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1 The Results

A curve is called regular if its derivative is never zero. We associate to
any regular curve x(¢) on the unit two-dimensional sphere a moving frame
f(t) = [x(t), T(t),N(¢)]" whose row vectors are z(t), its unit tangent vector
T(t) = %x(t)/|%(t)| and its righthanded normal N(¢) = x(¢t) x T(¢). Thus

f(t) is a curve in the three-dimensional rotation group S0(3). It satisfies the

Frenet—Serret equations
d 0 o 0
—f=1 - 0 k 1
Sr=| v / (1)
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(These are the standard Frenet-Serret equations for the space curve [; z(s)ds.)
Here v is the speed of the curve z(t) and k/v is its curvature. (1) defines
a right-invariant distribution of two-planes on SO(3). (It is the distribution
mentioned by John Baillieul at the beginning of his talk.) It defines a control
system with controls v, k. We must impose the bound v > 0 since we are
interested in regular curves.
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Fix an initial frame and a final frame. Consider the space of all solutions
f(t) to the Frenet-Serret control system (1) which have these as their initial
and final frames.

Question: How many connected components does this space have?
Theorem 1 (Smale, 1958) Two, as indicated:

Now suppose instead we also impose the constraint k£ > 0. The result-
ing class of curves on the two-sphere are called right-handed nondegenerate.
(Their curvature is always positive.) And let us ask the same question.

Theorem 2 (J. Little, 1970) There are three components of the space of
solutions to the control system with the constraints v > 0, k > 0 imposed,
provided the the inital and final frames are equal. The representatives of these
components are indicated:

B.Z. and M.Z. Shapiro [BZMZ] have shown that the difference 1 =3 — 2
between Little’s and Smale’s theorem is a consequence of whether or not
curves cross the boundary of the small-time accessible set. Our goal is to
popularize their results and suggest that questions of homotopy theory may
be important to control theory.

M.Z. Shapiro investigated the following generalization of Little’s problem
to n-dimensions:

f(t) € SO(n),

the n-dimensional rotation group.
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ko> 0,i=1,2,...,n—1

We call this the Frenet-Serret distribution, or the Cartan distribution. It is
a right-invariant distribution of cones on S0(n).

Theorem 3 (M.Z. Shapiro, 1992) The space of solution curves to the
above control system on SO(n) which connect a frame fo € SO(n) to it-
self has exactly two components if n is even and exactly three components
when n is odd.

2 Why should we care?

1) These theorems count the number of connected components of solutions to
control problems with fixed endpoints. Two curves lie in the same component
if and only if it is possible to find a one-parameter family of control strategies,
us(t), 0 < s,t < 1 (and so a two-parameter family of controls) such that
uo(t) leads to the first curve, u; () to the second, and all of the intermediate
curves have the same endpoints. To put it more briefly, the first curve can
be deformed into the second by a control-induced homotopy which fixes the
endpoints.

For example, consider a man with two different control strategies which
lead to the same position of his hand gripping a bar.

You cannot homotope from one to the other without breaking contact.
Try it!

2) There are typically an uncountable number of solutions to the problem
of finding controls connecting two given points. Counting the connected
components of this solution space provides a meaningful way to count distinct
solutions.

3) One of the main tools used in proving the theorems mentioned is the
“covering homotopy property”. This is really already part of a control the-
orists foolbox. (See eg. Sussmann’s talk in this proceedings.) A topological



perspective should provide insight into the use and importance of this tool
in control.

3 Why Two?

We begin by recalling some basic notions from homotopy theory. The set
of path-components of a space X is denoted by my(X). The space of closed
continuous loops of a connected space @ based at g € Q (7(0) = (1)) = qo)
is denoted Q(Q) or sometimes (Q, qo). The fundamental group of @ is

m(Q) = m(2(Q)).

Its elements are called homotopy classes (of based loops) and it forms a

group.
It is well known that 7;(S0(3)) is the two-element group so that

#mo(2(50(8)) = 2.

This is the “2” in the theorem of Smale.

