How much does the rigid body rotate? A Berry’s phase from the 18th century
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A formula, apparently new, is derived for the spatial rotation of a free rigid body during one
period 7 of its body angular momentum vector. This formula has the structure of recent phase
formulas of Berry [Proc. R. Soc. London Ser. A 392, 45-57 (1984); Sci. Am. 259 (6), 46-55
(1988) ] and Hannay [J. Phys. A 18, 221-230 (1985) |; namely, it consists of a geometric and a
dynamic part. It is derived by applying Stokes’ theorem to a certain closed curve in phase space.

I. INTRODUCTION

A. Phase formula

The angular momentum vector of a free rigid body is
constant in an inertial frame. When viewed from a body-
fixed frame, the motion of this vector is periodic in time for
typical initial conditions. In one such period, the body, as
viewed from the inertial frame, must rotate about its angu-
lar momentum vector. What is the angle, A8, of this rota-
tion?

The purpose of this note is to derive the answer:

A6 =2ET/J — (), (h

where Eis the kinetic energy of the initial condition, Jis the
length of the angular momentum vector, 7 is the period of
its motion as viewed in the body frame, and € is the solid
angle swept out by the angular momentum vector, when
viewed from the body frame.

As usual, the Q in this formula is a signed solid angle. It
is positive or negative according to the usual right-hand
rule. This means that if the motion of this body angular
momentum vector is counterclockwise relative to a vector
in the interior of the solid angle, then we call the solid angle
positive, and if the motion is clockwise then we say that the
solid angle is negative. (Mod 2, this solid angle is inde-
pendent of what we call “interior” and “‘exterior.”)

B. Context and motivation

This formula is an example of a general class of phenom-
ena recently popularized by Michael Berry' and John
Hannay’ as “geometric phases” and by others*® as *‘Ber-
ry’s phases.” Suppose that some set of variables (the body
angular momentum for us) undergoes a closed circuit, and
that by virtue of the dynamical equations, that this circuit
induces an angular variable 8 (for us the angle of rotation)
to suffer a change A6. Then this change can often be ex-
pressed in the form A@ = dynamic phase 4 geometric
phase.

The dynamic phase (2ET /J for us) can usually be
guessed at, either by dimensional analysis, or by analyzing
the situation where the closed circuit is a single point
(which for our case occurs when the angular momentum is
parallel to one of the body’s principal axes of inertia). The
geometric phase ( — £} in our case) has its name because it
depends only on the geometry of the closed circuit. In par-
ticular, it is independent of the speed at which the curve is
traversed. The geometric phase can be expressed as the
Wilson loop integral of some gauge potential or, in math-
ematical terms, as the holonomy of some connection. In
our case this connection is 1/J times the canonical one-
form p dg on the phase space of the rigid body. In Berry’s
case, the connection is also the canonical one-form, but on
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the Hilbert space of the quantum system. In both cases the
formula for A# is obtained by integrating the canonical
one-form around a loop and then applying Stokes’ theorem
to relate this to a surface integral.

We would like to emphasize that our formula for A is
exact. The reader may be aware that Berry' invoked an
adiabatic approximation in order to obtain his original
phase formula. This approximation is used only to insure
that the circuit of quantum states is approximately closed.
Roughly speaking, the formula is as exact as the circuit is
closed. If, as in our case, one knows a priori that the circuit
is closed then the phase formula is exact. Aharanov and
Anandan® were the first to point out that Berry’s phase
formula is exact if the circuit of states exactly closes.

For more information concerning geometric phases in
general, we recommend Refs. 4, 5, and 7.

C. Other derivations and expressions for the rigid-body
phase:

Equation (1) first appeared in the review article® on
classical geometric phases. The derivation there is based on
the theory of connections (gauge fields) on principal bun-
dles.

There is now another derivation of our Eq. (1) available,
which is due to Mark Levi.” His derivation is based on
Poinsot’s rolling description of the motion of a free rigid
body, together with some facts concerning the geometry of
curves on the sphere.

