily

be placed on a compact surface.) .

We can eliminate the occurence of abnormal extremals by making
assumptions on the curvature.

Lemma 2. /f the curvature is either fat or flat then there are no
abnormal extremais. ‘

Proof, By definition of fat, O'F(a". ) = 0 implies that either ¥ =0 orQ = *
0.

To prove the lemma in the flat case, recall that there the holonomy
depends only on the homotopy class of ¥. Hence we are extremizing the
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length of ¥ subject only to a constraint on its homotopy class.

In the case of a normal extremai ¥, we would hope to have ¥ a C2
curve, and not just piecewise C2.

Lemma 3. Reqularity. Every normal extremal is C? (and hence smooth
by Lemma 2 and Theorem 3, if we assume the connection and base metric
are smooth).

Proof. This follows from the "Welerstrass-Erdman Corner condition”, cor.
74.2 of Bliss [1948). Let f(c.c) denote the integrand of the "action”
functional S, in eq. [3.4] below. (The curve c is a curve in P.) This
condition states that at a corner of piecewise C' extremal ¢ for §, both
the right and left hand limits of df/d¢ exist, and that they are equal. In
our case df/dcH = g}wb"u where § and v denote a horizontal indices.

Thus the base curve ¥ is continuously differentiable. The first Wong's
equation now implies that & is C2. Q.E.D.

Remark 2.1. Ge Zhong (1988, private communication] has provided
a more modern proof of regularity. He uses the projected "energy”
T/,fuFu? instead of length, and works on the Sobotev space of Hy curves.
His proof requires that Hy is a regular value of H (eg. the bundle is fat).
From this hypothesis it follows that every extremal solves Wong's
equations weakly. This, together with the Sobolev embedding theorems.
proves regularity. :

Regularity for length minimizers is then obtained by parameterizing
such a minimizer by arc length, and then noting that the Cauchy-Schwartz
inequality implies that a length minimizer is also an energy minimizer.

Remark 2.2. Incase ¥ is a loop it does not follow from Lemma
3 that its derivatives at the endpoints match up, t.e. "boundary
regularity” may fail. Examples with such boundary irregularity can be
found for the Abelian case in plasma physics texts. One such is obtained

by taking the curvature to be xdxady , on R2. The solutions to the
Lorentz equations (Abelian Wong's equations) with this magnetic field are
cycloids. However, if P is a homogeneous bundle with connection (eg. a
Stieffel variety) one can prove that the derivatives must match up at the
endpoints. '



Holonomy... : Wednesday, November 2, 1988 10

Proof of Theorem 1. Combine Theorem 3 and Lemma 1 to get the
first part of the Theorem. To prove the converse, combine Lemma 3 and

§3..Pr00f' of Theorem 3 (for Pines' Problem).

;54; i’i ot N ,! .
The'| is
€ problem is :

minimize the projected length:  2(c) = [uTtecidt - 3.7,

subject to the constraint. C is horizontal. . e

and Tl D comed i i g RO Po ¢ PO ) {1}~ - Hoﬂ; ¢ (“] )

We will use the method of Lagrange muttipliers. The constraint ¢an be
written

C*A = 0 | | (3.2]

Where c*A is the pull-back of the g-valued connection one-form A. The

multipliers will be functions t—Q(t) ¢ g". We begin by paraphrasing
Bliss* [1948]7discussion of the method of Lagrange multipliers from his
ch. 7 ( see Theorem 74.1 and its coroliary).

Theorem [Bliss]. £ very piecewise C' curve which extremizes ¢
Subject to the constraint c*p - O must be a critica; point of

Xo(c) - [Q(t)c A [3.3]

for some non-zero value (Xq.Q) of the Lagrange multtipiiers, The
variations allowed in Calculating the derivative are piecewise C' curves
(ce.Qe) with Ce satisfying the end-point conditions. Those extremals for

Which X\g =z 0 are caileqd ‘normal”, the extremals with Ao = 0 are called
“abnormatl”,

For alternative, less detaileq, descriptions of this resutt see Céurant and
Hilbert vol 1. or Arnold et al [1988] p.33. To see WhY one must allow
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the possibility of abnormal extremals, consider the usual method of

Lagrange multipliers: calculate the critical points of S = £ - QG where 6
is the constraint function, in our case, G(c) = c*A. In order to conclude
that a critical point of S is an extremal for the constrained variational
problem, we need to know that 0 is a regular value of G. Otherwise,
there may be a vector v in the kernel of d.G which is not the derivative

of any curve lying in the constraint set {G = O}, but with d¢.-v = 0. And

this can happen even if ¢ is a global minimum fo the constrained problem.
In any case, in order to calculate the normal extremals we need only
calculate the Euler-Lagrange equations for ‘

S(c,Q) = ¥c) - falt)c*A [3.41.

