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Abstract. A syzygy in the three-body problem is a collinear instant. We prove that,
with the exception of Lagrange’s solution, every solution to the zero angular momentum,
Newtonian three-body problem suffers syzygies. The proof works for all mass ratios.

1. Introduction
We consider the Newtonian three-body problem with zero angular momentum and negative
energy. Masses are positive, but arbitrary. A ‘syzygy’ means an instant (or configuration)
at which the three masses are collinear.

THEOREM 1.1. All solutions to the zero angular momentum, negative energy, Newtonian
three-body problem admit a syzygy except for the Lagrange homothety solutions.

1.1. Explanation of terms. Solutions are to be defined over their maximal interval of
existence and analytically continued through binary collisions following Levi-Civita [3, see
especially p. 105, equation (12)]. Binary collisions count as syzygies. Collinear solutions
count as being in constant syzygy. A solution cannot be extended past a finite time t = b if
and only if as t → b the three positions of the three bodies tend to the same point. In other
words, a solution fails to exist past a certain time if and only if it ends in a triple collision
at that time (see [6, 11] or [12]).

The only explicitly known solutions to the three-body problem are the Lagrange
and Euler solutions. At zero angular momentum, these solutions evolve by homothety
(scaling). The Euler solutions are collinear at each instant. The Lagrange homothety
solution [2] for negative energies begins and ends in a triple collision. At every other
instant of its existence the three masses form an equilateral triangle. This triangle evolves
by homothety, ‘exploding’ out of the triple collision, growing to its maximal size half-way
through its evolution, at which point the three bodies are instantaneously at rest, and then
shrinking back to a triple collision. The size of the equilateral triangle at its maximum is
determined by the value of the negative energy.
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1.2. Ubiquity of non-Lagrange solutions. There are many many solutions to the zero
angular momentum, negative energy, three-body problem besides those of Euler and
Lagrange. The set of all such solutions to this problem forms a continuum which should
be viewed as a four-dimensional space, and the Lagrange solution is a single point within
this continuum. Indeed, the zero angular momentum phase space, modulo the symmetry
of rotation, is six-dimensional, being isomorphic to the tangent bundle of a 3-manifold
(namely, R3 minus three rays). This is the reduced phase space for the problem, and
Newton’s equations define a flow on this space (see, for example, [5–9]). Fixing the energy
gives us a 5-manifold, say M5. Formally, then, the space of solutions to which Theorem 1.1
refers is M5 modulo the R-action defined by the flow of Newton’s equations. Hence, in a
formal sense the solution space which is the subject of the theorem is a four-dimensional
space. (Because of collisions, the R-action is not globally defined. Because of complicated
dynamics the quotient space will not be a manifold.) The Lagrange homothety solution at
that energy is a single curve in M5 (see [6]). Any initial condition m ∈ M5 not lying on
this curve yields a solution which is not the Lagrange solution and so, according to the
theorem, a solution which has syzygies. Thus, the exceptional solution—Lagrange’s—is a
single point within the four-dimensional space of solutions.

1.3. Previous work. In [7] Theorem 1.1 was proved upon imposing two additional
hypotheses on solutions: that they are bounded and that they do not end in a triple collision.
The contribution of the present paper is to dispense with these hypotheses.

We first dispense with the hypothesis on collision, keeping the boundedness hypothesis.
Again, in [7] it was proved that bounded solutions which do not end in collisions have
syzygies. Fujiwara et al [1] later found another more elementary proof. Either proof, plus
invariance of the equations and zero angular momentum condition under time reversal,
proves the existence of syzygies for solutions that are bounded and do not begin in a triple
collision. All that remains of the bounded solutions are those, excluding the Lagrange
solution, which begin and end in a triple collision. The proof for these solutions will follow
the same qualitative lines as [7]. According to Moeckel [6, Corollary, p. 53], there are, for
generic mass ratios, an infinite number of these finite-interval solutions bi-asymptotic to a
triple collision.

