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Abstract. A Goursat flag is a chain Ds ⊂ Ds−1 ⊂ D1 ⊂ D0 = TM of subbundles of
the tangent bundle TM such that corank Di = i and Di−1 is generated by the vector fields
in Di and their Lie brackets. Engel, Goursat, and Cartan studied these flags and estab-
lished a normal form for them, valid at generic points of M . Recently Kumpera, Ruiz and
Mormul discovered that Goursat flags can have singularities, and that the number of these
grows exponentially with the corank s. Our theorem 1 says that every corank s Goursat
germ, including those yet to be discovered, can be found within the s-fold Cartan prolon-
gation of the tangent bundle of a surface. Theorem 2 says that every Goursat singularity
is structurally stable, or irremovable, under Goursat perturbations. Theorem 3 establishes
the global structural stability of Goursat flags, subject to perturbations which fix a cer-
tain canonical foliation. It relies on a generalization of Gray’s theorem for deformations
of contact structures. Our results are based on a geometric approach, beginnning with
the construction of an integrable sub-flag from a Goursat flag, and the sandwich lemma
which describes the inclusions between the two flags. We show that the problem of local
classification of Goursat flags reduces to the problem of counting the fixed points of the
circle with respect to certain groups of projective transformations. This yields new general
classification results and explains previous classification results in geometric terms. In the
last appendix we obtain a corollary to Theorem 1. The problems of locally classifying
the distribution which models a truck pulling s trailers and classifying arbitrary Goursat
distribution germs of corank s + 1 are the same.

Contents
1. Introduction and main results.
2. Flag of foliations. Sandwich lemma. Cartan theorem.
3. Classification of branches of

√
D.

4. Examples.
5. Prolongation and deprolongation. Monster Goursat manifold.
6. Proof of Theorems 2 and 3.
Appendix A. A generalization of the Gray theorem.
Appendix B. Proof of Lemma 3.2.
Appendix C. Kumpera-Ruiz normal forms, Mormul’s codes and the growth vector.
Appendix D. The kinematic model of a truck with trailers.
References.

* The work was supported by the Binational Science Foundation grant No. 94-00268
** partially supported by NSF grant DMS-9704763

1



1. INTRODUCTION AND MAIN RESULTS

This paper is devoted to Goursat distributions and Goursat flags. A Goursat flag of
length s on a manifold Mn of dimension n ≥ 4 is a chain

Ds ⊂ Ds−1 ⊂ · · · ⊂ D3 ⊂ D2 ⊂ D1 ⊂ D0 = TM, s ≥ 2 (F )

of distributions on Mn (subbundles of the tangent bundle TMn of constant rank) satisfying
the following (Goursat) conditions:

corank Di = i, i = 1, 2, . . . , s

Di−1 = D2
i whereD2

i := [Di, Di], i = 1, 2, · · · , s. (G)

The first condition means that Di(p) is a subspace of TpM
n of codimension i, for any point

p ∈ Mn. It follows that Di+1(p) is a hyperplane in Di(p), for any i = 0, 1, 2, . . . , s − 1
and p ∈ Mn. In condition (G) we use the standard notation D2 or [D,D] for the sheaf of
vector fields generated by D and the Lie brackets [X, Y ], X, Y ∈ D, of vector fields in D.

By a Goursat distribution we mean any distribution of any corank s ≥ 2 of any Goursat
flag (F).

An equivalent definition is as follows. A distribution D of corank s ≥ 2 is Goursat if
the subsheaves Di of the tangent bundle defined inductively by Di+1 = [Di, Di] (i =
1, 2, . . . , s; D1 = D) correspond to distributions, i.e. they have constant rank, and this
rank is rank Di+1 = rank Di + 1, i = 1, . . . , s.

Since the whole flag (F) is uniquely determined by the distribution D = Ds of the
largest corank, we will say that D = Ds generates (F). The study of Goursat flags and
Goursat distributions is the same problem.

The name “Goursat distributions” is related to the work [Goursat, 1923] in which
Goursat popularized these distributions. Goursat’s predecessors were Engel and Cartan.

Engel studied the case n = 4, s = 2. This is the only case where the Goursat condition
holds for generic germs. He proved [Engel, 1889] that the germ of such a distribution is
equivalent to a single normal form without parameters. (See (C) below.)

If (n, s) 6= (4, 2) then the set of germs of Goursat distributions of corank s on Mn is a
subset of infinite codimension in the space of all germs. Nevertheless, Goursat distributions
appear naturally through Cartan’s prolongation procedure. See, for example, [Bryant,
1991] and section 5 of the present paper. The simplest realization of prolongation leads to
a canonical Goursat 2-distribution (i.e., distribution of rank 2) on the (2 + s)-dimensional
space of s-jets of functions f(x) in one variable. This distribution can be described by s
differential 1-forms

ω1 = dy − z1dx, ω2 = dz1 − z2dx, . . . , ωs = dzs−1 − zsdx, (C)

where y represents the value of f at x and zi represents the value at x of the i-th derivative
of f . Cartan proved that a generic germ of a Goursat 2-distribution can always be
described by the 1-forms (C). Indeed he proved the stronger statement:
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[Cartan, 1914]: The germ at a generic point of any Goursat distribution of corank s ≥ 2
on a manifold M of any dimension n ≥ s + 2 is equivalent to the germ at the origin of the
distribution described by the 1-forms (C).

This theorem together with all the assertions in the present paper hold in both the
smooth (C∞) and real-analytic categories. Two global distributions on M are called
equivalent if there exists a global diffeomorphism of M sending one of them to the other.
Local equivalence is defined in a usual way: the germ of D at a point p is equivalent
to the germ of D̃ at a point p̃ if there exists neighbourhoods U of p and Ũ of p̃ and a
diffeomorphism Φ : U → Ũ , Φ(p) = p̃ which sends the restriction of D to U onto the
restriction of D̃ to Ũ .

We will say that a point p ∈ M is a singularity for a Goursat distribution if the
distribution is not locally equivalent at p to the model distribution described by 1-forms
(C). An equivalent definition in invariant terms is given in Setion 2.

Some researchers believe that Cartan missed the singularities in the problem of clas-
sifying Goursat distributions. It would be more accurate to say that he was not interested
in them. Recently there has been interest. Researchers have realized that the number
of different singularities grows very fast, indeed exponentially, with the corank s. Recent
results on the number of singularities are given in the following table. Here or(s) denotes
the number of orbits (inequivalent germs) within the space of all Goursat germs of corank
s at the origin of Rn (results are the same for all n ≥ s + 2):

s 2 3 4 5 6 7 ≥ 8

or(s) 1 2 5 13 34 93 ∞

Author : Engel Giaro Kumpera Gaspar Mormul Mormul Mormul
Kumpera Ruiz

Ruiz
reference : 1889 1978 1982 1985 1997 1998 1998

Although the entries of this table were obtained originally just for rank two Goursat
distributions on R2+s they hold for Goursat distributions of arbitrary rank k and corank
s distributions on Rk+s, with k, s ≥ 2. Indeed, a reduction theorem due to one of us
[Zhitomirskii, 1990] implies that any Goursat distribution of corank s is locally equivalent
to one of the form D = W ⊕ Rk−2 on Rk+s = R2+s × Rk−2, where W is a rank two
Goursat distribution on R2+s.

The theorems summarized by the above table are in marked contrast with the spirit
of Cartan’s result . This contrast inspired our two main theorems. Theorem 1 says that
the Cartan prolongation procedure accounts not only for the Cartan normal form (C),
but for all possible singularities. This includes any singularities yet to be discovered,
in addition to the list above. Theorem 2 asserts that every Goursat singularity, however
complicated, cannot be perturbed away while keeping the distribution Goursat. In other
words, theorem 2 asserts that Goursat singularities are “irremovable”.
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Theorem 1. Apply the Cartan prolongation procedure (see section 5) s times, starting
with a two-dimensional surface. The resulting “ monster Goursat manifold” Q of dimen-
sion 2 + s is endowed with a Goursat distribution H which is universal in the following
sense. The germ at any point of any rank two Goursat distribution on a (2+s)-dimensional
manifold is equivalent to the germ of H at some point of Q.

