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Abstract. The three-body problem defines dynamics on the space of triangles in the plane.
The shape sphere is the moduli space of oriented similarity classes of planar triangles and
lies inside shape space, a Euclidean three-space parameterizing oriented congruence classes
of triangles. We derive and investigate the geometry and dynamics induced on these spaces by
the three-body problem. We present two theorems concerning the three-body problem whose
discovery was made through the shape space perspective.

1. INTRODUCTION. In 1667 Newton [21] posed the three-body problem. Central
questions within the problem remain open today despite penetrating work over the
centuries by many of our most celebrated mathematicians, including Euler, Lagrange,
Laplace, Legendre, d’Alembert, Clairaut, Delanay, Poincare, Birkhoff, Seigel, Kol-
mogorov, Arnol’d, Moser, and Smale.

The problem, in its crudest form, asks us to solve the system of Ordinary Differ-
ential Equations [ODEs], Equations (1), governing the motion of three point masses
moving in space under the sole influence of each other’s mutual gravitational attrac-
tions. The masses form the vertices of a triangle, so we can think of the problem as
one of moving triangles. According to the relativity principle of Galilieo, the laws of
physics are invariant under isometries. Isometries are the congruences of Euclid. Two
triangles are congruent if and only if the lengths of their three sides are equal. Is there
a system of second order ODEs in the lengths of the three sides that describes the
three-body problem?

All attempts to write down such a system of ODEs break down at collinear triangles.
Instead, we will derive three alternative variables to the side lengths of a triangle and
show that there is such a system of ODEs in these variables. Unlike the side lengths,
the alternative variables are not invariant under all congruences but, rather, only un-
der “oriented congruences.” Two triangles are “oriented congruent” if a composition
of a translation and rotation takes one to the other. Oriented congruence excludes re-
flections. We define shape space to be the space of oriented congruence classes of
planar triangles. Shape space is homeomorphic to R

3 and is parameterized by the vec-
tor (w1, w2, w3) formed by these three alternative variables. We derive second order
ODEs (Equation (54)) for these alternative variables that encode a special case of the
three-body problem.

Shape space is homeomorphic to R
3 but it is not isometric to R

3. The shape space
metric is not Euclidean. Nevertheless the shape space metric does enjoy spherical sym-
metry, which means that at the heart of shape space geometry is a two-dimensional
sphere. We call this sphere the shape sphere. Its points represent oriented similarity
classes of planar triangles (Figure 2). The purpose of this article is to describe the ge-
ometry of this sphere, how it relates to the three-body problem, and how this relation
yields new insights into this age-old problem.
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The shape sphere played a central role in our work on the three-body problem [5].
The shape sphere appeared previously in the three-body problem [17], and in statistics
[15].

2. THREE-BODY DYNAMICS. Three point masses of magnitude m1, m2, m3

move in space R
3. Their positions as a function of time t are denoted by the posi-

tion vectors q1(t), q2(t), q3(t) ∈ R
3. The three-body equations derived by Newton

are

m1q̈1 = F21 + F31,

m2q̈2 = F12 + F32,

m3q̈3 = F23 + F13.

(1)

We sometimes refer to the equations themselves as “the three-body problem.” On the

left-hand side of these equations the double dots mean two time derivatives: q̈ = d2q
dt2 .

And below, a single dot over a variable will mean one time derivative. On the right-
hand side of Equations (1)

Fi j = Gmi m j
qi − q j

r 3
i j

, where ri j = |qi − q j | (2)

is the force exerted by mass i on mass j . The constant G is Newton’s gravitational con-
stant and is physically needed to make dimensions match up. Being mathematicians,
we set G = 1. The mi are positive numbers. The Equations (1) are a system of second
order equations in nine variables, the nine components of q(t) = (q1(t), q2(t), q3(t)) ∈
R

3 ⊕ R
3 ⊕ R

3.
By design, the Equations (1) are invariant under the isometry group of space, that

is, the group of transformations of R3 generated by

q �→q + c: translations, (3)

q �→ Rq : rotations, (4)

q �→ q̄ : reflections. (5)

In the first equation, c ∈ R
3 is a translation vector. In the second equation, R is a

rotation matrix: a three-by-three real matrix satisfying R RT = I d and det(R) = 1. In
the third equation, q �→ q̄ is any reflection. (The full symmetry group of the Equations
(1) is the Galilean group acting on space-time R

3 ⊕ R, which strictly contains the
group of isometries of space.)

Exercise 1. (A) Verify that the ODEs (1) are invariant under translation (3) as follows.
Let F : R

3 → R
3 be a translation: F(q) = q + c. Verify that if q(t)

= (q1(t), q2(t), q3(t)) satisfies the Equations (1) then so does its translation: F(q(t))
:= (F(q1(t)), F(q2(t)), F(q3(t))).

(B) Formulate what it means for the Equations (1) to be invariant under rotations.
Verify invariance.

(C) [Scaling]. Consider the space-time scaling transformation: (q, t) �→ (λq, λat),
λ > 0 that induces the action on curves: qi(t) �→ λqi (λ

−at). Prove that the Equations
(1) are invariant under this scaling transformation if and only if a = 3/2. Compare this
scaling transformation with Kepler’s third law.
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(D) [Planar subproblem] Let P ⊂ R
3 be a plane and q(t) a solution to the Equations

(1) such that at some instant t0 all three bodies lie in P while all three velocities are
tangent to P . Show that all three bodies lie in P for all time t in the domain of the
solution.

3. COMPLEX VARIABLES AND MASS METRIC. Exercise 1 (D) asserts under
certain conditions the spatial three-body problem restricts to a plane, thus defining the
“planar three-body problem.” Choose xy axes for this plane P and then identify P
with the complex number line C by sending a point (x, y) ∈ P to the complex number
q = x + iy ∈ C. The advantage of complex notation is that rotation corresponds to
multiplication by a complex number of unit modulus. In other words, we may replace
the matrix formula (Equation (4)) for rotation by

q �→ uq, u = exp(iθ)

where u is a unit complex number so that θ is real. The number θ is the radian measure
of the amount of rotation. The set u of all unit complex numbers forms the circle group,
denoted S1.

We are now in the realm of Euclidean plane geometry. The locations qi ∈ C of the
three masses form the vertices of a Euclidean triangle.

Definition (Configuration space; located triangles). A planar triangle is represented
by the vector

q = (q1, q2, q3) ∈ C
3

whose components are the locations of the three vertices. The three-dimensional com-
plex vector space C3 of all such three-vectors q is called the space of located triangles,
or the configuration space for the three-body problem.