Moeckel, Chenciner and others have pointed out (private communication) that
dispensing with the boundedness hypothesis on solutions ought to be easy. In unbounded
negative energy solutions two of the masses must form a bound pair with the third mass far
away for long periods of time. During these long times the bound pair moves according
to a differential equation which is a slight, but time-dependent perturbation of the Kepler
equation, and so the pair should spin about each other frequently crossing the line joining
their center of mass to the distant mass, thus making syzygies. However, the current author
has been unable to turn this idea into a proof. The difficulties include the existence of
oscillatory unbounded solutions, and the difficulty of establishing syzygies for systems
looking like highly eccentric nearly Keplerian orbits subject to small time-dependent
perturbations concentrated along the semi-major axis of the orbits. Instead, the methods
of [7] have been used. The bulk of this paper is devoted to proving the existence of infinitely
many syzygies for unbounded solutions with zero angular momentum. It is to be expected
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that a more skilled analyst could get a more direct proof based on the Kepler idea, and
valid for unbound negative energy solutions with non-zero angular momentum.

1.4. Motivation. The current author has been trying for some time to establish a
symbolical dynamical description for the zero angular momentum, three-body problem.
The symbols are to be the syzygies, marked as 1, 2 and 3, depending on which mass crosses
between the other two, see [8, 9]. A complete symbolical dynamical description has been
successfully established if the potential is changed from the Newtonian 1/r potential to
the 1/r2 potential and if the three masses are taken to be equal. Theorem 1.1 is a first step
toward the more interesting Newtonian case. The theorem asserts that, with one exception,
every solution has syzygies, and hence a symbol sequence.

2. Proof of Theorem 1.1
We continue to use the methods of [7] where we introduced the ‘height’ variable z on the
three-body configuration space minus triple collisions. The crucial properties of this z are

−1 ≤ z ≤ 1, (2.1)

|z| = 1 ⇐⇒ equilateral, (2.2)

z = 0 ⇐⇒ syzygy, (2.3)

and that, along any solution,

d( f ż)/dt = −qz, f > 0, g ≥ 0, (2.4)

where f is a smooth function on the shape space, q is a smooth function on the tangent
space to the shape space,

q = 0 ⇐⇒ tangent to the Lagrange homothety (2.5)

and
f → ∞ ⇐⇒ unbounded. (2.6)

We recall that a solution is said to be bounded if all the distances ri j between the
pairs i, j of masses are bounded functions of time. Thus, the solution is unbounded if
lim sup ri j (t) = +∞ for some mass pair i, j .

2.1. The bounded case. Let x be a solution as per the theorem and suppose it to be
bounded. Thus, x is a bounded zero angular momentum, negative energy solution to
the three-body problem besides the Lagrange solution. We may suppose that it is not
a collinear solution since every instant of a collinear solution is a syzygy. Reflecting
a solution about a line affects the transformation z → −z, and a time reflection t → −t
affects the transformation ż → −ż. Using these symmetries and time translation, we may
assume at some initial time t = −ε that we have z > 0 and ż ≤ 0. Because the solution
is not the Lagrange homothety solution, z cannot be identically 1 and q must be positive
along the solution (see (2.5)), it follows from (2.4) that (d/dt)( f ż) < 0. In particular,
ż = 0 identically is impossible. Upon translating time forward slightly from −ε to 0 we
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will have ż < 0. Now we have z(0) > 0 and ż(0) < 0. We must prove that at some finite
time t = b later we have z(b) = 0.

According to (2.4), f ż is strictly decreasing as long as z > 0. Since f is positive, the
derivative ż must remain negative over any interval [0, b) of time during which z(t) > 0.
Thus, z(t) is monotonically decreasing over every interval of time [0, b) for which the
solution exists and for which z(t) > 0. The solution cannot fail to exist in such an interval,
because the only way it can terminate itself is by ending in a triple collision. However,
all non-collinear solutions which end in a triple collision asymptote to the Lagrange
solution [6]† implying z → 1 or z → −1, which we have excluded. Hence, either b < ∞
and z(b) = 0, in which case we have our syzygy, or b = ∞ and the solution stays in the
upper hemisphere z > 0 for all positive time. We invoke the hypothesis that the solution is
bounded to exclude the second possibility.

So, suppose that z > 0 on [0, ∞), that ż(0) < 0 and that the motion is bounded.
According to the bound (2.6), the function 1/ f is bounded away from zero along our
solution, so that 1/ f > k on [0, ∞) for some positive constant k. Now ż(0) is negative by
assumption, and f (0) is positive so that f (0)ż(0) = −a < 0 is negative. According to the
differential equation (2.4), f ż is monotonically decreasing so that f (t)ż(t) < −a. Then
ż = ( f ż)/ f < −ka. But then

z(t) = z(0) +
∫ t

0
ż dt < z(0) − kat,

which violates the positivity of z as soon as t > z(0)/ka. This contradiction shows that in
fact z has a zero before time t = z(0)/ka.