In section 5 the Cartan prolongation procedure is described, the monster manifold con-
structed, and the theorem proved.

Theorem 2. Every Goursat singularity is irremovable. Namely, within the space
of all germs of Goursat distributions of corank s, any germ is structurally stable in the
Cs+1-topology on the space of Goursat germs.

Any such germ is s-determined.

Structural stability of the germ of a Goursat distribution D at a point p means the
following. Let DN be any sequence of Goursat distributions defined in a (fixed) neigh-
borhood of p, and such that js+1

p DN → js+1
p D as N → ∞. Then there exists a sequence

of points pN tending to p such that for all sufficiently big N the germ of DN at pN is
equivalent to the germ at p of D. In other words, if we perturb D within the space of
Goursat distributions, then nearby to p there will be points pN at which the germ of the
perturbed distribution DN is equivalent to that of the original distribution at p.

To say that D is s-determined (at p) means that if D̃ is another Goursat distribution
defined near p, and if js

pD = js
pD̃ then the germs at p of D and of D̃ are equivalent.

We also have a result on global structural stability, one inspired by works [Golubev,
1997] and [Montgomery, 1997] on deformations of global Engel distributions.

Theorem 3. Any cooriented Goursat flag (F) of length s on a manifold M is struc-
turally stable with respect to sufficiently Whitney Cs+1-small perturbations within the space
of global Goursat flags, provided these peturbations do not change the characteristic codi-
mension 3 foliation L(D1).

The characteristic codimension 3 foliation L(D1) is defined in section 2. It is invari-
antly related to the corank one distribution D1 and generalizes the characteristic vector
field of an Engel distribution. To say that the flag (F) is cooriented means that there exist
s global 1-forms ω1, . . . , ωs such that the distribution Di can be described as the vanishing
of ω1, . . . , ωi, i = 1, . . . , s. Theorem 3 says that if two global Goursat flags F and F̃ is
sufficiently close in the Whitney Cs+1-topology and if L(D̃1) = L(D1) then there exists
a global diffeomorphism of M sending F̃ to F . The condition L(D̃1) = L(D1) can be, of
course, replaced by the condition that the foliations L(D̃1) and L(D1) are equivalent via
a diffeomorphism close to the identity. This condition is essential even for the case s = 2
of Engel distributions, see [Gershkovich, 1995]. The foliation L(D1), viewed as a global
object, is a complicated, poorly understood topological invariant of D. In particular it
is not known what types of foliations are realizable, even in the simplest case of Engel
distributions.

Outline.
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To prove Theorems 1-3 we develop a geometric approach to Goursat flags in sections
2 and 3. The starting point is the flag of foliations associated to a Goursat flag. The
relations between the two flags is described by the sandwich lemma. This allows us to
formulate the Cartan theorem in pure geometric terms, and to define singular points.

In section 3 we develop the geometric approach in order to show that : the problem
of classifying Goursat flags reduces to the problem of finding fixed points of the circle with
respect to certain subgroups of the group of projective transformations. Using this reduction
we obtain some general classification results. In section 4 we use our methods to explain
the recent results, as summarized in table 1, by purely geometric geometric reasoning.

In section 5 we present Cartan’s prolongation and deprolongation constructions and
prove
Theorem 1.

Theorems 2 and 3 are proved in section 6. One tool in the proof is a generalization of
Gray’s theorem [Gray, 1959] on deformations of global contact structures. We prove that
any two global Cl+1-close corank one distributions of the same constant class (in Cartan’s
sense) are equivalent via a Cl-close to identity global diffeomorphism. This result is of
independent significance, therefore we put it to Appendix A.

In Appendix B we prove one of the lemmata used in section 3.

In Appendix C we explain the canonical meaning of the Kumpera-Ruiz normal forms
and we explain P.Mormul’s codes for symbolizing finer normal forms. We also summarize
what is known about when and how the growth vector distinguishes singularities.

Finally, in Appendix D we use our Theorem 1 to give a simple proof that the local
classification of Goursat distributions describing a kinematic model of a truck towing s
trailers and the local classification of arbitrary Goursat flags of length s + 1 are the same
problem.

Acknowledgement. The authors are thankful to P.Mormul for a number of useful
comments on his works and works of his predecessors.

2. FLAG OF FOLIATIONS. SANDWICH LEMMA. CARTAN THEOREM.

We start the geometric approach to Goursat distributions by associating a flag of
foliations

L(Ds) ⊂ L(Ds−1) ⊂ L(Ds−2) ⊂ · · · ⊂ L(D2) ⊂ L(D1) (L)

to the Goursat flag

Ds ⊂ Ds−1 ⊂ Ds−2 ⊂ · · · ⊂ D2 ⊂ D1 ⊂ D0 = TM (F )

generated by the Goursat distribution D = Ds of corank s ≥ 2 on a manifold M .

Definition. Given any distribution D ⊂ TM we denote by L(D) the subsheaf of D
consisting of those vector fields X ∈ D whose flows preserve D: [X, Y ] ∈ D for all Y ∈ D.
We call L(D) the characteristic foliation of D.
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The Jacobi identity implies that L(D) is closed under Lie bracket. Consequently if L(D)
is of constant rank, then it is a foliation in the standard sense. As we will see momentarily
it does have constant rank in the Goursat case, this rank being rank(D) − 2. In other
words, if we set

L(D)(p) = {X(p) : X ∈ L(D)},

then L(D)(p) has dimension rank(D)− 2, independently of the point p.

Lemma 2.1. (Sandwich lemma). Let D be any Goursat distribution of corank s ≥ 2
on a manifold M . Let p be any point of M . Then

L(D)(p) ⊂ L(D2)(p) ⊂ D(p),

with
dim L(D)(p) = dim D(p)− 2, dim L(D2)(p) = dim D(p)− 1.

It follows that the relation between the Goursat flag (F) and its flag of characteristic
foliations (L) is summarized by:

Ds ⊂ Ds−1 · · · ⊂ D3 ⊂ D2 ⊂ D1

∪ ∪ ∪ ∪
L(Ds) ⊂ L(Ds−1) ⊂ L(Ds−2) · · · ⊂ L(D2) ⊂ L(D1)

Each inclusion here is a codimension one inclusion of subbundles of the tangent bundle.
L(Di) has codimension 2 within Di, which in turn has corank i within TM , so that L(Di)
is a foliation of M of codimension i+2. In particular, L(D1) – the foliation figuring in our
Theorem 3 – is a codimension 3 foliation.

The foliations L(Di) can be described using 1-forms. We will say that an ordered
s-tuple ω1, . . . , ωs describes the flag (F) generated by a Goursat distribution D = Ds of
corank s if ω1 describes the corank one distribution D1, the forms ω1 and ω2 together
describe the corank 2 distribution D2, etc., the tuple (ω1, . . . , ωs−1) describes Ds−1 and
the tuple (ω1, . . . , ωs) describes Ds. (Here “describes” means that the distribution being
described consists of all vectors annihilated by the forms “describing”.) Order matters.
For example, consider the corank 2 Goursat distribution D defined by the vanishing of of
the 1-forms ω1 = dy− z1dx and ω2 = dz1− z2dx. Then the pair (ω1, ω2) describes the flag
generated by D whereas the pair (ω2, ω1) does not.

Given a tuple of 1-forms ω1, . . . , ωs describing the Goursat flag (F), denote by

θi(p) = dωi(p)|Di(p) (2.1)

the restriction of the 2-form dωi(p) to the space Di(p), p ∈ M . By the kernel of a 2-form θ
on a vector space V we mean the space of vectors v such that θ(v, Y ) = 0 for any Y ∈ V .
The proof of Lemma 1 is base on the following statement.
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Lemma 2.2. Let (F) be the Goursat flag generated by a distribution D = Ds and
described by the tuple ω1, . . . , ωs of 1-forms. Define the 2-forms θi(p) by (2.1). Then for
any point p of the manifold and for any i = 1, 2, . . . , s we have:

rank θi(p) = 2; L(Di)(p) = ker θi(p).