Definition (Mass metric). The mass metric on configuration space is the Hermitian
inner product

〈v, w〉 = m1v̄1w1 + m2v̄2w2 + m3v̄3w3. (6)

Using the mass metric, we have that

K (q̇) = 1

2
〈q̇, q̇〉 := 1

2
�mi |q̇i |2 (7)

is the usual kinetic energy of a motion. Here, q̇ = (q̇1, q̇2, q̇3) ∈ C
3 is the vector repre-

senting the velocities of the three masses. We also consider the gravitational potential
energy

V (q) = −
{

m1m2

r12
+ m2m3

r23
+ m1m3

r13

}
. (8)

Then

H(q, q̇) = K (q̇) + V (q), (9)
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is the energy of a motion q(t). In addition to the energy H , we will make use of several
other important functions. The moment of inertia

I (q) = 〈q, q〉 = �mi |qi |2 (10)

measures the overall size of a located triangle. The angular momentum

J = I m(〈q, q̇〉) = m1q1 ∧ q̇1 + m2q2 ∧ q̇2 + m3q2 ∧ q̇2, (11)

measures the instantaneous spin of a triangle. The linear momentum

P = 〈q̇, 1〉 = �mi q̇i ∈ C (12)

measures the instantaneous rate of translation of the entire three-body system. The
center of mass of the located triangle q is

qcm = 〈q, 1〉/〈1, 1〉 = (m1q1 + m2q2 + m3q3)/(m1 + m2 + m3) ∈ C. (13)

In the formula for angular momentum, we used the notation

(x + iy) ∧ (u + iv) = det

(
x y
u v

)
= xv − yu, (14)

which is also equal to I m(z̄w) for z = x + iy, w = u + iv ∈ C. This wedge operation
z, w �→ z ∧ w is the planar version of the cross product. If × denotes the usual cross
product of vectors in R

3, then (x, y, 0) × (u, v, 0) = (0, 0, z ∧ w) so that J is the
third component of the usual angular momentum of physics. In the formulae for linear
momentum and center of mass, we used the constant vector 1 = (1, 1, 1) ∈ C

3, which
generates translations.

Definition (Phase space). The phase space of the planar three-body problem is
C

3 × C
3. Its points are written (q, q̇). The first vector q ∈ C

3 represents the located
triangle, that is to say, the positions of its three vertices. The second vector q̇ represents
the velocities of these three vertices.

H and J are functions on phase space. I and qcm are also functions on phase space
but functions that are independent of q̇ and so can be thought of as functions on con-
figuration space alone. The linear momentum is another function on phase space but
now one that is independent of position q.

Definition. A function f : C3 × C
3 → R or F : C3 × C

3 → C is conserved if its
value is constant along any solution q(t) to the system of ODEs (1). (Different solu-
tions typically yield different values for this constant.)

Proposition 1 (Conservation Laws). The energy H, the angular momentum J , and
the linear momentum P are conserved.

The mass metric formalism yields a simple proof of this proposition. A complex
vector space such as C3 becomes a real vector space when we allow only scalar multi-
plication by real scalars. The real part 〈·, ·〉R of the Hermitian mass inner product 〈·, ·〉
of Equation (6) is a real inner product on C

3. A real inner product induces a gradient
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operator that sends smooth real-valued functions W : C3 → R to smooth real vector
fields ∇W : C3 → C

3 according to the rule

d

dε
W (q + εh)|ε=0 = 〈∇W (q), h〉R. (15)

In terms of real linear orthogonal (not necessarily orthonormal!) coordinates ξ j , j
= 1, . . . , 6 for C3, the gradient ∇W is a variation of the usual coordinate formula from
vector calculus. Namely, (∇W ) j = 1

c j

∂W
∂ξ j where c j = 〈E j , E j 〉. Here, the linear coor-

dinates ξ j are related to an orthogonal basis E j for C3 as per usual: q = �6
j=1ξ

j E j .
We will take the ξ j to come in pairs (x j , y j ) as per q j = x j + iy j so that the c j are
then equal to the m j in pairs, and we get the components of our gradient: (∇V ) j

= 1
m j

(
∂V
∂x j

, ∂V
∂y j

) = 1
m j

(
∂V
∂x j

+ i ∂V
∂y j

)
.

Exercise 2. (A) Show that Newton’s Equations (1) can be rewritten

q̈ = −∇V (q) where ∇ = gradient for the mass metric. (16)

(B) Use (A) to prove Proposition 1.
(C) Show that if P = 0 and qcm(0) = 0, then qcm(t) = 0 for all time t .
(D) The moment of inertia I (t) = I (q(t)) evolves along a solution to Equations (1)

according to the Lagrange–Jacobi equation:

Ï = 4H − 2V (q).

4. THE TWO-BODY LIMIT. KEPLER’S PROBLEM. Set m3 = 0 or q3 = ∞ to
kill the third equation of (1) and eliminate the variable q3. The first two equations
of (1) remain but now with F31 = F32 = 0. These remaining two equations form the
“two-body problem.” Set

λ = q1 − q2 ∈ C,

divide the first equation of (1) by m1 and the second equation of (1) by m2, and subtract
it from the first to derive the single equation

λ̈ = −c
λ

|λ|3 , (17)

with c = m1 + m2. This equation (for any c > 0) is often called “Kepler’s problem,”
although Kepler did not write down any differential equations. Its solutions are the
famous conics of Kepler’s first law, parameterized according to Kepler’s second law.
The quantity

E = 1

2
|λ̇|2 − c

|λ|

is the associated conserved energy. A solution λ(t) to Kepler’s problem is bounded if
and only if its energy E is negative. In this case, the curve described by λ is a circle or
ellipse with one focus at λ = 0.
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5. SOLUTIONS OF LAGRANGE AND JACOBI. Euler [6], followed quickly by
Lagrange [16], wrote down the only solutions to the three-body problem for which we
have explicit analytic expressions. Lagrange’s solutions are depicted in Figure 1. To
describe these solutions, note that we can rotate and scale a triangle by multiplying its
vector q by a complex scalar

q �→ λq, λ ∈ C
∗ := C \ 0 = nonzero complex numbers.

2

1

1 2

–1

–1–21 2–1–2

–2

2

1

–1

–2

Figure 1. Lagrange solutions: The three bodies form an equilateral triangle at each instant. In the first figure,
the triangle rotates about its center of mass so each individual orbit is a circle. In the second, the bodies travel
on homothetic ellipses.

The magnitude |λ| is the amount by which the triangle is scaled. The argument θ

= Arg(λ) is the amount by which the triangle is rotated. Now suppose that a solution
evolves solely by rotation and scaling

q(t) = λ(t)q0, q0 �= 0, λ(t) ∈ C
∗ := C \ {0}. (18)

Exercise 3. Show that the expression (18) solves Newton’s Equations (1) if and only
if the center of mass of q0 is zero and q0 and λ(t) solve the two equations

λ̈ = −c
λ

|λ|3 and (19)

c

2
∇ I (q0) = ∇V (q0) (20)

where c = −V (q0)/I (q0).
Hint: Use form (16) of Newton’s equation, the equivariance identity ∇V (λq)

= λ

|λ|3 ∇V (q), and Euler’s identity for homogeneous functions.