2.2. The unbounded case. There are two types of unbounded solutions, escape and
oscillatory. A solution is an escape solution if lim ri j (t) = +∞ for some pair i j . It is an
oscillatory solution if for some pair lim sup ri j = ∞ while for every pair lim inf ri j < ∞.
The existence of oscillatory-type unbounded solutions was established by Sitnikov [10].
Our proof deals simultaneously with both types.

The function maxi j ri j is a measure of the size of the configuration. Another equivalent
measure is R where R2 = I is the moment of inertia: I = ∑

mi m jr2
i j/

∑
mi . The mi are

the values of the masses. Then

c max
i j

ri j < R < C max
i j

ri j ,

where here and throughout c, C denote positive constants depending only on the masses
and energy. The precise values of these constants will not be important. It follows that a
motion is an escape motion if limt→∞ R(t) = +∞ and it is oscillatory if lim supt R(t) =
+∞ while lim inft R(t) < ∞. The function f of the basic equation (2.4) is related to R2

by
f = R2λ2 (2.7)

where c ≤ λ ≤ C . Relation (2.6) follows from this expression for f .

† See in Table 1 in [6] the entry dim(St (R)) with R = C∗. The linearization at C∗ for collinear motion also
has dim(St (R)) = 1, showing that the stable manifold ingoing to a collinear triple collision C∗ lies within the
collinear submanifold.
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Let x be an unbounded solution. Being unbounded, for any R0 > 0 there is a time t
such that R(t) ≥ R0. Rewrite the z equation (2.4) by introducing a new time variable σ :

f
dz
dt

= dz
dσ

so that
dt
dσ

= f.

The differential equation (1/ f )(d2z/dσ 2) = −qz for z then becomes a harmonic
oscillator:

d2z
dσ 2 = −ω2z, ω2 = f q (2.8)

of variable frequency ω. If ω were to be a constant ω0 then this would be the equation of
a linear oscillator and the zeroes of any solution would be spaced equally at (σ -) intervals
of length π/ω0. Returning to our case, from standard Sturm–Liousville theory it follows
that if ω2 > ω2

0 then within each of these intervals of length π/ω0 the function z(σ ) has a
zero. Let & be the length of an interval of σ during which R ≥ R0 and suppose that ω ≥ ω0

during this interval. In the σ variable, escape to infinity takes a finite time so the lengths
& will be finite. If we can show that for R0 sufficiently large & > π/ω0 then we will know
there is an oscillation during this interval. Below, we will establish the asymptotics:

&ω0 ≥ C R0, R0 → ∞. (2.9)

It follows that there are many (at least C R0/π ) syzygies during the interval &.
The following two estimates yield (2.9):

ω ≥ C R2
0, (2.10)

& ≥ C/R0. (2.11)

2.3. Proving estimate (2.10), the ω bound. Let

r = min
i += j

ri j

be the minimum distance. Fix the total energy H to be negative and write h = −H > 0.
Then, as is well known, there exists a constant c depending only on the masses such that
the minimum intermass distance r satisfies

r ≤ c/(|H |). (2.12)

See equation (A.3) of Appendix A for a proof.
The total energy is given as

H = (K/2) − U

where K ≥ 0 is the potential energy and

U =
∑

mi m j/ri j

is the negative of the potential energy. Because our solution has negative energy and R is
large for long time intervals, we know that along any one such ‘long’ interval one of the
distances, say r12, is much smaller than the other two and these other two are of order R:

r12 = r ≤ C, r13, r23 ≥ C R. (2.13)
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(See Appendix A, equations (A.6) and (A.8) for proofs.) Introduce the spherical
coordinates (R, θ, φ) used in [7] and the squared distance variables

sk = r2
i j

for i, j, k any permutation of 123. These systems of coordinates are related by sk =
R2λ(1 − γk(θ) cos(φ)) where γk = cos(θ − θk), and θ = θk , φ = 0 describe the location
of the binary collision ray ri j = 0; see [7, equation (4.3.14)]. (The angles θk − θ j between
the collision rays depend on the masses.)

The function q satisfies

q = positive + −4 cos(φ)

sin(φ)

∂U
∂φ

.