Example. Let D be the corank s Goursat distribution described by the 1-forms (C).
Then the tuple (ω1, . . . , ωs) describes the flag (F) generated by D = Ds, and the foliation
L(Di) is described by the 1-forms dx, dy, dz1, . . . , dzi.

Proof of lemmata 2.1 and 2.2. We first show that the rank of θi(p) is two, for
i < s. Recall that ωi vanishes on Di but not on Di−1, and that its vanishing defines Di

within Di−1. The identity

dωi(X, Y ) = −ωi([X, Y ]), X, Y ∈ Di (2.2)

and the fact that [Di+1, Di+1] is a subset of Di imply that θi(p) vanishes upon restriction to
the hyperplane Di+1(p) of Di(p) (provided that i < s so that Di+1 is defined). The fact that
[Di, Di] = Di−1 implies that θi(p) 6= 0. In other words, θi(p) is a non-zero skew-symmetric
form which admits Di+1(p) as an isotropic subspace of codimension 1. Basic linear algebra
now implies that rank θi(p) = 2, dim ker θi(p) = 2, and that ker θi(p) ⊂ Di+1(p). This
is valid for all points p and all i = 1, 2, . . . , s− 1.

It follows directly from the identity (2.2) that L(Di)(p) ⊂ ker θi(p). To prove that
L(Di)(p) = ker θi(p) we use the constancy of rank of these kernels. Suppose Xp ∈
ker θi(p). Since the field of kernels of θi has constant rank we may extend Xp to a
vector field X tangent to this field of kernels. Now (2.2), together with the fact that the
vanishing of ωi defines Di within Di−1, implies that X ∈ L(Di) so that Xp ∈ L(Di)(p).
This completes the proof of Lemma 2.2 for i = 1, 2, . . . , s− 1.

The case i = s remains. We know that L(Di) is involutive for all i and that L(Di)(p) =
ker dθi(p) is a hyperplane in Di+1(p), for i < s. Identity (2.2) now implies that θi+1

vanishes upon restriction to the hyperplane L(Di)(p) of Di+1(p), again for i < s. Therefore
for 1 < i < s the form θi(p) has two (possibly equal) isotropic subspaces: Di+1(p) and
L(Di−1)(p), whereas the “end” forms θ1(p) and θs(p) have only one isotropic subspace each:
D2(p) and L(Ds−1)(p) respectively. The fact that θs(p) has L(Ds−1)(p) ⊂ Ds(p) as an
isotropic hyperplane implies that rank θs(p) ≤ 2. The condition rank [Ds, Ds](p) = s− 1
implies that rank θs(p) ≥ 2. Therefore rank θs(p) = 2. Repeating the above arguments, we
see that L(Ds)(p) = ker θs(p), and therefore L(Ds)(p) is a subspace of D(p) of codimension
2. This completes the proof of Lemma 2.2.

To prove Lemma 2.1 , it only remains to show that L(Di) ⊂ L(Di−1). Again use the
fact that if a skew-symmetric nonzero 2-form has an isotropic hyperplane then its kernel
belongs to this hyperplane. We have proved that L(Di−1)(p) is an isotropic hyperplane
for θi(p) and L(Di)(p) is the kernel of θi(p). Therefore L(Di) ⊂ L(Di−1). Q.E.D.

By Lemma 2.1 for each i = 3, 4, . . . , s the space Di−1(p) has two invariantly defined
hyperplanes: Di(p) and L(Di−2)(p). If the Goursat flag is generic then one expects that
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these two hyperplanes will be different. This is indeed the case, and it suggests our
geometric formulation of Cartan’s theorem on the normal form (C).

Proposition 2.1. (compare with [Cartan, 1914]). The germ at a point p of a Goursat
flag (F) of length s on a manifold M is equivalent to the germ at the origin of the flag
described by the 1-forms (C) if and only if the condition

L(Di−2)(p) 6= Di(p), i = 3, 4, . . . s (GEN)

holds. For any Goursat flag the set of points p ∈ M satisfying (GEN) is open and dense
in M .

The proof of this proposition is in section 4. Now we can give an invariant definition of a
singular point of a Goursat distribution D or of its flag (F):

Definition. A point p is nonsingular if (GEN) is satisfied. It is singular if (GEN) is
violated for at least one i ∈ {3, 4, . . . , s}.

We have 2s−2 different types of singularities, called Kumpera-Ruiz classes parametrized
by the 2s−2 subsets I ⊂ {3, 4, . . . , s}. The class corresponding to the subset I consists of
Goursat germs at a point p such that the condition (GEN) is violated for i ∈ I and is
valid for all i /∈ I, i ∈ {3, 4, . . . , s}. A nonsingular point corresponds to I = ∅. Each singu-
larity class is realized. These realizations correspond to the 2s−2 normal forms found by
Kumpera-Ruiz [Kumpera-Ruiz, 1982], and described in Appendix C to the present paper.

As soon as s > 3 the Kumpera-Ruiz classification is coarser than the full classification
of Goursat germs into equivalence classes under diffeomorphisms. In other words, for
s > 3 there will be Kumpera-Ruiz classes which contain more than one orbit, i.e. several
inequivalent Goursat germs. See the table in section 1. For example, when s = 4, we see
that or(s) = 5 ≥ 2s−2 = 4.

In the next two section we further develop the geometric approach to Goursat distribu-
tions, obtain general classification results and explain in invariant terms the classification
results by Mormul and his predecessors.

3. Classification of branches of
√

D

The classification of germs of Goursat distributions of arbitrary corank reduces to the
following problem:

Given a Goursat distribution germ D of corank s, classify the Goursat distributions E of
corank s + 1 such that [E,E] = E2 = D.

Notation. The set of all such distribution germs E for a given D will be denoted
√

D.

Imagine the tree whose vertices are equivalence classes of Goursat germs. The root
of the tree is the corank 2 distribution germ, which is a single class, according to Engel’s
theorem. The “level” or “height” of a vertex is its corank. Thus there are or(s) vertices
at level s. A vertex [E] at level s + 1 is connected to a vertex [D] at level s if and only if
E ∈

√
D.
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If it were true that each Kumpera-Ruiz class (see the end of the previous section)
consisted of a single orbit, then this tree would be a simple binary tree. One branch of
the vertex D would consist of the E for which E(p) 6= L(D2)(p), and the other for which
E(p) = L(D2)(p). But the table given in section 1 shows that this is false. There are D
for which |[

√
D]| > 2. Indeed, for s = 7 there are D whose

√
D contains infinitely many

nonequivalent germs, corresponding to or(8) = ∞.

In this section we reduce the problem of classification of
√

D to classification of points
of the circle S1 = RP 1 with respect to the action of a certain group Γ = Γ(D) ⊂ PGL(2)
of projective transformations of the circle. The orbits in

√
D correspond to the Γ-orbits in

S1. We will show that the number of orbits is either 2, 3, 4 or ∞, according to the number
of fixed points of Γ.

The first step in such reduction is the following proposition (proved in section 6).

Proposition 3.1. Let E and Ẽ be the germs at a point p of Goursat distributions of
corank s+1 such that E2 = Ẽ2 and E(p) = Ẽ(p). Then the germs E and Ẽ are equivalent.

Set
(
√

D)(p) = {E(p) : E ∈
√

D}.

Recall that the sandwich lemma asserts that L(D)(p) ⊂ E(p) ⊂ D(p) for any E ∈
√

D.
Also recall that codim L(D)(p) = 2 in D(p). In other words

(
√

D)(p) ⊂ S1
D(p) = {subspaces V ⊂ TpM : codim V = s + 1, L(D)(p) ⊂ V ⊂ D(p)}.

We use the notation S1
D(p) because this set is topologically a circle. Indeed it can be

canonically identified with the set of all one-dimensional subspaces of the 2-dimensional
factor space D(p)/L(D)(p), which is to say with the real projective line. The real projective
line is topologically a circle:

S1
D(p) ∼= P [D(p)/L(D)(p)] ∼= RP 1 ∼= S1.

Lemma 3.1. (
√

D)(p) = S1
D(p) for any Goursat distribution germ D such that

rank(D) > 2.