Remark. The identity element e € m(S0(3)) is represented by the
constant path f(t) = fy. The nontrivial element o € 7;(50(3)) is represented
by rotation through 27 radians about any axis of space.

Let © = ©Q(S0(3)), and let Qx C Q denote the loop space of Smale’s
theorem. The answer “2” is a corollary of a deeper result of Smale which
states that the inclusion of Qx in €2 induces an isomorphism on 7y:

iy (k) >~ ()

Here i, denotes the map which assigns to each connected component of €y
the corresponding connected component of 2 which contains it.

This is a surprising result, for given a pair of topological spaces A C B
there is no reason for the corresponding 7, to be 1-to-1 or onto:

(The black blobs represents A = Qx and the blobs encircling them B =



3 Covering homotopies

The notion of a covering homotopy is central to the proofs of the theorems
above. It appears naturally in control theory.

Let p: S — @ be a continuous map between connected spaces. We have
in mind the endpoint map which assigns to each controlled path beginning
at qo its endpoint. In other words, for each control strategy u(-), solve the
control system ¢ = f(q(t),u(t)), with initial condition ¢(0) = ¢o. Then

p(u(-)) = q(1).

Definition 1 We say that p satisfies the 1-parameter covering homotopy
property, or CHP for short, if for each path q(s), 1 < s < 2 in Q and any
71 € S with p(m) = q(1) there exists a path v(s), 1 < s < 2 covering q(s):

p(v(s)) = a(s)-

In other words, the 1-parameter CHP holds if we can follow any mo-
tion ¢(s) of final states by an appropriate two-parameter families of controls
u(t, s).

The salient result from homotopy theory is that if S is contractible, and
p satisfies the 1-parameter CHP then

mo(p(q0)) = m(Q).

(This follows immediately from the exact homotopy sequence.) Since m(Q) =
7o(2(Q)) this in turn implies that #(mo(2(Q)) = #mo (k) as in Smale’s the-
orem.

It follows from Little’s theorem that the 1-parameter CHP must fail for
his system. Let us see how it fails. Consider the following set-up for testing
the CHP:

Here we are to swing the final frame f; of the initial nondegenerate curve
7 (t) across the equator defined by 40(0). This equator is indicated by the
vertical dashed curve.

Now consider the central projection of this figure on to a tangent plane.
(By a central projection we mean a stereographic projection with light source
at the sphere’s center.)

Central projection preserves nondegeneracy of curves. Now any planar
curve with initial frame fy, and final frame f5, and no self-intersections must
have an inflection point. See the following figure.
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(Cf. Arnol’d, [1].) At inflection points the curvature is zero and so the
control bound k£ > 0 is violated. Thus any homotopy 7, which follows the
frames f, must leave the space Qx of solution curves. This shows that the
endpoint map for Little’s distribution violates the 1-parameter CHP.

Remark The reason behind considering central projections comes from
projective geometry. The sphere is the universal cover of the projective plane.
The central projections then become the standard affine charts of projective
geometry. The Frenet-Serret distribution is perhaps most properly thought
of as having to do with projective geometry. In particular, as shown in the
last section, it induces a distribution on projective frames and is invariant
under projective transformations.

If instead, the initial choice 7; has a self-intersection then it becomes
possible to cover the curve f; with a homotopy 7, of 7. This is indicated in
the picture below.

The central step in Shapiro’s proof is isolating that subset of
the space of nondegenerate curves for which the 1-parameter CHP
fails. These are the disconjugate curves described which we now.

4 Conjugate and Disconjugate Curves.

Definition 2 A nondegenerate curve x(t) in S? is called disconjugate if it
intersects any great circle no more than 2 times. It is called strictly conjugate
if it intersects some great circle three times transversely.

For the reason behind this terminology see the remark in the next subsection.
The theorem of Shapiro-Little follows directly from the following:

Theorem 4 The set of disconjugate loops and the set of conjugate loops are
disconnected within the space of all nondegenerate loops. The disconjugate
loops form a contractible set within the set of all nondegenerate loops. The
1-parameter CHP holds for the space of nondegenerate curves minus the dis-
conjugate curves.