This implies that the bound (2.10) will follow from the bound

−4 cos(φ)

sin(φ)

∂U
∂φ

≥ C R2 (2.14)

valid for all R large enough, together with the defining relations (2.8) and (2.7).
We proceed to establish the bound (2.14). We have

∂U
∂φ

= −
∑ mi m j

r3
i j

∂sk

∂φ

and
∂sk

∂φ
= −R2λγk sin(φ) + R2 ∂λ

∂φ
(1 − γk(θ) cos(φ))

= sin(φ)R2λγk + +sk

where + = dlog λ/dφ. The function λ and hence log λ are even functions on the shape
sphere, where ‘even’ and ‘odd’ refer to behavior under the reflection(φ, θ) ,→ (−φ, θ)

about the equator. It follows that + is an odd function and so vanishes on the equator. Thus

+ = sin(φ)W (φ, θ),

where W is a smooth function on the sphere. In particular, W is uniformly bounded. Now
we have −1

sin(φ)

1

r3
i j

∂sk

∂φ
= 1

r3
i j

[R2λγk(θ) − W sk].

Since γ3 = 1 at a collision and since the point in the shape sphere representing our triangle
is arbitrarily close to this same collision point for R large (because r/R - 1), we have that
γ3 can be as close to 1 as we wish along our solution interval, by taking R large along the
interval. Using this fact and the bound (2.12), we have

−1
sin(φ)

1

r3
12

∂s3

∂φ
= 1

r3
12

[R2C − C]

≥ C R2,

and for the other two distances∣∣∣∣
−1

sin(φ)

1

r3
13

∂s2

∂φ

∣∣∣∣,
∣∣∣∣

−1
sin(φ)

1

r3
23

∂s1

∂φ

∣∣∣∣ ≤ C/R.
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Thus,

−4
cos(φ)

sin(φ)

∂U
∂φ

≥ C R2

as claimed.

2.4. Proving the estimate on &, the bound (2.11). We will be using the length ρ = ‖ξ‖
of the long Jacobi vector ξ as a measure of escape. This vector connects the 12 center of
mass to the distant mass three. We have

R2 = aρ2 + br2
12 (2.15)

where a, b depend only on the masses (see (A.4) of Appendix A). It follows from
equation (2.15) and the bound r ≤ c/|H | on r = r12 that R and ρ are related by

caρ ≤ R ≤ Caρ, (2.16)
1

Ca
R ≤ ρ ≤ 1

ca
R, (2.17)

where the constants ca, Ca depend only on the masses. (These constants can be taken
arbitrarily close to the constant 1/

√
a by taking R0 sufficiently large and R > R0.)

The desired length bound follows from the following assertion.

PROPOSITION 2.1. Let ρ(t) be the length at time t of the long Jacobi vector for a future-
unbounded negative energy solution. Then there exists a constant c3 such that for all
ρ0 sufficiently large there exist a ρ∗ ≥ ρ0 and two times t1 < t∗ such that ρ(t1) = ρ∗
while ρ(t∗) = 2ρ∗ and ρ is monotonically increasing over the interval t1 < t < t2 with
the derivative bound

|ρ̇(t)| ≤ c3. (2.18)

If the solution is oscillatory, then we can take t∗ such that ρ̇(t∗) = 0 and, continuing further,
find t3 > t∗ such that ρ(t3) = ρ∗, and ρ decreases monotonically over [t∗, t3] with the
bound (2.18) in place.

In the oscillatory case, the constant c3 can be taken to be as small as we wish. In the
escape case the limit ν∞ := limt→∞ ρ̇(t) exists and we can take for c3 any constant greater
than ν∞.

We show how the bounds of the proposition imply the desired bound (2.11) on &. We
measure the length & of the domain of the arc of solution guaranteed by the proposition,

& =
∫

dσ =
∫

dσ

dt
dt =

∫
dt

R2λ

≥ K
∫ t∗

t1

dt
ρ2 = K

∫ t∗

t1

dt
dρ

dρ

ρ2

≥ K
c3

∫ 2ρ∗

ρ∗

dρ

ρ2 = K
2c3

1
ρ∗

≥ C
R∗

,

which is the desired bound.
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x*

x+
xx–

FIGURE 1. Functions in the comparison lemma.