Equation (19) is the “Kepler problem” of the previous section. The second equation
(20) is a Lagrange-multiplier-type equation asserting that q0 is a critical point of the
function U , constrained to the sphere I = I (q0). Modulo rotations and translations,
there are exactly five such critical points, corresponding to the three collinear solutions
found by Euler and the two equilateral solutions of Lagrange. They are represented by
five points on the shape sphere (see Figure 2).
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6. SHAPE SPACE. MAIN THEOREM. We seek reduced equations: ODEs en-
coding the three-body problem as dynamics on the space of congruence classes of
triangles. Elementary geometry asserts that this space is three-dimensional with the
triangle’s side lengths serving as coordinates. So we expect ODEs in these lengths.
However, the collinear triangles form the boundary of the space of congruence classes
of triangles, and as a result, any ODE in side lengths alone will exhibit a singular-
ity along the space of collinear triangles. But Newton’s Equations (1) exhibit no such
problem. The earth, moon, and sun line up without creating singularities in their dy-
namics. In order to achieve what we seek, we must strengthen the notion of congruence
by excluding reflections as being allowed congruences.

Definition. The group G of rigid motions of the plane is the group of orientation-
preserving isometries of the plane.

Every element of G is a composition of a rotation and a translation.

Definition. Two planar triangles (possibly degenerate) are “oriented congruent” if
there is a rigid motion taking one triangle to the other.

Definition (Shape Space). Shape space is the space of oriented congruence classes of
triangles, endowed with the quotient metric.

Replacing the equivalence relation of congruence by oriented congruence removes the
boundary from the resulting space of equivalence classes (see Theorem 1 below).

Some words are in order regarding the meaning of “quotient metric” in the defini-
tion of shape space. The mass metric gives our space C

3 of located triangles a norm
‖ · ‖ under which the distance between located triangles q, q′ is ‖q − q′‖. G acts on C

3

by isometries relative to this distance. Denote the result of applying g ∈ G to q ∈ C
3

by gq. We define the shape space metric d by

d([q], [q′]) = inf
g1,g2∈G

‖g1q − g2q′‖. (21)

Here, [q] and [q′] denote the “shapes,” or oriented congruence classes, of the located
triangles q and q′ ∈ C

3.

Theorem 1 (Iwai [13]; references therein). (See Figure 2.) Shape space is homeo-
morphic to R

3. The quotient map from the space of located triangles to shape space is
realized by a map π : C3 → R

3 that is the composition of a complex linear projection
πtrC

3 → C
2 (Equations (24)) and a real quadratic homogeneous map π rot : C2 → R

3

(Equation (31)). The map π enjoys the following properties.

(A) Two triangles q, q′ ∈ C
3 are oriented congruent if and only if π(q) = π(q′).

(B) π is onto.

(C) π projects the triple collision locus onto the origin.

(D) π projects the locus of collinear triangles onto the plane w3 = 0 where
(w1, w2, w3) are standard linear coordinates on R

3. Moreover, w3 is the
signed area of the corresponding triangle, up to a mass-dependent constant.

(E) Let σ : R3 → R
3 be the reflection across the collinear plane: σ(w1, w2, w3)

= (w1, w2, −w3). Then the two triangles q1, q2 ∈ C
3 are congruent if and only

if either π(q) = π(q′). or π(q) = σ(π(q′)).

April 2015] THREE-BODY 305



(F) w2
1 + w2

2 + w2
3 = ( 1

2 I )2 where I = 〈q, q〉 (Equation (10).

(G) R = √
I is the shape space distance to triple collision.

Remark. D and E of the theorem say that the space of congruence classes of triangles
can be identified with the closed half space w3 ≥ 0 of R3 and that the plane w3 = 0
of collinear triangles forms its boundary, as claimed at the beginning of this section.
Iwai [13] was, to my knowledge, the first to explicitly state something along the lines
of this theorem. It has been independently discovered since then, and I would wager
was known before Iwai also.

The metric and the shape sphere. Although shape space is homeomorphic to R
3, it

is not isometric to R
3: Shape space geometry is not Euclidean. However, the geometry

does have spherical symmetry. Each sphere centered at triple collision is isometric to
the standard sphere, up to a scale factor. We identify these spheres with the shape
sphere.

Add scalings in to the group G of rigid motions and we get the group of orientation-
preserving similarities whose elements are compositions of rotations, translations, and
scalings.

Definition. Two planar triangles are “oriented similar” if there is an orientation-
preserving similarity taking one to the other.

Definition. The shape sphere is the resulting quotient space of the space of located
triangles C3 \ C1 after the triple collisions C1 have been deleted.

In other words, the shape sphere is the space of oriented similarity classes of planar
triangles where we do not allow all three vertices of the triangle to coincide. Now,

Figure 2. The shape sphere, centered on triple collision.
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π(λq) = λ2π(q) for λ real. It follows that the shape sphere can be realized as the
space of rays through the origin in R

3. This space of rays can in turn be identified
with the unit sphere ‖w‖ = 1 within shape space. Various special types of triangles,
including the five families of solutions of Euler and Lagrange, are encoded on this
sphere as indicated in Figure 2.

7. FORMING THE QUOTIENT. PROVING THEOREM 1. A vector in C
3 rep-

resents a located triangle with its three components representing the triangle’s three
vertices. Translation of a triangle q = (q1, q2, q3) ∈ C

3 by c ∈ C sends q to the lo-
cated triangle q + c1, where 1 = (1, 1, 1). Rotation by θ radians about the plane’s
origin sends q to eiθq = (eiθq1, eiθq2, eiθq3). Scaling the plane by a positive factor
ρ corresponds to multiplication by the real number ρ and so sends the triangle q to
ρq = (ρq1, ρq2, ρq3). See Figure 3.

translate

scale
rotate

Figure 3. Translating, rotating, and scaling a triangle.

Shape space is the quotient of C3 by the action of the group G generated by trans-
lation and rotation. We form this quotient in two steps, translation then rotation.

Dividing by translations. We divide by translations by using the isomorphism

C
3/C1 ∼= C1⊥,

which is a special case of

E/S ∼= S⊥

valid for any finite-dimensional complex vector space E with a Hermitian inner prod-
uct, and any complex linear subspace S ⊂ E. This isomorphism is a metric isomor-
phism. Here, E/S inherits a Hermitian inner product whose distance is given by Equa-
tion (21) with the group G replaced by S acting on E by translation and with the
elements qi in that formula being elements of E. In the isomorphism, the metric we
use on S⊥ is the restriction of the metric from E.

In our situation, S is the span of 1. Define

C
2
0 := 1⊥ = {q : m1q1 + m2q2 + m3q3 = 0}

to be the set of planar three-body configurations whose center of mass is at the origin.
This two-dimensional complex space represents the quotient space of C3 by transla-
tions.
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Jacobi coordinates: Diagonalizing the mass metric. We will need coordinates that
diagonalize the restriction of the mass metric to C

2
0. The quadratic form associated to

the mass metric is the moment of inertia I = 〈q, q〉 of Equation (10). Thus, we look
for coordinates Z1, Z2 on C

2
0 such that

I = |Z1|2 + |Z2|2 whenever q ⊥ 1. (22)

These coordinates are traditionally attributed to Jacobi, despite having been found ear-
lier and explained more clearly by Lagrange [16], p. 292.