5 Higher-dimensional homotopies and other
generalities

The 1-parameters CHP requires us to follow a 1-parameter family of targets
by an appropriate family of control strategies. Suppose instead that we want
to follow k-parameter target sets. Let X7 denote the j-dimensional cube and
I the unit interval.

Definition 3 The k-parameter CHP holds for p : P — @ provided whenever
f YN T — Q is a continuous map and vy : XF"1 — P is another contin-
uous map such that w(y(c)) = f(,0) then there is a map T : SF "1 xT — P
with I'(-,0) =v(-) and po ' = f.

If the k-parameter CHP holds for all k we will say, that p satisfies the
CHP.

Let us return to Smale’s paper. Let () be a connected Riemannian mani-
fold. Fix a point ¢o in () and a unit vector vy attached there. Recall a curve
is called regular if its derivative is nowhere zero. Let P8 denote the space
of all continuously differentiable regular paths in () beginning at a point ¢q
and with initial direction vy. Let ST'Q) denote the space of all unit tangent
vectors. Consider the map p : PY®8 — ST'Q) which assigns to each path the
value (y(1),4(1) //||[7(1)]]) of its final tangent direction.

[Smale]
Theorem 5 This map p satisfies the CHP.

Now it is a general fact (again following from the exact homotopy se-
quence) that if p : P — Y satisfies the CHP, if P is contractible, and if YV
is connected then the ‘fibers’ p~!(y) and the space of loops Q(Y) on YV are
weakly homotopy equivalent. To say that two spaces are weakly homotopy
equivalent means that all their homotopy groups agree:

m(p™ () = m(QY)) = T (V)



(If Q is a topological space, then 7 (€2) is the space of path-connected com-
ponents of the space of maps of a k-sphere into €2.)

Smale showed that PY®® was contractible. Since ST'S? = S0(3) his the-
orem stated at the beginning follows immediately from this one.

Consider the particular case when @) is a two-dimensional surface. Let
e1(q), e2(q) be a local orthonormal frame on ) so that any unit vector u can
be written @ = cos pe; + sinpes. Then ¢ = v, v > 0 is our control law. It
can be rewritten as the Pfaffian system

= —sinf; + cos by = 0

where 01, 65 are the dual basis to eq, es.
This system is of contact type: w A dw = 0. As a baby version of his
main theorem, Smale proves the following

Theorem 6 Let D be a contact distribution on a connected 3-manifold. Let
Qp denote the set of all absolutely continuous Legendrian (¥ € D) loops
through a fixed point. Then the inclusion of this space into the space of all
loops is a weak homotopy equivalence.

In this same vein, Ge Zhong and independently Sarychev have proved the
following.

Theorem 7 Let D be a bracket generating distribution on a connected man-
ifold Q. Then the inclusion Qp < Q of the horizontal (¥ € D) absolutely
continuous loops through a fized point into the space of all loops through that
point induces a weak homotopy equivalence.

Their proofs follow the main lines of Smale’s. All additional difficulties are
taken care of by invoking Chow’s theorem, as the reader may have guessed.

As we can see from the results of Little and Shapiro, the situation becomes
much more interesting when we impose inequality constraints on the controls.
In fact, the situation become more interesting if we simply impose more
smoothness on our controls. This is evidenced by the existence of C'-rigid
curves as defined by Bryant-Hsu. (The simplest example of such a curve is
any segment of the z-axis for the control system dz — y*dz = 0 on R3.)
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6 Problems

In order to organize our thoughts we will now state some general problems.
Suppose we are given a distribution £ € D C TQ of cones where ()
is a smooth connected manifold, D a bracket generating distribution and
kq,q € Q afamily of cones varying smoothly with ¢. Fix two points qo, g1 and
let Q% = Q% (qo0,q1) denote the set of all r-times continuously differentiable
paths 7y joining gy to ¢; and satisfying the control system v € K,. Whenr =0
take the paths to be absolutely continuous and write Q% = Qg, Qf, = Q"

Problem 1: How many path-connected components does 2} have?