Proof of Proposition 2.1. The proof divides into two cases, escape and oscillatory. Both
cases rely on the inequality

− c−/ρ2 < ρ̈ < −c+/ρ2, (2.19)

valid for ρ > ρ0 with ρ0 large enough. As usual, the constants c− > c+ > 0 depend only
on the masses. By taking ρ0 arbitrarily large, we can make c−, c+ arbitrarily close to each
other and to the total mass. See Appendix A, Lemma A.1 for the proof of (2.19).

Case 1: Escape. Say that ρ(t) → ∞ with t . According to (2.19) its speed ρ̇ decreases
with increasing ρ. For t sufficiently large, we have ρ̇(t) > 0, for otherwise we would
have arbitrarily large times at which t would turn back around and ρ would decrease,
contradicting escape. (See the Comparison Lemma immediately below, and Appendix A
for more details.) It follows that ρ̇(t) is monotonically decreasing with increasing t and so
tends to a limit ν∞ ≥ 0. Given any ε > 0, choose t∗ large enough so that 0 < ρ̇ ≤ ν∞ + ε

while ρ(t∗) := ρ∗ > ρ0. Then for all t > t∗ we have ρ(t) ≥ ρ∗ while 0 < ρ̇(t) ≤ ν∞ + ε.
Thus ρ travels between ρ∗ and ∞ all the while satisfying |ρ̇| ≤ c3 = ν∞ + ε.

Case 2: Oscillatory. We use inequality (2.19) in conjunction with the following lemma.

LEMMA 2.2. (Comparison Lemma) Consider three scalar differential equations ẍ− =
F−(x−), ẍ = F(x, t), ẍ+ = F+(x+) with F, F+, F− being C functions satisfying F−(x) <

F(x, t) < F+(x) < 0 for x > xc, where xc is a fixed constant. Suppose that F−(x) and
F+(x) are monotone increasing for x > xc. Let x−(t), x(t), x+(t) be the solutions to their
respective differential equations which share initial conditions at t = 0, x−(0) = x1(0) =
x+(0) := x∗ > xc, ẋ−(0) = ẋ(0) = ẋ+(0). Then, for all times t such that x−(t) ≥ xc, we
have:
(1) x−(t) ≤ x(t) ≤ x+(t) ≤ x∗ with equality only at t = 0; and
(2) dx−(t)/dt < dx(t)/dt < dx+(t)/dt for t > 0 and

dx−(t)/dt > dx(t)/dt > dx+(t)/dt for t < 0.
See Figure 1.

We prove the lemma below. Assuming the lemma, we continue with the proof of the
proposition in the oscillatory case. Let a large ρ0 be chosen so that the estimate of (2.19) is
in force for ρ > ρ0, with the constants c+, c− sufficiently close to each other. How close
is detailed in the next paragraph. Since the solution is oscillatory, given any ρ∗ > 0 we can
find times t∗ arbitrarily large such that
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ρ(t∗) := 2ρ∗

and
ρ̇(t∗) = 0.

Since ρ∗ is arbitrarily large, we may suppose that 1
2ρ∗ ≥ ρ0. The Comparison Lemma

sandwiches ρ between the solutions ρ+, ρ− to the ‘bounding’ differential equations:
ρ̈± = −c±/ρ2

± of (2.19), which share initial conditions with ρ at t = t∗. See Figure 1.
Thus,

ρ−(t) < ρ(t) < ρ+(t), t ∈ I,

where I is an interval containing t∗ such that for t ∈ I the bound ρ(t) > ρ0 needed to
obtain (2.19) is in force.

We can describe the comparison solutions ρ± in sufficient detail by using the scaling
symmetry of Kepler’s equation. Let φ(t) be the solution to the model Kepler equation
φ̈ = −1/φ2 with initial conditions φ(0) = 1, φ̇(0) = 0. Then

ρ+(t) = λφ(λ−3/2√c+(t − t∗))

and
ρ−(t) = λφ(λ−3/2√c−(t − t∗))

where we take
λ = 2ρ∗

to guarantee agreement of initial conditions at t = t∗. By taking ρ0 sufficiently large we
can make c− arbitrarily close to c+. Consequently, for ρ0 large enough we will have that
1/4 ≤ φ(

√
c−τ f ) where τ f > 0 is a time such that φ(

√
c+τ f ) = 1/2. Now the times τ and

t for the scaled solutions are related by τ = λ−3/2(t − t∗). It follows that at the time t2
corresponding to τ f we have

ρ+(t f ) = ρ∗

and ρ0 < ρ∗/2 < ρ−(t f ) < ρ(t f ) ≤ ρ∗. Over the time interval [0, τ f ] the uniform
derivative bound −k <

√
c−(dφ/dτ)(

√
c−τ) < 0 holds. Under the scaling and translation

symmetry used to make ρ± we find that the velocities transform by

v(t) = 1√
λ

dφ

dτ
(λ−3/2(t − t∗)).