Exercise 4. Show that 1 = (1, 1, 1), E1 = ( 1
m1

, − 1
m2

, 0), and E2 = ( −1
m1+m2

, −1
m1+m2

, 1
m3

)

form an orthogonal (not orthonormal) basis relative to the mass metric on C
3.

The corresponding coordinates 〈q, 1〉, 〈q, E1〉, 〈q, E2〉 are orthogonal coordinates
for C3.

Definition. The coordinates 〈q, E1〉 = q1 − q2 := Q12 and 〈q, E2〉 = q3 − m1q1+m2q2
m1+m2

are Jacobi coordinates for C2
0 := {q ∈ C

3 : qcm = 0}.
Jacobi coordinates are indicated in Figure 4.

1

2

3

Figure 4. Jacobi vectors.

Normalizing the Jacobi coordinates yields our desired unitary diagonalizing coor-
dinates Zi = 〈q, ei 〉, i = 1, 2 for C2

0 where ei = Ei/‖Ei‖. We compute

Z1 = μ1(q1 − q2), Z2 = μ2

(
q3 − m1q1 + m2q2

m1 + m2

)
(23)

with 1
μ2

1
= ‖E1‖2 = 1

m1
+ 1

m2
and 1

μ2
2

= ‖E2‖2 = 1
m3

+ 1
m1+m2

. These normalized

Jacobi coordinates define the complex linear projection

πtr : C3 → C
2 πtr (q1, q2, q3) = (Z1, Z2), (24)

which realizes the metric quotient of C3 by translations.

Dividing by rotations. It remains to divide C
2
0 by the action of the rotation group

S1. A rotation by θ radians acts on the triangle’s vertices q j by q j �→ eiθq j and so it
acts on the normalized Jacobi coordinates by (Z1, Z2) �→ (eiθ Z1, eiθ Z2). We want to
understand the resulting equivalence classes under rotation.

The functions Zi Z̄ j , i, j = 1, 2 are invariant under rotation. Put these functions into
a 2 by 2 Hermitian matrix

�(Z1, Z2) =
( |Z1|2 Z1 Z̄2

Z̄1 Z2 |Z2|2
)

= A, (25)
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or

�(Z) = ZT Z̄ (26)

where Z = (Z1, Z2),

ZT =
(

Z1

Z2

)
, and Z̄ = (Z̄1, Z̄2).

From the factorization (26), we see that �(Z)ZT = (|Z1|2 + |Z2|2)ZT while �(Z)WT

= 0 for W ⊥ Z. Thus, �(Z1, Z2) is the matrix of orthogonal projection onto the com-
plex line spanned by Z, multiplied by ‖Z‖2. Now, two nonzero vectors Z, U are related
by rotation if and only if they span the same complex line and their lengths are equal.
It follows that the image of � represents the quotient space C

2/S1, and � can be con-
sidered as the quotient map. We have just seen that the image of � consists of the
Hermitian matrices of rank 1 whose nonzero eigenvalue is positive (corresponding to
‖Z‖2), together with the zero matrix (corresponding to Z = 0). In terms of the deter-
minant and trace, these conditions on A are det(A) = 0 and tr(A) ≥ 0. Coordinatize
Hermitian matrices as

A =
(

w4 + w1 w2 + iw3

w2 − iw3 w4 − w1

)
for w j real, (27)

so that det(A) = w2
4 − w2

1 − w2
2 − w2

3 and tr(A) = w4. The discussion we have just
had proves the following.

Proposition 2. The image of the map � is the cone of 2 by 2 Hermitian matrices A
(Equation (27)) satisfying

w2
4 − w2

1 − w2
2 − w2

3 = 0 (28)

and

w4 ≥ 0. (29)

This cone realizes the quotient C2/S1 with � implementing the quotient map C
2 →

C
2/S1.

Now, map the real four-dimensional space of Hermitian matrices onto R
3 by pro-

jecting out the trace w4

(w1, w2, w3, w4) �→ pr(w1, w2, w3, w4) = (w1, w2, w3).

The restriction of this linear projection to the cone given by the Equations (28) and
(29) is a homeomorphism onto R

3. Indeed solve the cone equations for w4 to find

w4 = +
√

w2
1 + w2

2 + w2
3, and hence, the inverse of the restricted projection is

(w1, w2, w3) �→ (w1, w2, w3,

√
w2

1 + w2
2 + w2

3).

We have proved the following.
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Proposition 3. The map

π rot = pr ◦ � : C2 → R
3, (30)

given by

π rot(Z1, Z2) =
(

1

2
(|Z1|2 − |Z2|2), Re(Z1 Z̄2), I m(Z1 Z̄2)

)
= (w1, w2, w3), (31)

realizes R3 as the quotient space of C2 by the rotation group S1.

Remark. The restriction of the map (30) to the sphere w4 = 1 is the famous Hopf
map from the three sphere to the two sphere.

Proof of Theorem 1. We form π = π rot ◦ πtr by composing the linear projection πtr

of Equation (24) with the map π rot immediately above. The first map realizes the
quotient by translations and the second realizes the quotient by rotations, so together
they realize the full quotient by the group of rigid motions. This establishes parts (A)
and (B) of the theorem. Part (C), that the only triangles sent to 0 ∈ R

3 are the triple
collision triangles q = (q, q, q), follows directly from the formulae for π rot and πtr .
Indeed, the only point of C2 mapped to 0 ∈ R

3 by π rot is the origin 0, and the only
points of C3 mapped to 0 ∈ C

2 by πtr are the triple collision triangles.
We verify the second half of part (D), which says w3 is a constant times the ori-

ented area of the triangle. We have w3 = −Z1 ∧ Z2. The wedge of Equation (14)
represents the oriented area of the parallelogram whose edges are z = x + iy and
w = u + iv. Thus, the oriented area of our triangle is 1

2 (Q21) ∧ (Q31) where we write
Qi j = qi − q j for the edge connecting vertex j to vertex i. We have Z1 = μ1 Q12 and
Z2 = μ2(p1 Q31 + p2 Q32) where p1 = m1/(m1 + m2) and p2 = m2/(m1 + m2) so
that p1 + p2 = 1. Use Q12 + Q23 + Q31 = 0 and Qi j = −Q ji to compute that Z2

= μ2(Q31 − p2 Q12). Now, the wedge operation is skew symmetric: Q12 ∧ Q12 = 0. It
follows that w3 = −μ1μ2

1
2 Q12 ∧ Q31 = +μ1μ2

1
2 Q21 ∧ Q31 as desired. The first half

of part (D) follows immediately from this formula for w3.
To establish part (E) regarding the operation of reflection on triangles, observe that

we can reflect triangle q by changing all vertices qi to q̄i , which in turn changes
(Z1, Z2) to its conjugate vector (Z̄1, Z̄2). This conjugation operation leaves w1 and
w2 unchanged and changes w3 to −w3; the oriented area flips sign.