(This Lagrangian occurs in the physics literature, with Q having the
interpretation of a §-function current.) The variation with respect to Q
gives us back the constraint. We will split up the variations of c info .
vertical and horizontal variations. Vertical variations can be written

celt) = nele(t)) = cltexpe&lc(t))

where £ represents a section of the adjoint bundle, and n¢ its
exponential, which is an automorphism of P. & must satisfy the boundary

vertical variations. We compute

[8S/5cVE = -d/de|g-gfQC M *A
-[Q-¢c*D¢,
_[(Q-DE/dt)dt
+ [(DQ/dt-E)dt

H

here we have used the well-known fact that the Lie derivative Le A gquals

DE. where D denotes the covariant derivative with respect to A: D&/dt =
dé,/dt + [A(c)-c,£), and DQ/dt = dQ/dt + adp(c)-¢*Q. Thus the vertical

variation is given by
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§5/6cY = DQ/dt [3.5].

The horizontal variation is calculated similarly. Let & = Ttoc, and
let ¥¢ be a variation of ¥ with derivative 87 = d¥¢/de g0 . @ tangent

vector along ¥. Let 57N denote the horizontal lift of an extension of &%
to a vector field, and let ¥, denote the local flow of 620, Then

[85/8ch-8N = d/de | ¢-g Slce . Q). where cg = Weoc
‘The derivative of the length functional is well known:
de(csj/de lcog = -J<uBN VT 8>dt
One calculates

d/dele-g C*Ve™A

C*L(gah)A
F(szn, ¢ )dt
~F(.85)dt [3.6]

where in the final equality we are viewing F as a two-form with values
in the adjoint bundle. Consequently, the derivative of the Lagrange
multiplier term is

—d/de | g.g JQCH Y A = [QF(T,57)dt.
Therefore

§S/8ch = - U VT + QF(T, ) [3.7].

Combining the three variational equationals, we see that we have proved
that (¥.Q) must satisfy the equations: -

V5% = 1FHQF(F, - ) : DQ/dt = O (3.8]
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Now 11 is constant, as one can see by differentiating it, making use of
[3.8] and of the skew-symmetry of F. Thus & is the projection of a
solution to Wong's equations. This proves the first part of Theorem 3.
To prove the rest of Theorem 3, we need only set Xg = 0 in Bliss's
Theorem, and calculate the resulting Euler-Lagrange equations. We have
already done the work. The equations are the singular Wong's equations.
Q.E.D.

84. Solution to the Shapere-Wilczek Problem: Proof for
Theorem 2 and that part of Theorem 3.

Variation of Holonomy. We will need the formula

AH[F1/de | 2 g = -HIBI$U, TF(T,68)U-dT [4.1]

for the derivative of the holonomy. Here &g is a smooth deformation of
the loop & = g, and 8% = d¥/de I £-0- Uy denotes the operation of

parallel translation along & to the fiber over F(r). F is the curvature.
We are using matrix notation: F(Z,8%) is an element of the fiber of AdP
over ¥(z), and conjugating it by Uﬂc'1 parallel translates this element
back to the fiber over X,. -

[4.1]1 can be proved directly from formula [3.6]. We find the
derivation suggested in fig. 2 more illuminating. Let Uy = Uy, and U,

parallel translation forward from ¥(z) to xo. Then

H[?f] = U2U1
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[f 8% is the deformation epicted in fig. 2 then

where P¢ is parallel transiation around the little loop Cg¢ based at ¥(z).
It is well known that '

Pe is approximately | -~eAzF(7,87).

where we write Jg= & + 8% and the support of 8% is the interval
[z,z+Azl. It follows that for such a deformation,

H(Z ] is approximately H{Z] -eATU,F(T,69)U,

Now break an arbi'trarg deformation up into a sum of deformations with
support Az, take the limit as Az goes to 0, and differentiate with
respect to e:

dHIT 1/ de = -§U,F(T 690U, dz [4.2]

To obtain [4.1], write U, = H[ZIU; .