Consequently, k/
√

λ < ρ̇− < 0 during the time interval [t∗, t f ]. By the Comparison
Lemma, then

−k/
√

2ρ∗ < ρ̇ < 0

over this same time interval. Now ρ(t f ) may be less than ρ∗ but ρ is monotonically
decreasing. So take for t3 the unique time in the interval [t∗, t f ] such that ρ(t3) = ρ∗. This
completes the argument in the oscillating case for the decreasing interval [t∗, t3] of ρ. The
argument for the increasing arc [t2, t∗] of ρ is the time reversal (about t∗) of this argument.

!
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Proof of Lemma 2.2. (1) follows from (2) by integration. We will just prove (2) in the
− case, i.e. the inequality dx−/dt < dx/dt for t > 0. The argument in the other cases is
identical. Looking at the Taylor expansions of x−, x at t = 0, we see that the inequality
holds in a small right-hand neighborhood of 0, say (0, δ). Now proceed by contradiction.
If the inequality fails before x− reaches xc, then there is a t with dx−(t)/dt ≥ dx(t)/dt .
Let t∗ be the first such t > 0 such that dx−(t)/dt = dx/dt . We have t∗ > δ. By
integration, dx−(t∗)/dt =

∫ t∗
0 F−(x1(t)) dt and dx(t∗)/dt =

∫ t∗
0 F(x(t), t) dt . These two

integrals are equal. But F(x(t), t) > F−(x(t)). Moreover, in the interval (0, t∗) we have
dx−/dt < dx/dt and so, by integration, x−(t) < x(t). Then F−(x(t)) > F−(x−(t)) by the
monotonicity of F−. So

∫ t∗
0 F(x(t), t) dt >

∫ t∗
0 F−(x−(t)) dt , contradicting the equality

of the two integrals. !

Remark. Differential inequalities involving ρ are much better behaved at large R (and
hence ρ) than those involving R. The R differential equation is the Lagrange–Jacobi
identity 2d(R Ṙ)/dt = 4H + 2U and yields a huge second derivative for R when r = r12

is sufficiently small. Thus R can oscillate wildly, despite the fact that the bound (2.15) is
in force.

3. Discussion—open questions
Could Theorem 1.1 hold for arbitrary energy H and angular momentum J? No. It does not
hold for H > 0 and J = 0. The direct method of the calculus of variations yields action-
minimizing hyperbolic escape orbits, which leave triple collisions and tend to any desired
non-collinear point of the shape sphere in infinite time. The reflection argument (see,
e.g., [5]) shows that these minimizers never become collinear. The theorem might hold for
H = J = 0 but we suspect not. In this case there is a manifold of parabolic escape orbits
whose shapes tend to Lagrange. It is believed that some of these have no syzygies, but this
is just a guess. For H < 0 and general J += 0 the theorem is false, at least for mass ratios
in which one mass dominates. In this case, the near-circular Lagrange solutions are KAM
(Kolmogorov–Arnold–Moser) stable (see [4]), and so are surrounded by a nearby cloud
of KAM tori on which the solutions stay near the Lagrange solution, and hence away from
z = 0 for all time. It is possible that for some values of H < 0, J += 0 and some values of
the mass ratios that the theorem continues to hold. If the Dziobek constants J 2 H and mass
ratios are such that the Lagrange solution is unstable (which is the case for nearly equal
masses and J 2 H being a value near that which supports the circular Lagrange solution),
then there is some chance for the theorem to hold.

According to the theorem, all solutions bi-asymptotic to a triple collision except for
the Lagrange solution have syzygies. This number is necessarily finite. What numbers
are possible? Is any finite number of syzygies achieved? Is any finite syzygy sequence
realized? Write m(x) for the time interval on which the solution x is defined. (Thus,
m(x) = +∞ for all solutions except those bi-asymptotic to a triple collision.) Is it true that
m(x) is minimized (among all solutions x with J = 0 and H < 0 fixed) by the Lagrange
solution?
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A. Appendix. Bounds near ∞ for negative energy
We suppose that the total energy H = K/2 − U is negative and write H = −|H |. Then

U ≥ |H |. (A.1)

Write r = min{ri j : i += j} for the minimum of the intermass distances. Then there is a
constant c depending only on the masses such that

c/r ≥ U. (A.2)

(For instance, if the masses are all equal to m then c = 3m2.) It follows that

c/r ≥ |H |

or
c/|H | ≥ r. (A.3)

Let us suppose that 12 realize the minimum distance:

r = r12.