Part (F) is a computation. Observe from the Equations (25, 27) that w4 = 1
2 I and

recall the cone condition Equation (28): w2
4 = w2

1 + w2
2 + w2

3. For part (G), see the
paragraph immediately following Theorem 3 below.

8. MECHANICS VIA LAGRANGIANS. One of our goals is to write out reduced
equations that encode Newton’s Equations (1) as ODEs on shape space. The strategy
for achieving this goal is to push the least action principle for the three-body problem
down from the space C3 of located triangles to our shape space R3. We begin by stating
the least action principle.

A classical mechanical system can be encoded by its Lagrangian L ([1] or [8]),

L = K − V, (32)
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the difference of its kinetic (K ) and potential (V ) energies. (The energy is the sum
K + V .) Integrating the Lagrangian over a path c in the configuration space Q of the
mechanical system defines that path’s action

A[c] =
∫

c
Ldt =

∫ b

a
L(c(t), ċ(t))dt.

In the last expression, the time interval [a, b] parameterizes c so that c : [a, b] → Q.
The principle of least action asserts that the curve c satisfies Newton’s equations if
and only if c minimizes A among all paths γ : [a, b] → Q for which c(a) = γ (a) and
c(b) = γ (b).

The principle is not a theorem! It is a guiding principle. To turn the principle into a
theorem for the three-body problem requires careful wording and more hypotheses.

Theorem 2. If a curve c : [0, T ] → C
3 is collision-free on the open interval (0, T )

and minimizes the action among all curves sharing its endpoints c(0) and c(T ), then
that curve solves Newton’s equations on (0, T ). Conversely, if c satisfies Newton’s
equations, then c is a critical point (but not necessarily a minimizer) of the action
functional restricted to all curves sharing its endpoints.

Remark. When we say that “c is a critical point” of the action, we mean that the
derivative of the action is zero at c. How do we take the derivative of a function
with respect to a curve? The calculus of variations is a wide-ranging subject that
makes sense of such derivatives. Its roots go back to Leibnitz, Euler, Maupertuis, and
Lagrange. See [12] for some of the fascinating history of the subject.

A theorem analogous to theorem 2 holds in situations more general than the three-
body problem. For example, we could take Q = R

n , K the squared norm associated to
any inner product on R

n , and V : Rn → R any smooth function. Then the Lagrangian
L(x, v) = K (v) − V (x) is a function on the phase space Rn ×R

n . Newton’s equations
are the second order differential equation

c̈ = −∇V (c) (33)

for curves c on R
n and a principle of least action holds for them. In these equations, ∇

is the gradient associated to the kinetic energy K , as described in analogy to Equation
(15). More generally, we could take Q to be any Riemannian manifold, K the associ-
ated kinetic energy 1

2�gi j (q)viv j = 1
2 〈v, v〉q , and V : Q → R any smooth function.

Then the ∇ of Newton’s equations above is the covariant derivative, and the second
derivative of c becomes the second covariant derivative D2c/dt2 of the curve.

Euler–Lagrange equations. Let ξ a, a = 1, . . . , n be coordinates on our configura-
tion space Q. Then the Lagrangian is a function of the ξ a and its formal time deriva-
tives ξ̇ a:

L = L(ξ 1, . . . , ξ n, ξ̇ 1, . . . , ξ̇ n).

The Euler–Lagrange equations,

d

dt

(
∂L

∂ξ̇ a

)
= ∂L

∂ξ a
(34)
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are ODEs that a path ξ a = ξ a(t) must satisfy if it minimizes the action. They are
Newton’s equations expressed in the new coordinates ξa .

Words are in order regarding the left-hand side of the EL (or Euler–Lagrange) Equa-
tions (34). We compute ∂L

∂ξ̇a by treating ξ a and ξ̇ a as independent variables. The re-

sulting ∂L
∂ξ̇a is now a function of the variables ξ a and ξ̇ a . We then compute d

dt (
∂L
∂ξ̇a ) by

formally replacing the independent variables ξ a and ξ̇ a in ∂L
∂ξ̇a by an alleged curve ξ a(t)

and its time derivatives ξ̇ a(t) so as to get a function of time that we finally differentiate
formally using the chain rule.

Exercise 5. Suppose that K = 1
2�gabξ̇

a ξ̇ b and that V = V (ξ 1, . . . , ξ n). Verify that
Newton’s Equations (16) are equivalent to the Euler–Lagrange equations with respect
to the coordinates ξ a .

One of the beauties of the action principle is it is coordinate independent. If a path
minimizes the action, then it does not matter what coordinate system we use to ex-
press that path: The path still minimizes the action and so satisfies the Euler–Lagrange
equations in that coordinate system.

Exercise 6. For Q = R
2 and L = 1

2 (ẋ2 + ẏ2) the EL equations are ODEs whose solu-
tions are straight lines travelled at constant speed. Rewrite L in polar coordinates r, θ
and write down the corresponding Euler–Lagrange equations, thus deriving ODEs for
straight lines in polar coordinates.

Reducing the least action principle. The curves competing in the least action prin-
ciple are subject to boundary conditions. In the principle as we stated it, the curves
connect two fixed points. Replace the fixed points by fixed oriented congruence classes
to get new boundary conditions. If we remember that an oriented congruence class is
represented by a point of shape space, we arrive at an action principle for shape space.

Shape space action principle. Fix two shapes w0, w1 in the shape space R
3. Sup-

pose that the curve q(t) ∈ C
3 for 0 ≤ t ≤ T minimizes the standard action (32) among

all curves in the space C3 of located triangles that join the corresponding oriented con-
gruence classes �0 = π−1(w0), �1 = π−1(w1) ⊂ C

3 in time T . Then we will say that
its projected curve w(t) = π(q(t)) ∈ R

3 minimizes the shape space action among all
curves connecting the endpoints w0, w1 in time T .

Consider an analogous change of boundary conditions for the simplest action func-
tional in the plane, the length functional. Instead of minimizing the length of curves
among all curves connecting two fixed points in the plane, replace the two points by
two concentric circles �0 and �1. We know that the minimizer will be a radial line
segment, perpendicular to both �0 and �1 at its endpoints. More generally, for a La-
grangian on R

n of the general form (32) , if we replace the fixed endpoint minimization
problem with the problem of minimizing the action among all curves connecting two
given subspaces �0, �1 ⊂ R

n , then we induce a derivative condition at the endpoints.
Namely extremal curves, in addition to satisfying the Euler–Lagrange equations, must
hit their targets orthogonally: ċ(0) ⊥ �0 at c(0) and ċ(T ) ⊥ �1 at c(T ). We call this
added condition “ first variation orthogonality.”