Equation (1) really depends only on J, E, and the princi-
pal moments of inertia. This is because the period T, and
the solid angle , are functions of these parameters alone.
Landau and Lifshitz'’ give such a formula for T [Eq.
(37.12)]. Itinvolves complete elliptic integrals. Such a for-
mula for £ can also be derived from the results in Sec. 37 of
their text.

An alternative to our formula for A8 can then be ob-
tained by combining their equations (37.17) and (37.20).
The result is that AG = ¢,(T) = c¢T, where the number ¢
depends implicitly on J, E, and the moments of inertia
through a set of transcendental equations involving elliptic
theta functions. [It would be interesting to know if the
equality between this formula and our Eq. (1) is a new
identity for theta functions. ]

D. Setup

The motion of a rigid body is described by a time-depen-
dent 3 X3 rotation matrix g = g(¢). To do this we fix an
inertial frame with origin at the body’s center of mass and
fix a reference configuration of the body. If X is the position
of a point on the reference body then

x=gX (2)

© 1991 American Association of Physics Teachers 394




is its position in the inertial frame. In particular, g = 7, the
3 x 3 identity matrix, corresponds to the reference configu-
ration.

A rotation matrix is any 3X 3 matrix g that satisfies
gg' = I (gisorthogonal) and det(g) = 1 (no reflections).
The superscript ¢ denotes transpose. These properties of g
are direct consequences of the fact that the distances be-
tween all points of the body must remain constant, and the
fact that the motion is continuous. The set of rotation ma-
trices can be coordinatized by the Euler angles if need be.

If the only forces acting on the body are the ones holding
it together (the forces of constraint), then it is called a free
rigid body. In this case its total angular momentum vector

M=% x,XPp., (3)

is constant in time. This sum is over the body’s particles,
which are indexed by «, and p, is the momentum corre-
sponding to the ath particle. (The sum is an integral if the
body is a continuum.)

Euler showed how to simplify the equations of motion of
the free rigid body by going to a frame attached to the body.
In this frame, M is no longer constant. We will call the
angular momentum, viewed from this body-fixed frame,
M, . Thus

M :g.Mh‘ (4)
In particular,
IM,, || = [[MI}°, (5)

so that M, moves on the surface of a sphere. The kinetic
energy of the motion is

H= (1M, 1, 'M,), (6)

where 1, i1s the moment of inertia tensor of the reference
body. (It is a symmetric positive definite matrix.) Both M
and H are constants of the motion. This means that M,
moves along a curve defined by intersecting the sphere de-
fined by Eq. (5) with the ellipsoid defined by Eq. (6) (see
Fig. 1). Almost all of these curves are closed.

Now suppose that the constants M = J and H = F are
typical, so that these curves are in fact closed. Let 7T be the

Fig. 1. The body angular momentum vector M, () lies on the intersection
of a sphere with an ellipsoid and encloses a solid angle (2.
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period of M, ’s oscillation along the curve:
1\1/)(’[“{” ro):M/y(fu)' (7)

Combining Egs. (4) and (7) we see that
g(T+1,) "“J=g(,) "“Jorg(T+1)g(t,) "J=4J,s0
that R = g(T + 1,)g(z,) "' is a rotation about the J axis.
Notethatg( 7T + 1,) = Rg(1,) sothat R describes the rota-
tion of the body in space after each orbit of its angular
momentum in the body-fixed frame.

The question we pose in our title is “What is the angle A6
of this rotation R ?7” The answer is given by Eq. (1), which
we repeat:

A8 =2ET/J— Q.

Here, € is the solid angle enclosed by the closed curve. The
rest of the paper is devoted to deriving this answer.

II. THE METHOD OF DERIVATION

A. An important curve

Suppose that ¢ = ¢, = 0 corresponds to our reference
configuration. Then g(0)=1, M,(0)=J, and
z(0) = (LJ) are initial conditions for the motion of the
rigid body. The phase-space trajectory z(¢) through z(0)
consists of pairs [g(7),M,, (1) ]. Consider the following two
curves in the phase space of the rigid body, both beginning
atz(0) (see Fig. 2): C,(t) = z(¢) for O<t< T = dynamical
evolution starting at z(0); and C,(8) = counterclockwise
spatial rotation of the body about the J axis by € radians,
0<O<AL.