Proof. We must show that every V ∈ S1
D(p) can be realized as V = E(p) for some

E ∈
√

D. Since rank(D) > 2 and consequently dim V > 1 we can fix a nonvanishing 1-
form ω which annihilates the involutive distribution L(D), and for which ω(p) annihilates
V , and for which dω(p) restricted to V is nonzero. Define E to be the subdistribution of
D annihilated by ω. We claim that E2 = D, and consequently V ∈

√
D(p).

We first show that E2 ⊂ D. Take two vector fields X, Y ∈ E, and any 1-form µ
annihilating D. We must show that µ annihilates [X, Y ] or, equivalently that dµ(X, Y ) =
0. L(D2) is a corank one subdistribution of E. Pick any nonvanishing vector field Z
tangent to E such that Z mod L(D) spans E/L(D) (near p). Then there are functions
k1, k2 such that X = k1Z modulo L(D) and Y = k2Z modulo L(D). Since L(D) ⊂ D
and L(D) is involutive any vector field in L(D) belongs to the kernel of dµ. Therefore
dµ(X, Y ) = dµ(k1Z, k2Z) = 0.
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The fact that dω|V 6= 0 implies that the rank of E2 is greater than that of E. But
rank(E) = rank(D)− 1 and E ⊂ E2 ⊂ D. Consequently E2 = D. Q.E.D.

Consider the group Diffp of all local diffeomorphisms with fixed point p and its
subgroup Symmp(D) consisting of local symmetries of the germ at p of D:

Symmp(D) = {Φ ∈ Diffp : Φ∗D = D.}

Any Φ ∈ Symmp(D) automatically preserve the canonical foliation L(D), and conse-
quently it preserves L(D)(p). Its derivative dΦp thus acts on the two-dimensional factor
space D(p)/L(D)(p) by a linear transformation, and consequently defines a transformation

gΦ : S1
D(p) → S1

D(p); gΦ.V = dΦp(V ); V ∈ S1
D(p).

This defines a group homomorphism

Φ 7→ gΦ; Symmp(D) → PGl(2) = PGl(D(p)/L(D)(p)).

We denote the image of this homomorphism by

Γp(D) = {gΦ, Φ ∈ Symmp(D)}.

Remark: PGl(2) is the standard notation for the group of all invertible linear trans-
formations of a two-dimensional vector space modulo scale. Elements of this group map
lines to lines, and hence define transformations of RP 1 = S1. These transformations are
sometimes called projectivities. So Γp(D) is a group of projectivities.

Proposition 3.1 and Lemma 3.1 imply:

Proposition 3.2. Let D be the germ at a point p of a Goursat distribution of corank
s. Let E and Ẽ be the germs at p of Goursat distributions of corank s + 1 such that
E2 = Ẽ2 = D. The germs E and Ẽ are equivalent if and only if the points E(p) and Ẽ(p)
of the circle S1

D(p) belong to a single orbit with respect to the action of the group Γp(D).

The rest of this section is devoted to understanding the orbit structure of the action
of Γp(D) on the circle.

To understand the orbit structure we should first understand the fixed points of the
action. By a fixed point V ∈ S1

D(p) we mean a point that is fixed by every transformation
in the group Γp(D). The set of all fixed points will be denoted Fixp(D):

Fixp(D) = {V ∈ S1
D(p) : g.V = V for any g ∈ Γp(D)}.

To reiterate V ⊂ D(p) is a codimension 1 hyperplane which contains the codimension 2
hyperplane L(D)(p), and g.V = dΦp(V ) where g = gΦ, with Φ ∈ Symmp(D).

The set Fixp(D) is never empty. Indeed, Symmp(D) preserves D2, and hence L(D2).
But L(D2)(p) ⊂ D(p) is a codimension 1 hyperplane, as we saw in the previous section
(see the sandwich lemma). Consequently

L(D2)(p) ∈ Fixp(D)
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for any Goursat distribution D.

On the other hand, if Fixp(D) contain more than two points then Fixp(D) = S1
D(p)

– every point is a fixed point, and Γp(D) = {1} consists of the identity transformation
alone. This follows immediately from what is sometimes called “the fundamental theorem
of projective geometry”: any projectivity of the projective line which fixes three or more
points is the identity. At the level of linear algebra, this is the assertion that if a linear
transformation of the plane R2 has three distinct eigenspaces (the three alleged fixed points
of the projective line ) then that transformation is a scalar multiple of the identity.

We thus have the following possibilities.
• #(Fixp(D)) = ∞, in which case Γp(D) = {id}, and the number of inequivalent

germs E ∈
√

D is infinite;
• #(Fixp(D)) = 1, in which case that single fixed point must be L(D2)(p);
• #(Fixp(D)) = 2, in which case the fixed points are L(D2)(p) and one other point.

The following proposition explores the middle possibilty.

Proposition 3.3. If #(Fixp(D)) = 1 then Fixp(D) = {L(D2)(p)}. In this case
the action of Γp(D) is transitive away from the fixed point. That is to say, for any two
points V, Ṽ ∈ S1

D(p) different from L(D2)(p) there exists a g ∈ Γp(D) such that g.V = Ṽ .
Consequently, the circle S1

D(p) consists of two orbits with respect to the group Γp(D): the
fixed point L(D2)(p) and all other points.

The proof of this proposition, and the one following (Proposition 3.4) are based on
the Lemma 3.2 immediately below. To appreciate the lemma, notice that the connected
part of PGL(2) consists of projective transformations of the form exp(v) for some linear
transformation v of R2 = D(p)/L(D)(p). Such a linear transformation can be viewed as
a linear vector field on the plane, and hence a vector field v on the circle S1. (The vector
fields arising in this way are precisely the infinitesimal projective transformations.) The
flow exp(tv) of this vector field is a one-parameter group of projectivities connecting the
identity to exp(v). The set of such v forms the Lie algebra of PGl(2), denoted pgl(2).

Lemma 3.2. The square of Γp(D) is connected. In other words, if g ∈ Γp(D), then
g2 = g ◦ g = exp (v) for some vector field v ∈ pgl(2) on the circle S1

D(p) with the property
that exp (tv) ∈ Γp(D) for all t ∈ R.

The proof of the Lemma is postponed to Appendix B.
We will now investigate the case in which Fixp(D) consists of two points: L(D2)(p)

and some V 6= L(D2)(p).

Definition. If V 6= L(D2)(p), let

σ = σ(D,V, p) : S1
D(p) → S1

D(p)

denote the projectivity induced by a reflection in the plane D(p)/L(D)(p) whose fixed point
set consists of the two points V and L(D2)(p) (mod L(D(p)).

We explain. Let α, β ∈ RP 1 be two distinct points of the projective line. Choose
coordinates for the plane R2 so that α and β are the x and y coordinate axis, and let
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[x, y] be the standard homogeneous coordinates for RP 1 with respect to these axes. Then
σ([x, y]) = [x,−y], which corresponds to reflection about the x-axis. Note that [x,−y] =
[−x, y] so that we can also think of σ as reflection about the y-axis, β. One can characterize
σ as the unique projectivity whose fixed point set is {α, β} and whose square is the identity.

If Fixp(D) = {L(D2)(p), V } with V 6= L(D2)(p) then there are three alternative
possibilities:

(a) Γp(D) contains at least one more projectivity in addition to the identity and the
reflection σ;

(b) Γp(D) does not contain σ;

(c) Γp(D) = {id, σ}.

Proposition 3.4. Suppose that #Fixp(D)) = 2, with Fixp(D) = {L(D2)(p), V }.
(a). If Γp(D) satisfies (a) above then it acts transitively on S1

D(p) \ Fixp(D). The
action has precisely three orbits, {L(D2)(p)}, {V }, and S1

D(p) \ Fixp(D).
(b). If Γp(D) satisfies (b), then it acts transitively on each of the two connected

components of S1
D(p) \ Fixp(D), but does not mix points from the two components. The

action has precisely 4 orbits, namely {L(D2)(p)}, {V } and the two connected components
of S1

D(p) \ Fixp(D)).
(c). If Γp(D) satisfies (c) then the number of distinct orbits is infinite. The orbit space

is RP 1 modulo the action of the reflection σ, which is topologically a closed interval.