Proof of Theorem 2. Write E(¥) = {(X(H[¥).e(?)) where f is a
function of two reatl variables x and y, and where e(%) = /,[uF 2. Then

dE(Fe)/de g2 g = (9f/3x)dX-dH/de + (3T/dy)de/de

Now dX is a one-form on G which is G-invariant, since X is a class
function. We have

dX-dH/de = <dX,-H$U~ ' F(F,89),dz>
= <-H ldX.$U T F(7.8)UdT>
= -$q(z)F(7,8%)
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Here H™'dX = q(0) € g* = T*|G denotes pull-back of the covector dX to
the identity by left multiplication, and q(z) = U,q(0)U,~" is the parallel

translate of q(0) along ¥ to the fiber of the co-adjoint bundle over F(x).
Thus

dE/de = {$<-aq(z)-F(F, ) +bV T, §T>dz

where a = of/dx, b = 9f/3y are constants depending on ¥. The Euler
Lagrange equations are again wWong's equations, provided b =z0. (They are
the singular Wong's equations is a = 0, b =z 0.) In the original case of
Shapere and Wilczek, i.e. { = x/y, b = -X/12, so b = 0 means X = 0. Q.E.D.

§5. ExamDIeS' Extremal Curves on Projective Spaces
and Grassmanmans

Hopf Fibrations.

For the Hopf fibration $2N-! — CP™ all the extremals are “small”
geometric circles sitting in a CP' in CPN~1. To see this, fix Xg € cph,
Then &y = T W (xy) is a great circle in 52N~ ]. obtained by intersecting a
2-plane Py (which also happens to be a complex line) with the sphere. Let
¥ z¥, be any great circle intersecting &, and let P be the corresponding
2-plane. Then Spanc{P+Py} is a complex 2-dimensional subspace of cn,

Its intersection with S$2N-1is a 3-sphere whose projection onto CP™ is a
CP'. Consequently we are reduced to the case n = 1, already covered n
the beginning of this paper. The projected extremal curve 7 = ¥ is a

small circle on this CP!. The holonomy of ¥ ( and in fact any loop in CP™)
is

HZ) = el® | where ¢ = [pw

with D any disc bounded by ¥, and w the curvature two-form, which is
also the canonical symplectic form on CP7, normalized so that [cpiw =
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2TC.
Homogeneous Bundles. Consider a “tower” of bundles
61—-) G1/K= P - Gj/KXG = M.

where G¢ is a compact group, containing KxG as a closed subgroup. We
have in mind the Stieffel variety P = Vi  of k-frames in CK*M which is a

G=U(k) bundle over the Grassmannian Gy  of k-planes in CK*N. Here G, -
U(k+n) and K = U(k).

Fix a bi-invariant metric on Gy. This induces metrics on P and M
such that each projection is a Riemannian submersion, and each structure

group acts by isometries. Thus the metrics on Gy and P are Kaluza-Klein
metrics.

Let pg € Py denote the identity coset. In the Vi  case pg = {ey,

exl.-the frame consisting of the first k vectors of the standard basis. The -

projection Gy— P is simply g1— g;'Pg. Recall that the geodesics through
the identity of Gy are the one-parameter subgroups. expté, & € g1. Then
according to remark 1.1, §1, any geodesic in P through pgy is of the form

exptépg, & e k-

By our theorem then, the extremal paths on M, are also of this form,
pushed down to M. We have thus proved

Proposition 1. For the homogeneous bundle P—M the normal extremal
loops through xg = identity coset of ™M are the paths of the form

I(t) = expté-xq. where
() &e &t

and where
(it) & is such that there exists a t; > 0 such ‘that expﬁ& e G x K.

(This last condition insures that the path ¥ is closed.) In partrcu!ar all
extremals are orbits of 1-parameter groups of isometries.
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The problem of finding all the normal extremal loops has been
reduced to the Lie theoretic problem of finding all etements ¢ ¢ kL which
satisfy property (ii) . Without loss of generality, we can normalize £ by

insisting that its projection onto (g® K+ has length 1. (If this length
were 0 then ¥(t) would be identically xq.)  Then the smallest t; such
that (ii) holds is the tength of &. The holonomy of & can be calculated
using formula [1.1}

HIZ]1 = Pglexpti&exp-11Qq),

where Pg: GxK— G is the projection, and where Qg = PgE is the
orthogonal projection of £ onto 4.