Problem 2: Let ) denote the space of all paths joining g to ¢; (no
conditions on controls as smoothness). Is Q- < Q a weak homotopy equiv-
alence?

Problem 3: Does the answer to problem 1 depend on the degree of
smoothness r?

Problem 4: How does the answer to problem 1 vary as we vary the end
points?

Problem 5: How does the answer to Problem 1 vary as we vary the
opening angle of the cone? If the original cone is open in D, can the answer
change if we take its closure?

Regarding problems 1,3,4. In the case of the stable abnormal simple
curve the in 3 mentioned above, when ¢y # ¢ are two points on this curve

we have
#70(Qp) =1
#mo(Qp) = 2

But if ¢; is not on the curve then
#mo(Qy) =1, r=0,1,2,3,...
Such phenomena is impossible when there are no controls (D = T'Q):

(") = m ().
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Regarding problem 5. The results of Smale-Little-Shapiro show clearly
that indeed the answer can depend on the cone’s opening angle.

Regarding problem 2. Relazing controls and the h-principle of Gro-
mov. To say that the answer to this problem is ‘yes’ means that by completely
relaxing the controls, then we get the “right answer” for the topology. In
this situation we say that Gromov’s weak h-principle applies. His regular
h-principle is that

byt () = m0(Q)

is onto. This means every homotopy class of path is represented by a control
path. His 1-parameter h-principle states that i, is 1-to-1. This means that
if two control paths (with fixed end points) are homotopic, disregarding the
controls, then that homotopy can be realized through a non-parameter family
of control strategies (all having the same end points).

(He also has C"-versions of his principle.)

Thus we can summarize: In Smale’s case the weak h-principle applies.
The 1-parameter h-principle fails for the examples of Shapiro and Little.

Warning: To say that the weak h-principle holds is stronger than saying
that the regular or 1-parameter h-principle. This is an accident of historical
nomenclature we are stuck with.

7 Disconjugacy in Higher Dimensions

It is not immediately clear how to generalize the Little result to higher di-
mensions. To do this the viewpoint of projective geometry appears essential.

Call a curve 7(t) in ™ vector nondegenerate, or VN for short, if ~(¢),
A(t), 5(t),...,7"1(t) are linearly independent vectors in ™ for each ¢. Call
it right-handed or (RHVN for short) if in addition this basis is positively
oriented.

The Graham-Schmidt procedure allows us to pass from RHVN curves to
a curves in SO0(n) satisfying the Frenet-Serret equations (x). We can also
associate to a RHVN curve a moving family of subspaces of . Namely,
set fi1(t) = span {§(¢)} and let f;(t) denote the linear span of the first j
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derivatives of 7. By assumption, dim(f;(t)) = j, and

0C fi(t) C folt) C ... C fi(t) C ... faa(t) C ™

A collection of such subspaces is called a (complete) flag

Each subspace f; is oriented by the ordering of the derivative vectors
79)(t). Denote the set of all oriented flags ™ by SF,. S0(n) acts freely
and transitely on SF,, and so this action defines a diffeomorphism S0(n) ~
SF(n). The Frenet-Serret control system on SO(n) mentioned in the be-
ginning has a beautiful description on SF,,. Let e; denote the vector field
on SF, defined by rotating the line f; of any given flag within the plane f,
according to the positive sense of rotation defined by the orientations. And
in general let e;, 1 = 1,2,...,n — 1 be the vector field defined by rotating
the i-dimensional subspace f — i about the (i — 1)st keeping it within the
(i + 1)st, and so that the rotation is in a positive sense. Then our control
system is is

f:nilkiei(f) k; > 0.
i=1

We will call this description the “projective description” of our control sys-
tem.

From the projective description it becomes obvious that the full linear
group, Gl(n), is the symmetry group of our control system. From our original
description we could only see that the smaller group SO(n) was a symme-
try group. These additional symmetries allow Shapiro to construct explicit
covering homotopies. (Any positive scalar multiple of the identity I acts triv-
ially on SF,, so that the action of Gl(n) actually factors through an action
of GL(n) modulo this one-dimensional subgroup. This quotient group is the
disconnected double cover of the projective linear group GL(n) = GL(n)/I
which is the group of projective transformations.) More importantly, the pro-
jective viewpoint allows Shapiro and Shapiro to pinpoints the higher dimen-
sional disconjugate curves, that is, te set of curves on which the 1-parameter
CHP fails.