Returning to our situation, �0 = π−1(w0), �1 = π−1(w1) ⊂ C
3 = R

6. We will in-
terpret first variation orthogonality in mechanical terms. �0 is formed by applying
variable rigid motions g ∈ G to any single point q0 ∈ �0. Let g = g(t) be any smooth
path in G, and form the corresponding path g(t)q0 in �0. Differentiating this path and
then alternately taking g(t) to be a curve of translations or a curve of rotations, we see
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that the tangent space Tq0�0 to �0 at q0 is spanned by two subspaces, {ċ1, ċ ∈ C} for
translations and {i θ̇q0 : θ̇ ∈ R}

Tq0�0 = infinitesimal rigid motions (35)

= (translational) + (rotational) (36)

= spanC1 + spanR(iq0). (37)

The first variation orthogonality condition is thus the condition that our extremal
q(t) be orthogonal to both the translation and rotational spaces: 〈1, q̇(0)〉 = 0 and
〈i θ̇q(0), q̇(0)〉R = 0. But as we saw in the Equations (12, 11), these orthogonality
conditions are equivalent to the assertions that the linear and angular momentum are
zero at q0. (The inner product used for orthogonality is the real part of the Hermitian
mass inner product and I m(〈q0, q̇〉) = Re(〈iq0, q̇〉.) We summarize as follows.

Lemma 1. The curve q(t) in C
3 is orthogonal to the oriented congruence class

through q0 = q(0) if and only if its linear and angular momentum are zero at t = 0.
(See the Equations (12) and ( 11).)

Now, if the curve q(t) of this lemma is an extremal for our shape space action
principle, then it must satisfy the EL equations that are Newton’s equations. Since
linear and angular momentum are conserved for solutions to Newton’s equations, we
have that the linear and angular momentum are identically zero all along the curve.
Equivalently, if an extremal curve is orthogonal to the group orbit �0 through one of
its points q(0), then it is orthogonal to the group orbit �t through every one of its
points q(t). We have established the following.

Proposition 4. The extremals for the shape space action principle are precisely those
solutions to Newton’s equations whose linear and angular momentum are zero.

The proposition suggests a strategy for finding a Lagrangian Lshape on shape space
whose action minimization is equivalent the shape space action principle. Break up
kinetic energy into

K = translational part + rotational part + shape part. (38)

We have just agreed that the translation and rotational part of the kinetic energy must
be zero along our shape extremals corresponding to the fact that they are orthogonal to
G-orbits. Let us denote the last term, the shape term of the kinetic energy, as Kshape.
Thus,

Lshape = Kshape − V (39)

is the shape Lagrangian. It remains to express Kshape in terms of shape coordinates wi

and their time derivatives ẇi and V in terms of the wi .

Shape kinetic energy. The decomposition (38) applied to velocities is sometimes
called the “Saari decomposition” ([22], [23], [3] p.331).

q̇ = (translational part + rotational part ) + shape part. (40)

= Tq(Gq) ⊕ (Tq(Gq))⊥ (41)

= vertical ⊕ horizontal. (42)
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In the differential geometry of bundles, such a splitting of tangent vectors is known
as a “‘vertical-horizontal” splitting. The group directions Tq(Gq) form the “vertical
space.” The orthogonal complement Tq(Gq))⊥ to the vertical space forms the “hori-
zontal space.” This vertical-horizontal decomposition, which depends on the base point
q at which velocities are attached, is orthogonal and leads to the following.

Proposition 5. Suppose that the center of mass of our located triangle is zero. Then
the Saari decomposition of kinetic energy, Equations (38), is

K = 1

2

‖P‖2

M
+ 1

2

J 2

I
+ 1

2

‖ẇ‖2

I

where ẇ = d
dt π(q(t)), P = P(q̇), and J = J (q, q̇) are the linear and angular mo-

menta (Equation 11, 12). In particular,

Kshape = 1

2

‖ẇ‖2

I
where I = 2

√
‖w‖. (43)

Proof. A real basis for the two-dimensional translational part of the motion consists
of 1 and i1. A real basis for the one-dimensional rotational part is iq. The rotational
part is orthogonal to the translational part since the center of mass is 1

M 〈q, 1〉 and has
been set equal to zero. Hence, 1, i1, and iq is an orthogonal basis for the vertical part,
Tq(Gq). Normalize to get the real orthonormal basis

e1, e2, e3 = 1/
√

M, i1/
√

M, iq/
√

I , where M = 〈1, 1〉 = m1 + m2 + m3,

for the vertical space. Let q̇ ∈ C
3 be an arbitrary vector based at the located triangle

q ∈ C
3. Expand this vector out as an orthogonal direct sum to get a quantitative form

of the Saari decomposition Equations (42)

q̇ = 〈q̇, e1〉Re1 + 〈q̇, e2〉Re2 + 〈q̇, e3〉Re3 + (shape).

The first three terms form the vertical part of q̇ in Equation (42) while the final (shape)
part is, by definition, orthogonal to the first three terms and forms the horizontal part.
Squaring lengths and using the orthonormality of e1, e2, e3, we find that

〈q̇, q̇〉 = |P|2/M + J 2/I + shape2.

It remains to show that |shape|2 = ‖ẇ‖2

I . In other words, we need to show that

‖ẇ‖2 = ‖q‖2‖q̇‖2 if P(q̇) = 0, J (q, q̇) = 0 and ẇ = Dπq(q̇). (44)

To this end, write out the map π rot in real coordinates, using Z j = x j + iy j ,
Z = (Z1, Z2) = (x1, y1, x2, y2). We have π rot(x1, y1, x2, y2) = ( 1

2 (x2
1 + y2

1

− x2
2 − y2

2), x1x2 + y1 y2, x2 y1 − x1 y2). Compute the Jacobian

Dπ rot
Z =

⎛
⎝ x1 y1 −x2 −y2

x2 y2 x1 y1

−y2 x2 y1 −x1

⎞
⎠ .
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Set

L = Dπ rot
Z , Dπq = L ◦ π tr .

In the last equality, π denotes the quotient map of Theorem 1, and we used the fact
that π = π rot ◦ πtr with πtr linear. The three rows of L are orthogonal and have length
‖Z‖2 = x2

1 + y2
1 + x2

2 + y2
2 . Now, q ∈ C

2
0 so that ‖Z‖2 = ‖q‖2 and πtr is a linear isom-

etry of C2
0 to C

2. It follows that

L LT = ‖q‖2 I d = Dπq Dπ T
q .

The kernel of Dπ = Dπq is the vertical space, the span of e1, e2, e3, since π is invari-
ant under rotations and translations. Thus, the image of Dπ T is the horizontal space,
which is the orthogonal complement to e1, e2, e3 and is the space called “(shape)”
above. Consequently, any vector q̇ of the form required in Equation (44) can be writ-
ten q̇ = Dπ T v for some v ∈ R

3. Thus,

‖q̇‖2 = 〈Dπ T v, Dπ T v〉 (45)

= 〈v, Dπ Dπ T v〉 (46)

= 〈v, ‖q‖2v〉 (47)

= ‖q‖2‖v‖2. (48)

Moreover, ẇ = Dπ(q̇) so that ẇ = Dπ Dπ T (v) = ‖q‖2v. We get that ‖ẇ‖2

= ‖q‖4‖v‖2 = ‖q‖2‖q̇‖2. Thus, ‖q̇‖2 = ‖ẇ‖2/‖q‖2. Finally, use ‖q‖2 = I and
I = 2

√‖w‖ ((F) of Theorem 1).