We summarize the results obtained so far into 5 cases:

(1). Fixp(D) consists of the single point L(D2)(p).

(2). Fixp(D) consists of two points, L(D2)(p) and some other point V . Then we have the
following three subcases.

(2 a). σ ∈ Γp(D) and g ∈ Γp(D) for some g 6= σ, id.

(2b). σ 6∈ Γp(D).

(2c). Γp(D) = {1, σ} is the two-element group .

(3). Γp(D) = {id} is the identity group. Every point of the circle S1
D(p) is fixed.

We reiterate that case (3) holds if and only if Fixp(D) contains at least 3 distinct
points.

We recall that
√

D denotes the set of all germs of Gours at distributions E of corank
s + 1 such that E2 = D, where D is a given corank s Goursat distribution. The following
statement is a corollary of Propositions 3.1 - 3.4.

Proposition 3.5. Let D be the germ at a point p of a Goursat distribution,
rank(D) > 2. Then one of the 5 cases (1), (2a), (2b), (2c), or (3) listed above holds. In
each of these cases two germs E, Ẽ ∈

√
D are equivalent provided that E(p) = Ẽ(p).

In the case (3) E and Ẽ are equivalent only if E(p) = Ẽ(p).
Assume now that E(p) 6= Ẽ(p). In cases (1) and (2,a) the germs E and Ẽ are

equivalent if and only if E(p), Ẽ(p) 6∈ Fixp(D). In case (2b) these germs are equivalent
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if and only if E(p) and Ẽ(p) belong to the same connected component of the set S1
D(p) \

Fixp(D). In case (2c) the germs are equivalent if and only if the reflection σ above takes
E(p) to Ẽ(p).

Write #
√

D for the number of distinct equivalence classes of germs for E ∈
√

D.
Consequent to the above analysis we have: #

√
D = 2 in case (1), #

√
D = 3 in case (2 a),

#
√

D = 4 in case (2 b), and #
√

D = ∞ in cases (2 c) and (3).

This proposition does not solve the problem of classifying all Goursat distributions of
any corank. Rather it reduces this problem to the problem of distinguishing among the 5
cases listed above. This reduction sheds light on the pre-existing classification results, as
summarized in table 1. We expand on this theme in the next section.

We end this section by showing that Propositions 3.3 and 3.4 follow from Lemma 3.2.
Consider the following subsets of S1(D)(p):

T = {α ∈ S1(D)(p) : g2.α = α for any g ∈ Γp(D)}

T1 = {α ∈ T : g.α ∈ T for any g ∈ Γp(D)}.

Lemma 3.2 implies the following corollary.

Corollary to Lemma 3.2. If β 6∈ T1 then there exists a neighbourhood U of β in S1(D)(p)
such that all points of U are Γp(D)-equivalent.

Note that Fixp(D) ⊂ T1 ⊂ T and that if T contains three different points then
T = S1(D)(p). To prove Propositions 3.3 and 3.4 we consider the following cases.

1. Assume that T 6= S1(D)(p) and Fixp(D) = {α, β}. Then T = T1 = {α, β}. By
the Corollary of Lemma 3.2 the group Γp(D) either acts transitively on S1

D(p) \ Fixp(D)
or acts transitively on each of the two connected components of this set, but does not
mix points from the two components. The first case holds if and only if the group Γp(D)
contains the reflection σ = σ(α, β) which fixes α and β. This corresponds to (a) and (b)
of Proposition 3.4.

2. Assume that T 6= S1(D)(p) and Fixp(D) = {α}. If T = {α, α1}, where α1 6= α
then T1 = {α} since there exists g ∈ Γp(D) such that g.α1 6= α1 and g.α1 6= α for any
g ∈ Γp(D). Thus T1 = {α}. By the Corollary of Lemma 3.2 the action of Γp(D) is
transitive away from α. This corresponds to Proposition 3.3.

3. Assume that T = S1(D)(p) and Fixp(D) = {α, β}. In this case the group Γp(D)
consists of the identity transformation and the reflection σ. The orbit space is the interval
S1/σ. This corresponds to (c) of Proposition 3.4.

4. Finally, let us show that the case T = S1(D)(p) and Fixp(D) = {α} is impossible.
Assume that this case holds. Then any projectivity g ∈ Γp(D) has a fixed point α and
satisfies the condition g2 = id. It is easy to see that these conditions imply that any
nonidenty g ∈ Γp(D) is a reflection with two fixed points (one of them is α). Γp(D) is
a commutative group since g2 = id for any g ∈ Γp(D). Now if two reflections with a
common fixed point commute then they coincide. Therefore Γp(D) consists of the identity
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transformation and a single reflection. This contradicts the assumption that Fixp(D)
consists of a single point.

Propositions 3.3 and 3.4 are proved.

4. Examples.

We give examples illustrating the notions of sections 2-3 and the classification table
of section 1. Throughout this section all Goursat flags are germs at the origin in Rn.

Example 1. Let Ds ⊂ Ds−1 ⊂ · · · ⊂ D1 be the Goursat flag described by 1-forms

ω1 = dy − z1dx, ω2 = dz1 − z2dx, . . . , ωs = dzs−1 − zsdx. (C)

Using Lemma 2.2 we find:

L(Ds) = (dx, dy, dz1, . . . , dzs)⊥, L(Ds−1) = (dx, dy, dz1, . . . , dzs−1)⊥.

Since Ds(0) = (dy, dz1, dz2, . . . , dzs−1)⊥, the circle S1(Ds)(0) can be identified with the
set of lines (1-dimensional subspaces) in the 2-space span ( ∂

∂x , ∂
∂zs

) ⊂ T0R
n/L(Ds)(0).

The line span ( ∂
∂zs

) corresponds to the space L(Ds−1)(0) and therefore it is a fixed point
of S1(Ds)(0) with respect to the group Γ0(Ds). We show that this line is the only fixed
point. The flag admits the local symmetry:

Φ : zs−i+1 → zs−i+1 + xi/i!, , i = 1, 2 . . . , s, y → y + xs+1/(s + 1)!, , x → x.

This symmetry induces the projective transformation gΦ of the circle S1(Ds)(0) which
takes the line span (a ∂

∂x + b ∂
∂zs

) to the line span (a ∂
∂x + (b − a) ∂

∂zs
). These lines are

different lines when b 6= 0.

This example, together with Proposition 3.3 has two immediate corollaries. Firstly,
Proposition 2.1 (the geometric formulation of the Cartan theorem) follows by induction on
s, with the Engel theorem s = 2 as the base of induction. Secondly, by restricting Example
1 to the case s = 2, and using Proposition 3.3 we can classify Goursat flags D3 ⊂ D2 ⊂ D1

of length 3. Any such flag can be described either by the 1-forms

ω1 = dy − z1dx, ω2 = dz1 − z2dx, ω3 = dz2 − z3dx (4.1)

or by the 1-forms

ω1 = dy − z1dx, ω2 = dz1 − z2dx, ω3 = dx− z3dz2. (4.2)

The normal form (4.1) holds if D3(0) 6= L(D1)(0) and the normal form (4.2) holds if
D3(0) = L(D1)(0).

Example 2. Consider the Goursat flag D3 ⊂ D2 ⊂ D1 described by 1-forms (4.2).
We have

L(D3) = (dx, dy, dz1, dz2, dz3)⊥, L(D2) = (dx, dy, dz1, dz2)⊥, D3(0) = (dy, dz1, dx)⊥.
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Therefore the circle S1(D3)(0) can be identified with the set of lines in the 2-space
span ( ∂

∂z2
, ∂

∂z3
) ⊂ T0R

n/L(D3)(0). The line span ( ∂
∂z3

) corresponding to L(D2)(0) is
a fixed point with respect to the group Γ0(D3). Let Sing be the set of all singular points.
We use the coordinate-free definition of a singular point from section 2. In this example
Sing consists of points p such that D3(p) = L(D1)(p) and it is a smooth hypersurface
given by the equation z3 = 0. The space T0Sing contains the space L(D3)(0), therefore
the intersection D3(0) ∩ T0Sing is a point of the circle S1(D3)(0). This point is the line
span ( ∂

∂z2
). Since it is defined canonically, it is a fixed point with respect to the group

Γ0(D3). We have proved that the set Fix0(D3) contains at least two points - span ( ∂
∂z2

)
and span ( ∂

∂z3
). We show that there are no other fixed points. This follows from the

existence of the local “scaling” symmetry

Φ : z3 → k−1z3, x → kx, z1 → kz1, y → k2y, k ∈ R, k 6= 0.