These two curves intersect when t= T and 8 = A#6.
Thus the curve C = C, — C, obtained by first going along
C, and then backward along C, is a closed curve.

We will prove Eq. (1) by integrating the canonical one-
form p dg along C and then applying Stokes’ formula to
relate this line integral to a surface integral. In order to do
this, we will have to learn some things about the canonical
one-form.

B. The canonical one-form

What is a one-form? It is the integrand of a line integral.
For example, if F is a (velocity-independent) force, then
F-dx is the one-form whose integral along a curve is the
work done in traversing that curve. An alternative defini-
tion is that a one-form is simply a differential. The differen-
tial may or may not be total, that is, it may or may not be
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Fig. 2. A surface X in phase space whose boundary is the loop
C=C, —C,.
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the gradient of a scalar field. The canonical one-form is not
a total differential. [In tensor analysis a one-for.n is also
referred to as a “‘tensor field of type (0,1)”" or as a *‘covar-
iant one-tensor.” For further details on differential forms
in general see Sec. I1 E and Ref. 11.]

The canonical one-form p dg is a one-form defined on
the phase space of any mechanical system. It is defined by
the equation p dg = =p, dq,, where the g, are any set of
coordinates on the configuration space of the system, and
the p, are their conjugate momenta. In our particular case,

pdg=)p,dx,,

where dx,, denotes the deformation of the ath particle of
the rigid body, and p, is the momentum of this particle
with respect to the center-of-mass frame. Now

dx, = (do) Xx,,

where do s the infinitesimal axis of rotation, which is inde-
pendent of the particle position x,, since the deformation is
rigid. Thus

pdg= (qu )(p“>-d(u

or
pdg =M-dow (8)

[compare with Eq. (3)].

We will now evaluate this line integrand for the two spe-
cial types of curves that make up our curve C. This will give
some physical meaning to the canonical one-form, and is a
necessary step in our derivation.

The curve C, is parametrized by the physical time ¢, so
that do = o df along this curve. The angular momentum
and angular velocity are related by M = lw, where | is the
moment of inertia tensor of the body with respect to the
inertial frame. Thus pdg = wlwdt along C,. But
w-lw = 2E, where E = H is the kinetic energy [compare
with Eq. (6). Note that | =gl, g~ ".] So

pdg=2Eds along C,.

The curve C, is parametrized in radians, 6, so that
do = o dfalongit. Moreover,» = J/J,andM = Jon C,.
Putting these facts into Eq. (8) we get

pdg=Jdf along C,.

C. Stokes’ theorem and the main formula

Stokes’ theorem states that

ﬁpdqzjf d(pdg).
C z

The double integral is a surface integral over any surface =
whose boundary is the closed curve C and its integrand is a
differential two-form (antisymmetric covariant two-ten-
sor) called the “‘exterior derivative” of p dg. If = were to lie
in a three-dimensional Euclidean space, then this Stokes’
theorem would be the usual Stokes’ theorem of vector anal-
ysis. However, our phase space is neither three-dimension-
al nor Euclidean, yet the theorem is still true. The meaning
of the integrand d(p dg) in our more general setting will
become clearer below. In particular, see Sec. I E. (Again,
we refer the reader interested in more details to a text which
discusses differential forms, for example, Ref. 11.)

Our curve C breaks up into C, and C, so that Stokes’
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formula becomes

f pdq-J pdquf d(pdg),
< C. s

where the minus sign is due to the fact that to close the loop
we must travel backward along C, (refer to Fig. 2). We
have shown that

pdg=2Edt on C,,

pdqg=Jd0 on C,,
and we will show that

d(pdg) =Jd2 on 2,

provided 2 is contained in the three-dimensional submani-
fold M(g,p) = J of our (six-dimensional) phase space. In
this equation dQ) is the element of solid angle in the space of
body angular momenta, and the surface X in phase space is
to be related to the region 2 = M,, () in the sphere by the
angular momentum map M,,.