Associated to the decomposition 12; 3 we have Jacobi vectors and their lengths:

ζ = x1 − x2, |ζ | = r,

ξ = x3 − x12
cm, |ξ | = ρ.

Here

x12
cm := (m1x1 + m2x2)/(m1 + m2)

:= µ1x1 + µ2x2

is the 12 center of mass and

µ1 = m1/(m1 + m2), µ2 = m2/(m1 + m2).

One computes
R2 = α1r2 + α3ρ

2 (A.4)

where
α1 = m1m2/(m1 + m2), α3 = (m1 + m2)m3/(m1 + m2 + m3), (A.5)

from which it follows that
caρ ≤ R ≤ Caρ (A.6)

and
U ≥ C/ρ. (A.7)

Set Û = RU . Combine (A.1), (A.2), (A.7) with (A.6) to get that Cρ/r ≥ Û ≥ R|H | or

C
R|H | ≥ r/ρ,

which asserts that by making R or ρ large we can make the ratio r/ρ as small as we
wish. We view r/ρ as a perturbation parameter. From the last inequality it follows that
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for every ε > 0 there is a ρ0 (or R0) sufficiently large such that ρ ≥ ρ0 (R ≥ R0) implies
that r/ρ < ε. In what follows, let small ε be given, and suppose we have chosen the
corresponding ρ0 (or R0) to be taken so as to guarantee r/ρ < ε. Moreover, let c, C, . . .

denote constants depending only on this ρ0, the masses, the total energy and the total
angular momentum.

We have r = r12 = |ζ |. To express the other distances in terms of ξ, ζ , use x3 − x1 =
ξ − µ2ζ and x3 − x2 = ξ + µ1ζ to obtain

r13 = ‖ξ − µ2ζ‖, r23 = ‖ξ + µ1ζ‖, (A.8)

where µi are the reduced masses described above. Note that r13, r23 = ρ + O(ε).
Then

H = H12 + H3 + g

where

H12 = 1
2α1‖ζ̇‖2 − β1/r,

H3 = 1
2α3‖ξ̇‖2 − β3/ρ,

where α1, α2 are given in equation (A.5),

β1 = m1m2, β3 = (m1 + m2)m3

and the ‘error term’ g is given by

g = (m1 + m2)m3

‖ξ‖ − m1m3

‖ξ − µ2ζ‖ − m2m3

‖ξ + µ1ζ‖ .

Recall that the Legendre polynomials Pj (x) can be defined by

1
‖ξ − q‖ = 1

‖ξ‖

{
1 + ‖q‖

‖ξ‖ cos(ψ) +
(‖q‖

‖ξ‖

)2

P2(cos ψ)

+ · · · +
(‖q‖

‖ξ‖

) j

Pj (cos ψ) + · · ·
}

= 1
‖ξ‖ + P1(ξ · q)

‖ξ‖3 + P2(ξ · q)

‖ξ‖5 + · · · + Pj (ξ · q)

‖ξ‖2 j+1 + · · · ,

where ψ is the angle between ξ and q . (Note that P1(x) = x .) The Pj are homogeneous
degree j polynomials. Expanding each of the three terms of g in terms of Legendre
polynomials yields a Laurent series in ρ = ‖ξ‖. The first two terms of this series, i.e.
the 1/ρ term and the 1/ρ2 term, are zero because (m1 + m2)m3 = m1m3 + m2m3 and
because m1µ2 − m2µ1 = 0. We then find that

g =
(

m3

ρ

){
(m1µ

2
2 + m2µ

2
1)

(
r
ρ

)2

P2(cos ψ) + O
(

r
ρ

)3}

= (m1µ
2
2 + m2µ

2
1)P2(ξ1 · ξ2)

ρ5 + O(r3/ρ4).