This induces the projective transformation gΦ of S1(D3)(0) which takes the line
span (a ∂

∂z2
+ b ∂

∂z3
) to the line span (a ∂

∂z2
+ kb ∂

∂z3
). These two lines are different provided

a, b 6= 0, and k 6= 1. Finally, we note that the group Γ0(D3) contains the reflection σ with
fixed points span ∂

∂z2
and span ∂

∂z3
. Indeed, σ = gΦ where Φ is the scaling symmetry for

k = −1.

Examples 1,2 and Propositions 3.3- .5 imply a complete classification of Goursat flags
D4 ⊂ D3 ⊂ D2 ⊂ D1 of length 4: there are exactly 5 orbits with respect to the group of
local diffeomorphisms corresponding to the following cases:

(A) D3(0) 6= L(D1)(0), D4(0) 6= L(D2)(0)
(B) D3(0) 6= L(D1)(0), D4(0) = L(D2)(0)
(C) D3(0) = L(D1)(0), D4(0) 6= L(D2)(0), D4(0) 6⊂ T0Sing

(D) D3(0) = L(D1)(0), D4(0) ⊂ T0Sing

(E) D3(0) = L(D1)(0), D4(0) = L(D2)(0)

These cases do not intersect since the above coordinate computation showed that L(D2)(0) 6⊂
T0Sing. The orbit (A) is open and corresponds to Cartan’s normal form. Orbits (B) and
(C) have codimension 1. Orbits (D) and (E) have codimension 2. The adjaciences are:

A
↗ ↖

C B
↗ ↖ ↗

D E

Given a global Goursat flag of length 4 on a manifold, denote by SingA, . . . , SingE

the set of points at which the corresponding singularity holds. It follows from Examples 1
and 2 that for any (not necessarily generic) global Goursat flag of length 4 on a manifold
M the set SingA is open and dense, that SingB and SingC are smooth hypersurfaces in
M which intersect transversally forming SingE , and that SingD is a smooth surface of
codimension 1 within SingC and disjoint from SingE .
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The orbits A-E can be easily described by normal forms, using Lemma 2.2. Any
Goursat flag of length 4 can be described locally by 1-forms ω1, . . . , ω4, where ω1, ω2, ω3

have the form (4.1) for A- and B-singularities and the form (4.2) for the 3 other singularities,
and where the 1-form ω4 has the form

dz3 − z4dx, dx− z4dz2, dz3 − (1 + z4)dz2, dz3 − z4dz2, or dz2 − z4dz3

for the A,B,C,D,E-singularities respectively.

Example 3. To classify Goursat flags D5 ⊂ D4 ⊂ D3 ⊂ D2 ⊂ D1 we find the set of
fixed points of the circle S1(D4)(0) under the action of Γ0(D4). We start by assuming that
the flag D4 ⊂ D3 ⊂ D2 ⊂ D1 has one of the 5 normal forms described above. Arguing in
the same way as in Examples 1 and 2 we come to the following conclusions.

1. If the flag D4 ⊂ D3 ⊂ D2 ⊂ D1 has singularity A or singularity C then the set of
fixed points of S1(D4)(0) consists of the single point L(D3)(0) and therefore the space of
germs of flags D5 ⊂ D4 ⊂ D3 ⊂ D2 ⊂ D1 consists of two orbits corresponding to the cases

(A1 and C1) D5(0) 6= L(D3)(0)
(A2 and C2) D5(0) = L(D3)(0)

2. If the flag D4 ⊂ D3 ⊂ D2 ⊂ D1 has the singularity B (respectively D, E) then
the set Fix0(D4) consists of the point L(D3)(0) and the point α = D4(0) ∩ T0SingB

(respectively α = D4(0) ∩ T0SingD, α = D4(0) ∩ T0SingE). The hypersurface SingB

and the codimension two submanifolds SingD, SingE are tangent to the foliation L(D4),
therefore the point α is a well-defined point of the circle S1(D4)(0). The points α and
L(D3)(0) are always different, and the group Γ0(D4) admits the reflection with these two
fixed points. Therefore the space of germs of flags D5 ⊂ D4 ⊂ D3 ⊂ D2 ⊂ D1 such that
the flag D4 ⊂ D3 ⊂ D2 ⊂ D1 has a fixed singularity within the singularities B,D,or E
consists of 3 orbits corresponding to the cases
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(B1, D1, E1) D5(0) 6= L(D3)(0), D5(0) 6⊂ T0SingU , U = B,D,E

(B2, D2, E2) D5(0) ⊂ T0SingU , U = B,D,E

(B3, D3, E3) D5(0) = L(D3)(0).

Thus the space of germs of Goursat flags of length 5 consists of 13 orbits. The A- and
C-singularity each ”decompose” into two new singularities. The B-, D- and E-singularities
each decompose into three. The orbit A1 is open. Orbits A2, B1, C1 have codimension 1.
Orbits B2, B3, E1, C2, D1 have codimension 2. The deepest singularities are E2, E3, D2, D3.
They have codimension 3. The graph of adjaciences can be easily derived. It is rather
complicated and we do not present it here.

Example s + 1. Of course, we could continue to get the classification of flags of
length 6 or longer, or to get the classification of flags of any length satisfying certain
genericity assumptions. The principle remains the same. If we know the normal form
for a certain orbit Ors of flags Ds ⊂ Ds−1 ⊂ · · · ⊂ D1 of length s then we should find
the set Fix0(Ds) ⊂ S1(Ds)(0). If this set consists of two points, we should determine
whether or not the group Γ0(Ds) admits the reflection σ with these two fixed points. This
information together with the results of section 3 would then yield the classification of all
flags Ds+1 ⊂ Ds ⊂ · · · ⊂ D1 of length s + 1 for which the subflag Ds ⊂ Ds−1 ⊂ · · · ⊂ D1

belongs to the orbit Ors. In many cases the necessary information regarding fixed points
can be obtained without using normal forms for the orbit Ors. This was the case in the
description of Goursat flags of length ≤ 5 given above in examples 1, 2 and 3.

As an example of results for general length s, suppose that Ds(0) is one of the fixed
points of the previous circle S1(Ds−1)(0). Then the next circle S1(Ds)(0) contains at least
two fixed points, namely L(Ds−1)(0) together with the intersection of Ds(0) with T0Sing∗,
where Sing∗ is the subvariety of points where the germ of the flag Ds ⊂ Ds−1 ⊂ . . . is
equivalent to its germ at the origin. Sing∗ is a smooth submanifold which is tangent to
L(Ds) and transversal to L(Ds−1) as well as to Ds(0), consequently this second fixed point
is is well-defined and distinct from L(Ds−1)(0). Therefore, upon “prolonging” the Ds flag
in order to investigate flags of length s+1, the resulting longer set of flags decompose into
either 3, 4 or an infinite number of singularities. There are 3 if these two fixed points are
the only two fixed points and if the group Γ0(Ds) admits the reflection σ. There are 4 if
they are the only two fixed points but the reflection is not in Γ0(Ds). There are an infinite
number of different germs if there is at least one more fixed point.

Unfortunately, for Goursat flags of arbitrary length we do not know of a general way of
distinguishing the cases with of 1,2, or an infinite number of fixed points, nor of determining
the presence or absence of the reflection in the case of 2 fixed points. If we knew such a
method, then the whole ”Goursat tree” would be completely classified.