9. SHAPE SPACE METRIC.

Definition (Shape space metric). The shape space metric is twice the shape space
kinetic energy Kshape, when viewed as a Riemannian metric on shape space.

We saw in the previous proposition that the shape space metric is given by

ds2
shape = dw2

1 + dw2
2 + dw2

3

2
√

w2
1 + w2

2 + w2
3

. (49)

Define the length 
 of a path c in shape space to be 
(c) = ∫
c dsshape := ∫ b

a

√
2Kshapedt .

Define the distance between two points of shape space to be the infinum of the lengths
of all paths joining the two points. In other words, the shape space length is the action
relative to the Lagrangian

√
2Kshape, and shape space distance between two points is

realized by a length-minimizing curve joining them. We call such a length-minimizing
curve a geodesic.

Recall the Cauchy–Schwartz inequality.
∫

f (t)g(t)dt ≤
√∫

f (t)2dt
√∫

g(t)2dt

with equality if and only if f (t) = cg(t) (a.e.), with c a constant. Applied to

f = 1, g(t) = √
2Kshape(t), we get 
(γ ) ≤ √

b − a
√

2
∫

Kshapedt with equality if
and only if Kshape is constant along the curve γ . Reparameterizing a curve γ does not
change its length, and we can always parameterize γ so that its square speed 2Kshape is
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constant. It follows from Cauchy–Schwartz that the curves that minimize
∫

γ
Kshapedt

are precisely the constant speed geodesics. The shape space action principle holds just
as well for K in place of K − V , and the reduced Lagrangian for K is Kshape. The
geodesics for K are straight lines in C

3. Putting together these observations, we have
proved the assertions of the first two sentences of the next theorem.

Theorem 3. The distance function defined by the shape space metric agrees with the
shape space distance of Equation (21) . Its geodesics are the projections by π : C3 →
R

3 of horizontal lines in C
3. Each plane � : Aw1 + Bw2 + Cw3 = 0 through the

origin is totally geodesic: A geodesic that starts on � initially tangent to �, lies com-
pletely in the plane �. The restriction of the Riemannian metric to such a plane �,
when expressed in standard Euclidean polar coordinates (r, θ) on that plane, has the
form

ds2
shape|� = dr 2 + 1

4
r 2dθ2.

In order to finish the proof of this theorem, let 
(t) = q + tv be a horizontal line
passing through the point q ∈ C

2
0 ⊂ C

3, q �= 0 with horizontal tangent vector v. There
are two possibilities for v: Either v is a multiple of q or v is linearly independent from
q. In the first case, we may assume that v = q is the radial vector. Then 
 is a radial
line and π(
) is the ray connecting the triple collision point 0 to w = π(q) (traversed
twice). The distance from 0 to w along this ray is the radial variable

r = dist(0, w) = ‖q‖ =
√

I =
√

2‖w‖.
In the second case, q and v span a real horizontal two-plane P in C

3 that passes through
0 and contains the line 
. One computes that the projection � := π(P) ⊂ R

3 is a plane
(relative to the coordinates wi ) passing through 0. However, the projection π(
) is not
a line (relative to the linear coordinates wi )!

We can understand the geodesic π(
) in shape space by understanding the restric-
tion ds2

shape|� of the shape space metric to the plane π(P). Here is what we know so
far about this metric. Radial lines are geodesics. The distance along a radial line from
triple collision point 0 to w ∈ π(P) is r as given above. To dilate the metric by a fac-
tor t > 0, we multiply w ∈ R

3 by t2 since q �→ tq corresponds to w �→ t2w under π .
Finally, the metric on � is rotationally symmetric since the expression (49) is rotation-
ally invariant. From all of this information, we deduce that the restricted metric has the
form

ds2
π(P) = dr 2 + c2r 2dθ2, (50)

where (r, θ) are polar coordinates on the plane and c is a constant. It remains to show
that c = 1/2. With this in mind, consider the circle r = 1 in the plane �. Its circum-
ference computed from Equation (50) is 2πc. But we can also compute its length by
working up on P ⊂ C

3. Take q and v to both be unit length and orthogonal so that
they form an orthonormal basis for P . Then the corresponding horizontal circle on P
is cos(s)q + sin(s)v, for 0 ≤ s ≤ 2π . But π(q) = π(−q) since −q = eiπq so that the
π-projection of this circle closes up once we have gone half way around, from s = 0
to s = π . Thus, the projected circle on π(P) = � has the length of half a unit circle,
or π . Comparing lengths, we see that c = 1/2.

Any metric of form (50) is that of a cone. We can form our c = 1/2 cone by
taking a sheet of paper and marking the midpoint of one edge to be the cone point
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(see Figure 5). Fold that edge up so the two halves touch each other, and we have a
paper model of the required cone. Note that the circle of radius r about the cone point
has circumference πr , as required.

Figure 5. Folding a half-sheet of paper makes the desired cone.

10. POTENTIAL ON SHAPE SPACE. We need a formula for the three triangle
side lengths ri j in terms of the shape coordinates wi ’s in order to express the potential
(Equation (8)) as a function on shape space. Let bi j be the point on the shape sphere
{‖w‖ = 1}, which represents the i j collision: ri j = 0. The desired equation is

r 2
i j = mi + m j

mi m j
(‖w‖ − w · bi j ). (51)

An important geometric fact underlies this computation. Let di j (w) = d(w,R+bi j )

denote the shape space distance (Equation (21)) from the shape space point w to the i j
binary collision ray R

+bi j . Then

di j = √
μi j ri j (52)

where μi j = mi m j/(mi + m j ). For proofs of this formula or Equation (51), see [5],
[18].

The potential is homogeneous of degree −1 so that

V (r, θ, φ) = 1

r
Ṽ (θ, φ)

where Ṽ is the restriction of V to the unit sphere r = 1 and φ, θ are standard spher-
ical coordinates: w = r2

2 (sin(φ) cos(θ), sin(φ) sin(θ), cos(φ)). A contour plot of V is
indicated in Figure 7.
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11. REDUCED EQUATIONS OF MOTION. Having written the shape space ki-
netic energy (Equation (43)) and potential energy (Equations (8), (51)) in terms of
shape variables wi , we have the shape space Lagrangian

Lshape = 1

2

ẇ2
1 + ẇ2

2 + ẇ2
3

2
√

w2
1 + w2

2 + w2
3

+ c12

r12
+ c23

r23
+ c13

r13
(53)

with constants ci j = (mi m j )
3/2/

√
mi + m j . Its Euler–Lagrange Equations (34)

d

dt

(
∂Lshape

∂ẇi

)
= ∂Lshape

∂wi
for i = 1, 2, 3 (54)

are our desired reduced equations and are the ODEs for the zero-angular momentum
three-body equations as written in shape space.