We will need estimates for g and its derivatives. These are

|g| ≤ Cε2/ρ (A.9)
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or
|g| ≤ Cr2/ρ3 (A.10)

and
gξ1 = O(ρ−3)

and
gξ2 = O(ρ−4)

and so on.
If we set g = 0 then H becomes the Hamiltonian for two uncoupled Kepler systems.

The next lemma describes some details of the asymptotics of this decoupling as ρ → ∞.
Introduce

J12 = µ1ζ ∧ ζ̇ ,

the angular momentum of the 12 system, and the radial and transverse separation velocities
ν, V ⊥ given by

ξ̇ = νξ̂ + V ⊥, ρ̇ = ν,

where ξ̂ = ξ/ρ is the unit vector in the ξ direction and where V ⊥ is orthogonal to ξ .

LEMMA A.1. Consider any solution to the three-body problem along which ρ(t) ≥ ρ0

with ρ0 as above. There exists a positive constant c, depending only on the total energy H
and total angular momentum J , the masses mi and ρ0, such that:
(a) |J12| ≤ c;
(b) ‖V ⊥‖ ≤ c/ρ;
(c) |ρ̈ + M/ρ2| ≤ ε/ρ3 where M = m1 + m2 + m3 is the total mass.

Similar bounds hold for the time derivatives of H12, H3, J3, ξ̂ , and the 12 and 3 Laplace
(or Runge–Lenz) vectors.

Proof. Estimate (a): We show that ‖J12‖ ≤ β2
1/|H | + O(1/ρ0). We have J12 = α1ζ ∧ ζ̇ ,

‖ζ ∧ ζ̇‖2 ≤ ‖ζ‖2‖ζ̇‖2 and |ζ |2 = r2. It follows that

|J12| ≤ α1r2‖ζ̇‖2.

Set H ′ = H3 + g. Note that −H ′ ≤ β3/ρ + ε/ρ ≤ c/ρ0, and that H12 = H − H ′ ≤
−|H | + c/ρ0. Use the formula for H12 to rewrite this last inequality as

α1‖ζ̇‖2 ≤ −2|H | + 2c/ρ0 + 2β1/r.

Multiply through by r2 to get

|J12| ≤ α2
1r2‖ζ̇‖2 ≤ [−2|H | + 2c/ρ0]r2 + 2β1r.

The right-hand side is a quadratic function of r with negative quadratic terms. The
maximum value of this quadratic function is ( 1

2 )(2β1)
2/(2|H | − 2c/ρ0) = β2

1/|H | +
O(1/ρ0). Thus |J12| ≤ β2

1/|H | + O(1/ρ0).
Estimate (b): We have α3ξ ∧ ξ̇ = α3ξ ∧ V ⊥, |ξ ∧ V ⊥| = ρ|V ⊥| and α3ξ ∧ ξ̇ =

J − J12. Thus,

α3ρ|V ⊥| = |J − J12|
≤ |J | + |J12|.
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Now use estimate (a).
Estimate (c): We have ρ̇ := 〈ξ̂ , ξ̇〉, so that

ρ̈ =
〈

d
dt

ξ̂ , ξ̇

〉
+ 〈ξ̂ , ξ̈〉. (A.11)

We compute that 〈
d
dt

ξ̂ , ξ̇

〉
= − ρ̇2

ρ
+ ‖ξ̇2‖

ρ
= ‖V ⊥‖2/ρ

so that by estimate (b) ∣∣∣∣

〈
d
dt

ξ̂ , ξ̇

〉∣∣∣∣ ≤ c/ρ3. (A.12)

Now use Newton’s equations for ξ ,

α3ξ̈ = Uξ = −β3ξ/ρ3 + gξ ,

which yields

ξ̈ = −Mξ/ρ3 + 1
α3

gξ

because β3/α3 = M . Thus,

〈ξ̂ , ξ̈〉 = −M/ρ2 + 1
α3

〈ξ̂ , gξ 〉. (A.13)

Using the estimate (A.10) on the gradient gξ of g, with equations (A.11), (A.12) and
(A.13), we get the desired result |ρ̈ + M/ρ2| ≤ c/ρ3. !

As a general reference for some of the inequalities appearing here, and many others, see
Marchal [4, especially equations (885)–(894)].

REFERENCES

[1] T. Fujiwara, H. Fukuda, A. Kameyama, H. Ozaki and M. Yamada. Synchronised similar triangles. J. Phys.
A: Math. Gen. 37 (2004), 10571–10584.
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