The examples show that for flags of length s ≤ 4 the number of fixed points of
S1(Ds)(0) is either 1 or 2. In the latter case the group Γ0(Ds) admits the reflection σ with
these two fixed points. This corresponds to the cases (1), (2a) in section 3. Interpreting
Mormul’s results [Mormul, 1987, 1988] in our language (see Appendix C) we see that the
same holds for flags of length 5. The case (2b) of exactly two fixed points but no reflection
is realized for a unique singularity of flags of length 6. This decomposes into 4 singularities
of flags of length 7. The case (3) in which the group Γ0(D) consists of only the identity
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transformation is realized for at least one singularity of flags of length 7. It follows that
upon prolongation of such flags to length 8, the point D8(0) of the circle S1(D7)(0) is a
continuous modulus. This accounts for the entry or(8) = ∞ in the table of section 1

We do not know if the case (2,c) in section 3 is realized. According to Mormul it is.

5. Prolongation and deprolongation. Monster Goursat manifold.

5.1. Prolongation

Prolongation builds new distributions from old. Let D be a rank 2 distribution on a
manifold M . Its prolongation is a distribution on the new manifold

PD :=
⋃

m∈M

P (D(m))

where P (D(m)) is the projectivization – the set of lines through the origin– of the two-plane
D(m). If D is a Goursat distribution of any rank we set

PD :=
⋃

m∈M

S1
D(m),

where the S1
D(m) = P (D(m)/L(D)(m)) are the circles of section 2. If D is a rank 2 Goursat

distribution then L(D) = 0 so that S1
D(m) = P (D(m)) so that these two definitions match

up. PD is a circle bundle over M .
We endow PD with a distribution E as follows. It is enough to describe what it

means for a curve in PD to be tangent to E. A curve in PD consists of a moving pair
(m(t), V (t)) where m(t) is a point moving on M , and where V (t) is a moving family of
hyperplanes in D(m(t)), sandwiched as in the sandwich lemma in section 2: L(D(m(t)) ⊂
V (t) ⊂ D(m(t)). We declare the curve to be tangent to the distribution if and only if
dm
dt ∈ V (t). Equivalently, let

π : PD → M

be the projection and dπ be its differential. Then

E(m,V ) := dπ−1
q (V ), q = (m,V ).

Definition. The manifold PD with distribution E is the prolongation of the distri-
bution D on M .

Example. Let M be a surface and let D = TM , the whole tangent bundle to M .
Then PD = PTM consists of the space of tangent lines. Let x, y be local coordinates
on M near a point m. Then a line ` ⊂ TmM is described by its slope: dy = zdx. The
new coordinate z is a fiber affine coordinate on PTM → M . The distribution on PTM is
defined by dy − zdx = 0. This is the standard contact form in three-dimensions. Indeed,
PTM is canonically isomorphic to PT ∗M , which has a well-known contact structure, and
which is this prolongation.
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Returning to the general rank 2 prolongation PD, let ω1, . . . , ωs be one-forms whose
vanishing defines D. Complete these forms to a local co-framing of all of T ∗M by adding
two other one-forms, say dx and dy. Restricted to Dm, the forms dx and dy form a linear
coordinate system. Then any line ` ⊂ Dm can be expressed in the form adx + bdy = 0,
with (a, b) 6= 0. Thus [a, b] form homogeneous coordinates on the projective line PDm.
One obtains a fiber affine coordinate by writing [a, b] = [z, 1]. This z is defined away from
the “vertical line” dx = 0 and is the negative of the slope: z = −dy/dx. Therefore z forms
an affine fiber coordinate for the bundle PD → M . The Pfaffian system describing the
prolonged distribution on PD is π∗ωi, i = 1, . . . , s together with

ωs+1 = dx + zdy.

The coordinate z breaks down in a neighborhood of the vertical lines. There we must
switch to the other affine coordinate z̃ which is related to z by z̃ = −dx/dy = 1/z in their
common domain. In such a “vertical” neighborhood we must use the form z̃dx+dy instead
of dx + zdy.

Proposition 5.1. The prolongation E of a Goursat distribution D of rank k and
corank s on a manifold M is a Goursat distribution of rank k and corank s + 1 on the
manifold PD. It satisfies E2 = π∗D. If rank(D) = 2 then L(E2) = ker(dπ), the vertical
space for the fibration PD → M .

Proof. We only give the proof in the case rank(D) = 2. E is rank 2, so E2 has rank
at most 3. Now E ⊂ π∗D, where π∗D is the rank 3 distribution on PD defined by the
vanishing of the π∗ωi as above. Indeed, in terms of our coordinates

E = {v ∈ π∗D : ωs+1(v) = 0}

with ωs+1 = dx + zdy as above. E2 = π∗D because dωs+1 = dz ∧ dy 6= 0 mod ωs+1. (See
the proof of lemma 2.2.) Now Ej = π∗Dj−1, j = 3, . . ., and they have the right rank, so
the rest of the Goursat conditions follow. E is Goursat.

By definition, the vertical space ker(dπ) belongs to π∗D, and is involutive. Thus
ker (dπ) ⊂ L(E2). The equality ker(dπ) = L(E2) now follows from the sandwich lemma
and a dimension count. Alternatively, to get equality, use the fact that E = π∗D is defined
by the vanishing of the π∗ωi, and these forms are independent of the vertical direction.
Consequently L(E2) = ker(dπ). Q.E.D.

5.2. Deprolongation

The reverse of prolongation is deprolongation. Suppose that E is a distribution on
a manifold Q, and that L(E2) is a constant rank foliation. Let us suppose that the leaf
space

M = Q/L(E2)

is a manifold, and that the projection

π : Q → M
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is a submersion. In this case we will say that the foliation L(E2) is nice. Since the vector
fields in L(E2) leave E2 invariant, the distribution E2 pushes down to M . Set

D = π∗E
2

meaning that Dπ(q) = dπq(E2(q)), q ∈ Q. To reiterate, the fact that the flows of L(E2)
are symmetries of E2 implies that the value of D at m = π(q) is independent of the
representative m ∈ π−1(q) which we choose. Note that we have a natural identification:

Dπ(q) = E2(q)/L(E2(q)),

since ker(dπq) = L(E2(q)).
Suppose now that E is Goursat. Then L(E2) has codimension two within E2, so that

D is a two-plane field on M .

Proposition 5.2. Assume that E is a Goursat distribution on a manifold Q with
corank s + 1 and arbitrary rank, and whose leaf space with respect to L(E2) is nice in the
sense above. Then its deprolongation D = π∗E

2 is a corank s Goursat distribution of rank
2 on the quotient manifold M = Q/L(E2).

Proof. The distributions Ek, k ≥ 2, defined by the inductive relation Dk+1 =
[Dk, Dk], also are invariant under the flows of L(E2), since L(E2) ⊂ L(Ek) for k ≥ 2. It
follows that these Ek push down to M . One easily checks that Dj = π∗E

j+1 and that
rank(Dj) = 2 + j . Q.E.D.

Local deprolongation. If the foliation by L(E2) is not nice, we can still deprolong
locally. To proceed, restrict E to a small enough open subset of U ⊂ Q. For example
we could take U to be a flow-box for L(E2), in which case U ∼= U1 × U2 with the leaves
of L(E2) corresponding to U1 × {m}. ( U1 is an interval when dim(L(E2)) = 1.) The
restriction of L(E2) to U is nice, so that we can proceed with deprolongation. We will call
the deprolongation π∗E

2 of E|U a local deprolongation. The germ of a local deprolongation
near a particular leaf of L(E2) is independent of the choice of neighborhood U since the
flows along L(E2) preserve E2. Thus we can speak of the deprolonged germ of any
Goursat distribution.

5.3. Prolongation and deprolongation are inverses

Deprolongation changes rank from r to 2, whereas prolongation preserves the rank of
the distribution, so these two constructions cannot literally be inverses. Rather they are
inverses “modulo trivial factors”. We say that two distribution germs D on M and D̃ on
M̃ are the same modulo trivial factors if there are integers k,m such that the distribution
germs D × Rk on M × Rk and D̃ × Rm on M̃ × Rm are diffeomorphic . Recall that
Zhitomirskii’s theorem (section 1, following the table) asserts that any Goursat germ is
the same, modulo a trivial factor, to one of rank 2.