The integrals in the equation are done immediately:

2ET —J A0 = JQ,

which upon rearrangement is our equation.
Our work then is reduced to showing that the surface
integrand d(p dg) is as just described.

D. The surface integrand

We will expand p dgq on the three-dimensional constraint
surface M(g,p) = J within phase space. The expansion
will be in terms of the Euler angle coordinates (4,6,1) for
the rotation group. We will then take the exterior deriva-
tive d of the resulting expression to obtain the two-dimen-
sional integrand.

Euler angles are defined by

g(4,0,0) = g,()g-(0)g:(¥),
where g, (8) denotes the counterclockwise rotation about
the ith coordinate axis by an angle of 8 radians, for
[ = 1,2,3. We choose the coordinate system so that J is
parallel to the three-axis:

J =Je,.

Here, (e,,e,,¢e,) is the right-handed orthonormal basis par-
allel whose elements are parallel to the 1-2-3 axes.

In order to express p dg in these coordinates we will first
relate the differential dg to the infinitesimal angular veloc-
ity do and then plug this relation into Eq. (8) for p dg.
Recall [Eq. (2) ] that the matrix g relates body coordinates
X to spatial coordinates: x = gX. Consequently,

dx = (dg)X.
Earlier we noted that dx = dw X x. Therefore,
(dg)g ™ 'x = do Xx. (9)

Let R(6,) denote the counterclockwise rotation about
the o axis by 8 rad, where o is fixed. Then

(dR)YX =wdfd XRX
or
(dR)R ~'x = o Xx. (10)

Also g,(¢) = R(d,e;), g,(8) = R(b,e,). Now differen-
tiate g:

dg = [dg;($)18-(0)g:(¥) + g:(&) [dg.(0)18:(¢)
+ g:($)g,(0) [dgs(#) ]
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multiply on the right by g~
(dg)g ' = [dg.(8)18:(8) ' + g.(&)
x {[dg.(0)1g,(8) ~'}gs(4) "
+ 8:()g: (D {[dg: () 18:(¥) ™'}
X g, (0) 'g:(d) ",
and apply this result to x, using Eq. (10):
(dg)g ™ 'x = ey ddXx
+ g:(d) [e, dB Xg.(#) ™ 'x]
+ £:(8)g-(0){e; dX [g:(8)g.(0) ] 'x}.
Now
g(vXw) = gvXgw
for any rotation matrix g. Thus
(dg)g™'x = [e; dd + g,(d)e, dO
+ g:(4)g:(0)e; d] Xx.

Compare this with Eq. (9) and use the fact that x is arbi-
trary, to conclude that

do = e dd + g.(d)e, dO + g,(d)g-(0) e dy.
Now M = J = Je,, so that according to Eq. (8),
pdg=J{dd + ey g.(d)e]di}.
Here, we have used the facts that e, is a unit vector, that it is
perpendicular to e, and fhat g, is a rotation about e,. Also
g-(8)e, = cos(0)e, + sin(H)ey,
so we end up with
pdg=Jdd + cos(8)du].

E. The exterior differential and Stokes’ theorem

Let g,, ¢, g, be any three-dimensional coordinate sys-
tem, for example, our Euler angles. A one-form is an
expression of the form a =4, dq, + A,dq, + 4, dg,,
where the A4, are functions of the g,. Stokes’ theorem as-
serts that

fﬁa:J‘Jd(l, (1)
(& p)

where C is a closed curve which bounds the surface £ and
where

0A, 0A oA 0A
d :(——~ ')d d7+<—-‘—?—'>d d
aq, o )T G T ag S
94 8A1>
IRLLER W
<d‘h g 9> 44

Stokes’ theorem holds in any coordinate system. It does
not require any mention of inner products or of normal
vectors to surfaces. An orientation of the surface is re-
quired, however. (Stokes’ theorem also holds in any di-
mension and for any degree & of differential form, although
we have stated it in dimension three and for k = 1.) Again,
the interested reader should see Ref. 11. Regardless of these
generalities, the version of Stokes’ theorem that we use here
can be proved by noting that it has exactly the same coordi-
nate expression as the usual Stokes’ theorem of vector anal-
ysis.