The Complex Grassmanian of Two-planes in Three-space.

This is the first non-trivial non-Abelian example. Our ultimate
goal is to find all the solutions to Pines’ problem for the Stieffel
varieties, and this will hopefully be the subject of a subsequent paper.
However, in this paper we will not find all minima, but rather a large
class of extrema. o )

The relevant tower of bundles is

U(3)
uly |

Va1
u2) |

Gy,

The corresponding splitting of u(3) is
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with Q in u(2), v- in C2, and 8 real. According to proposition 1. we
should take 8 = 0, to insure that this matrix generates a geodesic in
Vo 1. The vector v represents a tangent vector to G;.,;. Without loss of

generality, we can assume Ivll = 1, and we can take v = (0,1) by using
the isotropy representation of U(2)xU(1) on TXUGQ,1. We are then reduced

to studying the exponentials of matrices & of the form

There are two distinguished classes of &'s:

Q = 00
0 iot . case (1)

and



holonomy... Wednesday, November 2, 1988 19

b 0O . b real | case (11).

(1) generates small geometric circles lying on the CP' = CP? which
contains xq and v. (I1) generates small geometric circles lying on the

RP2< CP2. The corresponding holonomies, as measured from pg = the
frame {(1,0,0) , (0,1,0) }, are:

H2l= 1 O
0 el® for (1)

with ¢ = Tt{1- (at/2)//T+ (/2)2 } = Tt(1-cos9) , of length t; =
1/ 1+ (t/2)2 = 7tsing, with ¢ as in figure 3.

HIZ] = cosd sind
-sin® cosd , for (1)

¢ = 270{1- b//1+ b2 } = 21(1-cos®) , of length t; = 27¢/y/1+ b2 =
27tsing with ¢ as in figure 3. These lengths and holonomies can be
obtained by using the procedure discussed in the paragraph following the
statement of the Theorem S.

A more geometric way of obtaining these results is to note that the |
corresponding &'s lie in the Lie algebras for the subgroups

1 0 0 .
uR) = 0 |# | ' for (1)
0 u(2)

and

S0(3) for (11).
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Q= 0 -8
B 0

. B complex : (11a).

Now this Q is obtained from the Q of the form (I1) by conjugating the
latter by the matrix :

Rg = el® 0
0 el®
where © = argy/B. Rg®Id leaves (Xq.v) fixed. The extremal curve

corresponding to Q as in (Ila) is obtained by simply conjugating the one
for (11) by this Rg®Id, and its holonomy is obtained by conjugating the

holonomy for (11) by Rg. The extremal curve lies on RPZg := Rg®[d(RP2).

Holonomy around deodesics.

The geodesic through Xq in the direction v is expt&-xg with Q = 0 in
the expression for &. This lies in both the CP! and the RP2.  Now a
closed geodesic on a CP' of radius ry has length 21ry, whereas a closed
geodesic on an RP2 of radius ry (i.e. its covering sphere has radius r in
R3) has length Try,. Since our geodesic lies on both CP' and RP? we must
have 2ry = ry. Cconsequently, as is well known, the sectional curvature of
the CP! is 4 times that of the RP2. We have normalized ry = '/5. The
holonomy of the geodesic is '

HIZ] = 1 0
0 -1

This is obtained by setting o« = 0 in the expression for the holonomy in
case (1). (Setting b = O for case (1) does not work as the consequent
curve is twice a closed geodesic on RP2.)

Some Remarks on Finding all Minimal Loops.
4.1. We conjecture that there are no abnormal extremals in the
case where the bundie in question is a Steiffel variety. We also
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conjecture that Lemma 2 is still valid if the hypothesis of fatness is

replaced by the hypothesis that the curvature has full-rank as map A27 —
AdP. The first conjecture is valid if the second one is.
4.2. One calculates

QF(F, ) = (B.-ic)
where

Q= is -B and & = v = (0.1) & Ty Gy,p.

We have discussed two extremes:

[1}: B = 0. 8 = 0. Then span{&,V 43} is the tangent space to CP' at ¥(t). .
[11l: o= 0,8 = 0. Then span{¥,Vx¥} is the tangent space to RP2 at (t).