12. INFINITELY MANY SYZYGIES. The shape space Lagrangian (Equation
(53)), combined with the realization (Equation (52), is that of a point mass moving in
R

3, endowed with metric (49), subject to the attractive force generated by the pull of
the three binary collision rays. These rays lie in the collinear plane w3 = 0. Conse-
quently, the point is always attracted toward the collinear plane. This physical analogy
suggests that the point must oscillate back and forth, crossing that plane infinitely
often.

Theorem 4 (See [18]). If a solution with negative energy and zero angular momentum
does not begin and end in triple collision, then it must cross the collinear plane w3 = 0
infinitely often.

Sketch of proof of theorem 4. The physical analogy just described led us to dis-
cover a differential equation of the form d

dt ( f d
dt z) = −gz for a normalized height

variable z = w3/ Ĩ , where Ĩ = r 2
12 + r 2

23 + r 2
31. Here, f is a positive function on shape

space and g is a non-negative function of the wi and ẇi that is positive away from
the Lagrange homothety solution. (This solution is the special case of the Lagrange
solution (Equation 18) in which λ(t) is real. The solution evolves by scaling, ending
in triple collision.) The theorem follows from the differential equation by a Sturm–
Liouville argument and the fact that near-triple collision behavior is governed by be-
havior near the Lagrange homothety solution.

13. FINALE. We end with another theorem whose conception and proof relies on
the shape space reformulation of the three-body problem.

Theorem 5 (See [5]). There is a periodic solution to the equal mass zero angular
momentum three-body problem in which all three masses chase each other around the
same figure-eight-shaped curve.

Sketch of proof of Theorem 5. There are three types of isosceles triangles, depend-
ing on which mass forms the vertex. Each type defines a “longitude”—a great circle
on the shape sphere passing through the north and south poles. (See Figure 6.) Re-
call these poles represent the equilateral triangles, or Lagrange points. Each longitude
intersects the equator of collinear triangles at two antipodal points, one of which is a
binary collision point. In the equal mass case, the other point of intersection is an Euler
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point, the binary collision points and Euler points are equally spaced along the equator,
and the three isosceles great circles together with the equator divide the sphere up into
12 congruent spherical triangles with angles 90-90-60. One key to the proof is that this
apparent 12-fold symmetry is indeed a symmetry group of the differential equations.

Lag

Lag

ISOSC2

EU3

EU1

EU2

B

B

B

Figure 6. The shape sphere. The three binary collision rays pierce the shape sphere at the three points (B)
that lie on the collinear equator that in turn also contains the three Euler points (EU). One isosceles great circle
(ISOSC2) is drawn. Like all isosceles circles, it joins the two Lagrange points (Lag), and passes through a
binary collision point. The minimizer out of which the eight is built is drawn in a brown and connects an Euler
point to ISOSC2.

Viewed in shape space, instead of on the shape sphere, each isosceles great circle
represents a plane of isosceles triangles, and each Euler point represents a ray of
Euler collinear triangles. Label these planes ISOSCi for i = 1, 2, 3 and label these rays
EUi for i = 1, 2, 3. For example, ISOSC2 is defined by the equation r12 = r23. Con-
sider the problem of minimizing the shape space action

∫
c Lshapedt among all paths

c : [0, T ] → R
3 connecting EU1 to ISOSC2. Suppose such a minimizer, call it γ∗, ex-

ists and is collision-free. First, variation orthogonality implies that γ∗ must hit both the
Euler ray and the isosceles plane orthogonally. (See Figure 6.) The minimizer γ∗ will
form one-twelfth of the figure-eight solution.

To build the rest of the eight from γ∗, we use equality of masses and the consequent
12-fold symmetry group. This order 12 group is generated by reflections about the
isosceles planes and the equator, and each of its element are symmetries of the kinetic
energy, the potential energy, the shape space Lagrangian, and consequently, of the re-
duced equations. Reflection RE about the equator is induced by reflecting all three
masses about any fixed line in the inertial plane and is a symmetry no matter what
the masses are. The half-twist σ13 about the binary collision ray r13 = 0 is induced
by the operation (q1, q2, q3) �→ (q3, q2, q1) of interchanging masses 1 and 3 and is a
symmetry provided m1 = m3. Reflection R2 about ISOSC2 is the composition of RE

with σ13. Applying the symmetries in turn to our minimizer γ∗, we obtain 12 congru-
ent curves that fit together continuously to “wrap” twice around the sphere. Due to
first-variation orthogonality, they also fit together smoothly! For example, γ∗ and its
reflection R2(γ∗) about ISOSC2 share the same derivative since both are orthogonal
to the isosceles plane. In other words, Rγ∗(2T − t) is a reduced solution to New-
ton’s equations whose shape space point and shape space velocity agree with those of
γ∗ at t = T . By unique dependence of solutions to ODEs on their initial conditions
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it follows that in order to continue the solution γ∗ past t = T through the isosceles
plane, we simply concatenate γ∗(t) with its reflected image Rγ∗(2T − t). Continuing
in this manner with reflections or half-twists, we see see that the concatenation of these
12 congruent arcs, taken together, forms one smooth periodic solution to the reduced
Newton’s equation. The horizontal lift to C

3 of this periodic solution is automatically a
solution to Newton’s equations. With extra work, we can show that this horizontal lift
is itself periodic of period 12T (i.e., the solution is periodic, not just periodic modulo
rigid motions) and is also a choreography.

Definition. An N-body choreography of period T is a solution to the N-body prob-
lem that has the particular form q(t) = (q1(t), q2(t), . . . , qN (t)) where qi (t) = s(t −
iT/N ) for i = 2, 3, . . . , N for some fixed T periodic curve s(t) in the plane (or space).

This curve is the figure eight. See Figure 7 for the curve γ , the eight projected to
shape space.

We have skipped the difficult part of the proof, which is showing that the minimum
γ∗ exists and is collision-free. For this, we refer the reader to [5].

Figure 7. The figure eight as it appears in shape space

History. The figure-eight solution curve was discovered numerically in 1993 using
the principle of least action by C. Moore [20] whose short article we highly recom-
mend. Chenciner and myself rediscovered the solution using the shape space least
action principle in 2000 [5]. Our methods yielded a rigorous existence proof and soon
led to the discovery of a multitude of N-body choreographies. See, for example, [7],
[2], [4], [10], and [19].
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14. J. Lagrange, Méchanique analitique. First edition. Veuve Desaint, Paris, 1788.
15. D. G. Kendall, Shape manifolds, procrustean metrics, and complex projective space, Bull. London Math.

Soc. 16 (1984) 81–121, http://dx.doi.org/10.1112/blms/16.2.81.
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