In any case, for us, @ = pdg = J(d6 + cos 8dY), so
that

dpdg) =J( —sin8d0d¢) = —JdQ,
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where d() is the differential element of solid angle on a
sphere coordinatized by 6 and ¢.

F. Finishing off the surface integrand

The Q2 in our Eq. (1) is a solid angle in the space of body
angular momenta. Therefore, we still must relate the d€2 of
Sec. II E to the element d{},,.,, of solid angle in the body
angular momentum space.

The inertial and body angular momenta are related by
M = gM, . Therefore, on our constraint surface M = J we
have

M, =g 'J
=Jg:. ()7 'g:(0) " 'gi(d) e,
=Jg,(¢) " 'g-(0) ey
=Jg,(¢) '[cos(B)e, —sin(H)e,]
=J [cos(B)e, — sin()g.(¢) 'e,]
= J{cos(8)e, — sin() [cos(¥)e, — sin(¥)e-]}.

This says that our 6 and ¥ are related to spherical coordi-
nates on body angular momentum space by ¥ = — .,
6 = — 0,4, This is an orientation-reversing coordinate
transformation, so that dQ = — dQ,.,.. [In terms of
Cartesian coordinates, this transformation is (x,y,2)
= (— Xpody Poody +Zhoay )] Summarizing:

d(p dq) = Jthnd) .
This completes the demonstration of Eq. (1).

1II. THE METHOD APPLIED TO OBTAIN
BERRY’S PHASE

A. Formula

As another illustration of the method, we will use it to
derive Berry’s phase formula. Berry’s phase answers the
following question as reformulated by Aharanov and An-
andan:® “What is the phase shift suffered by a quantum
wave vector |¢), given that its state |¢) (/| has undergone a
cycle?”

The structure of the calculation of this phase shift can be
made identical to our calculation for the rigid body. Con-
sider the same two curves C, and C,. C, is defined by dy-
namically evolving an initial condition |#,) according to
Schrédinger’s equation. C, is defined by rotating this initial
condition: C,(68) = exp(if)|¢,). The canonical one-form
on Hilbert space is p dg = Im (¢|d¢’). The expectation val-
ue of the energy defines a “classical” Hamiltonian
H(\¥)) =(H,,), = (¢|H,, |&). Here, H, is the quan-
tum Hamiltonian, a possibly time-dependent Hermitian
operator needed to define Schrodinger’s equation. With
these choices of p dg and H, Hamilton’s equations are easi-
ly checked (and well known) to be Schrodinger’s equation.
Write E(f) = H[|¢(1))] for the expected energy of our
particular time-dependent state. The Noether conserved
quantity corresponding to the symmetry of shifting phase
is (¢]¢). It plays the role which was played by the angular
momentum in the rigid-body calculation. We assume that
the initial state is normalized, that is, (¢¢|#/) = 1. The two
line integrands are immediately computed:

pdqg= —E(t)dt on C,,

pdg =+ df on C..

The  surface

integrand is computed to be
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d(pdg) = — #i(Kihler form on projective Hilbert space)
on ¥. This last integrand is half of the solid angle form d€}
on the two-dimension sphere, provided we are dealing with
a two-level system, so that the Hilbert space is (complex)
two-dimensional. Evaluating the integrals, we arrive at the
result

A= — (I/ME, T —y. (12)

The first term is the dynamic phase; T is the duration of the
cycle. E,, = (1/T)fE(t)dt is the average energy over the
cycle; and the last term y is the geometric, or Berry’s phase,
and is a kind of generalized solid angle. In the particular
case of a two-level system, it is exactly the solid angle. Note
the similarity of Eq. (12) to our Eq. (1) upon making the
substitution # = J.
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