The next simplest case is
Q= 0 - 820, ot=0
B ic ‘

in which case span{&,V 4%} is neither the tangent space to CP! or RPZ.

Exponentiating the resulting matrices (0 is always an eigenvalue) and thus
finding the corresponding extremals and their holonomies is
straightforward, but tedious.

4.3. Exponentiating the general & €U(3) requires finding the
eigenvalues of &, which in turn involves solving a cubic equation. This
can of course be done exactly. so in theory we can find all solutions to
Pines’ problem for the case (k,n) = (2,1).

- The first question which comes up is (ii) of Theorem 4: for which &
does exptf, eventually return to the subgroup U(2)xU(1)? Let iX,, iy, iXg

denote the eigenvalues of &. A sufficient condition for return is that the
difference vector (A3 - A; . X, - X) =c(p.q) , for some integers p.q. In
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other words, this vector should lie on an integer line. For if this is the
case then expt(é, = el¥ld., where j1 = 21 /c, and ty = 27t/c . (This

condition is not neccessary, as one can see by taking Q diagonal. ) This
shows that there are a dense set of Q's such that the extremal paths
expté, do in fact close. |

Problem 4.4. There will be extremal toops which are not
minimal. Find an efficient way of eliminating these. Perhaps this can be
done by an "isoperimetric inequality” or by a clever calculation of the
constrained second variation for Pines’ problem.

§5. More Open Problems.

1. Extend Our Results to Surfaces.

The projected Wong solutions ¥ = CP2 have constant geodesic
curvature in the case of the Hopf fibration. Is the projection of every

minimal Legendrian surface £ < P = S° a constant mean curvature

- Lagrangian surface in CP2 ? (A Lagrangian surface is one which
annihilates the curvature. A Legendrian surface is one which is
everywhere horizontal.) This question may be related to recent work of
J. Wolfson on minimal Lagrangian surfaces in CP2.

2. Find a non-Abelian isoperimetric inequality.
Begin by requiring the bundle to be homogeneous, eg. one of the
Steiffel varieties. One would like an inequality of the form

F(RHITL, WD) < ¢

In the Abelian cases, these inequalities are well-known. For example

~ for R? with curvature =-area form = d¢, we have ¢/12 < 271, In CPM we
get 12 > 21t - ¢2. This latter is obtained by using the trig identities

together with the expressions: :

¢ = (1 -coset)
| = TIsin
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for the Pines’ minima. (See fig. 3.)

Appendix with Alan Weinstein.
A heuristic geometric proof of Theorem 1.

wong's equations with Q@ € Ad* are independent of the scale of the
bi-invariant metric on the fiber G. (For an interpretation of this fact in
terms of Poisson reduction see Montgomery [1984].) Let this scale factor
X go to infinty. This forces the corresponding Kaluza-Klein “geodesics”
to be horizontal. . The projections of these "geodesics” are sfill
(projections of) solutions to Wong's equations The "proof” is concluded
by noting that the length of a horizontal curve (w.r.t. ang K-K metric) is
equal to the length of its projection.

One hole in this proof is that it misses the abnormal

extremats. To see this hands on, imagine the following construction of a

minimizing sequence for Pines’ problem. We are taking F compact and M
complete. Then all of the K-K metrics gy = d?s  ®X2d?s,
complete. Let cy be a minimizing geodesic for g>\ which connects p € Py

to q € P, where Hop = q.

on P are

By using the Sobolev embeddmg theorems and the weak
compactness of the unit ball one .can show that a subsequence of the c;

converges in the Sobolev space Hy to a horizontal curve c. In order to
define the Sobolev norms one must fix A, say A = 1, with the resulting
norms denoted “ii-it1". The question now becomes: does the projection & =

 Toc satisfy Wong's equations? The vertical projections Q,(t) € g of the
¢, are bounded in the A\2d2s, - norm as X goes to infintiy: AnQ,(t)iy <C.

a fixed constant. Now the ¥, = Tloc, satisfy Wong's 'eqruation's:

Vadx = N F(Ey. 7)
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where the inner product of Qy with F is with respect to the X = 1 metric

on 4. But we do not know that A2iQ,(t)iny is bounded. We get ¥

satisfying Wong's equations, or the singular Wong's equations, depending
on whether this quantity is bounded or not.
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