Remark

The motivation for Shapiro to study this system came from a certain
Poisson structure called the Gelfand-Dikii structure which arises in the study
of completely integrable PDE such as KdV. The underlying manifold for this
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structure is the affine space of all linear n-th order differential operators:

L(y) = g™ + un 1 ()y™ Y 4+ . ug (8)y(2t).

Let 41, ...y, be any basis for the space of solutions to the equation L(y) = 0.
Then (y, (t),...,yn(t)) is a VN curve in ™. We think of the coefficients
u; as the controls. Let Y(¢) be the fundamental matrix solution to such a
DE. Thus the ij entry of Y can be taken to be the jth derivation of the
solution y;. We will say that Y'(1)Y(0)~! is the monodromy of the nth order
differential operator. We will say that two operators are isomonodromic
if there monodromy operators are constant. The symplectic leaves of the
Gelfand-Dickii Poisson structure consists of the connected components of
the isomonodromy classes. Shapiro and Khesin show how to reduce the
problem of seperating the connected components to the problem we have
been discussing on SO(n) or SF,.

Exercise. Relate the controls u; to the Frenet-Serret controls k.

Exercise. Relate this to standard linear control theory, cf. Sontag, p.
133.

Now suppose that v : I = [0,1] — ™ is a VN curve, let H be any hy-
perplane and ¢ a linear function defining H; H = {¢ = 0}. Define the
multiplicity of H at ¢ to be the order of vanishing of £(v(t)) at to. In partic-
ular the multiplicity is zero if y(tg) ¢ H. The multiplicity is a nonnegative
integer less than or equal to n — 1. It is equal to n — 1 if and only if H is
the osculating plane of v at ty. To see this, observe that relative to the basis
defined by its derivatives at to we have

+(t) = (1, (6= o) ¢ =t i to>“—1) L0~ 1)),

If we perturb H a bit in the correct direction then it will intersect ~ trans-
versely in n — 1 points near py and these points limit to py as H approaches
the osculating plane.

Let the multiplicity of v relative to H be the sum of all nonzero multi-
plicities.

Definition 4 v is a conjugate curve if for all hyperplanes the total multi-
plicity is at most n — 1. Otherwise il is disconjugate.
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With this definition in place M.Z. Shapiro proves that the analog of the
theorem of Little-Shapiro holds for higher dimensions. A key ingredient in
the proof is the notion of the train of an initial flat f.

Definition 5 Two flags f = f1i C fo C ... ande =e; Cey C ... in" are
said to be transverse, or in general position, if the intersections of all their
subspaces is as transverse as possible. In other words, they are transverse if
for each i,j the dimension of f; N e; is the minimum possible for such an
intersection of subspaces, namely max(i + j —n,0). The train of the flag f
1s the set of all flags e which are not transverse to it.

Theorem 8 If the VN ~y is not conjugate then its associated flag curve f(t)
must intersect the train of its initial flag f(0) .

Remark If we put bounds, eg ¥k; < 1, on the controls then near an initial
flag fj its train is precisely the the boundary of its small-time accessible set.

Remark For those familiar with some elements of Lie group theory, the
train is the union of all the lower-dimensional Schubert cells in the cell de-
composition of SO(n).

Finally, I should explain to the reader what the difference is between even
and odd dimensions. Why do we get 2 when n is even and 3 when n is odd?
Because when n is even there are no conjugate loops! The reason for this
is simple. The curve must return to its starting place, and hence intersect
any hyperplane an even number of times. But the multiplicity of the loops
initial osculating plane, and slight perturbations of it, is at least n — 1 which
is odd. Hence the multiplicity of the curve with respect to such planes at
least n and the loop is conjugate.

I hope I have given the reader enough background and motivation to read
the papers of Shapiro et al. Bon voyage.
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