Proposition 5.3. The deprolongation of the prolongation of a rank 2 distribution
is diffeomorphic to the original. The converse is true locally: modulo trivial factors, the
germ of the prolongation of the deprolonged germ of a Goursat distribution of any rank is
diffeomorphic to the original.
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Proof. Let E be the prolongation of the Goursat distribution D on M . The leaves
of L(E2) are the fibers PDm of the fibration π : PD → M , so that M itself is canonically
identified with the leaf space PD/L(E2). Now π∗D = E2 by the previous proposition,
and π∗π

∗D = D. This proves that the deprolongation of the prolongation is the original.
Conversely, suppose that π : U → M is a local deprolongation, where E is the rank

2 Goursat distribution on U , and D = π∗(E2) is its deprolonged distribution. Write
m = π(u), with u ∈ U . Then

dπu(Eu) ⊂ Dm

is a one-dimensional subspace – an element of PDm. Thus u → dπu(Eu) defines a map

Φ : U → PD

from the original Goursat manifold to the prolongation PD of its (local) deprolongation.
We claim that Φ is a local diffeomorphism. Indeed, Φ is a fiber bundle map over M , so all
we need to check is that the restriction of its differential to L(E2)u, the tangent space to the
fiber of π : U → M at u is onto. Moving along the leaf ` = π−1(m) of L(E2) corresponds
to flowing with respect to a nonzero vector field W ∈ L(E2). So we want to show that
dΦu(Wu) 6= 0. Complete W to a local frame {W,X} for E near u. Then [W,X](u) 6= 0,
mod Eu since E2

u 6= Eu. This is equivalent to the condition that dΦu(Wu) 6= 0. Finally,
one easily checks that Φ maps E to the prolongation of D. Q.E.D.

5.4. Monster Goursat manifold. Proof of Theorem 1.

Suppose that we had a Goursat distribution of corank s on a manifold M with the
property that every corank s Goursat germ was represented by some point of the manifold.
Then the prolongation of M would enjoy the same property, but now among corank s + 1
Goursat distribution germs! For if we are given any corank s + 1 Goursat distribution,
its deprolongation is represented by some point of M , by hypothesis. And by proposition
5.3, upon prolonging this deprolongation we arrive at a germ diffeomorphic to the original.
There is such an M in the corank 2 case. Indeed, in this case, there is only one
corank 2, rank 2 Goursat germ up to diffeomorphism. This is the Engel germ. Thus any
Engel distribution on a 4-manifold will serve for M , with s = 2. It follows that every
Goursat germ of corank s + 2 is realized within the s-fold prolongation of an Engel
distribution!

Now an Engel distribution can be obtained by prolonging a contact structure on a
three-manifold. And a contact three-manifold can be obtained by prolonging the tangent
bundle to a surface (see the example of section 5.1). We have proved

Every corank s Goursat germ can be found, up to a diffeomorphism, within the s-fold
prolongation of the tangent bundle to a surface.

We have called this s-fold prolongation the “monster manifold”. It is a very tame
monster in many respects. Theorem 1 is proved.

Remark. The direction of this section is in some sense opposite to that of sections
3 and 4. In this section we imagine building Goursat distributions up from below by

21



prolonging, beginning with a surface. In sections 3 and 4 we think of building Goursat
distributions “down from above” by taking a corank s Goursat flag, beginning with s = 2,
and examining all possible “extensions” or “square roots” of its corank s generator Ds,
thus filling out out the Goursat flag to one of length s + 1. Now, the prolongation E of a
Goursat distribution D is a square root of π∗D (see Proposition 5.1), so the two approaches
are really the same.

6. Proof of Theorems 2 and 3.

In this section we prove Proposition 3.1 and Theorems 2 and 3. We will use the
following notation. Given a distribution D and 1-form ω on a manifold M , with ω|D 6= 0,
(D,ω) will denote the subbundle E ⊂ D for which E(p) = {Xp ∈ D(p) : ω(Xp) = 0.}.
(If ω|D is allowed to vanish at some points, then (D,ω) is not a subbundle, but rather a a
subsheaf.)

The proof of Theorem 3 is based on our generalized Gray’s theorem (Theorem A.2 in
Appendix A) and the following proposition.

Proposition 6.1. Let F : Ds ⊂ Ds−1 ⊂ · · · ⊂ D1 and FN : DN,s ⊂ Ds−1 ⊂
· · · ⊂ D1 be two Goursat flags on the same manifold whose distributions agree except at
the largest corank, corank s. Suppose that Ds = (Ds−1, ω) and that DN,s = (Ds−1, ωN ),
for 1-forms ω and ωN . Assume that ωN → ω in the Cl-Whitney topology, l ≥ 1. Then
there exist global diffeomorphisms ΦN such that ΦN → id in the Cl-Whitney topology and
(ΦN )∗FN = F for sufficiently big N .

We also need the following local version of this Proposition.

Proposition 6.2.

Part 1. (for germs at a nonfixed point). Assume the flags F and FN are the same
as in Proposition 6.1, but the condition ωN → ω is replaced by the condition jl

pωN → jl
pω

for some point p. Let U be any neighbourhood of the point p. Then for sufficiently large N
there exist open sets (possibly disjoint) UN

1 , UN
2 ⊂ U with p ∈ UN

1 and a diffeomorphism
ΦN : UN

1 → UN
2 which sends the flag FN restricted to UN

1 to the flag F restricted to UN
2 ,

and satisfies jl
pΦN → jl

pid as N →∞.

Part 2. (for germs at a fixed point). Fix N and assume that the Goursat flags F and
FN are the same as in Proposition 6.1. Assume also that jl

pωN = jl
pω for some point p

and l ≥ 0. Then there exists a local diffeomorphism Φ preserving the point p, sending the
germ at p of FN to the germ at p of F and such that if l ≥ 1 then jl

0Φ = id.
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Remarks.
1. Note that in part 1 we may have ΦN (p) 6= p for all N . To make sense of the condition

jl−1
p ΦN → jl−1

p id one should take U to be a coordinate neighborhood and identify the `-th
jet with the `-th order Taylor expansion of ΦN .

2. Proposition 6.1 and the first part of Proposition 6.2 hold for l ≥ 1 whereas the
second part of Proposition 6.2 also covers the case l = 0. This difference is essential. The
case l = 0 is necessary for the proof of Proposition 3.1 and the proof of s-determinacy in
Theorem 2.

Proof of Proposition 3.1. This is the case l = 0 of Proposition 6.2, part 2.

Proof of Theorem 3. Let F : Ds ⊂ Ds−1 ⊂ · · · ⊂ D2 ⊂ D1 and F̃ : D̃s ⊂
D̃s−1 ⊂ · · · ⊂ D̃2 ⊂ D̃1 be Goursat flags on manifold M described by Cs+1-close tuples
ω1, . . . , ωs and ω̃1, . . . , ω̃s of 1-forms. Assume that the foliations L(D1) and L(D̃1) are
the same. By Theorem A.2 (Appendix A) there exists a Cs-close to the identity diffeo-
morphism Φ1 of M which brings D̃1 to D1. This diffeomorphism brings the flag F̃ to
the flag (Φ1)∗F̃ : (Φ1)∗D̃s ⊂ (Φ1)∗D̃s−1 ⊂ · · · ⊂ (Φ1)∗D̃2 ⊂ D1 described by the tuple
of 1-forms ω1,Φ∗1ω̃2, . . . ,Φ∗1ω̃s which is Cs−1-close to the tuple ω1, ω2, . . . , ωs. Now we
apply Proposition 6.1 with s = 2 there and the ` there equal to the current s − 1. It
guarantees the existence of a Cs−1-small diffeomorphism Φ2 which brings the length 2 flag
(Φ1)∗D̃2 ⊂ D1 to the flag D2 ⊂ D1. This diffeomorphism brings the flag (Φ1)∗F̃ to the
flag (Φ2Φ1)∗F̃ : (Φ2Φ1)∗D̃s ⊂ (Φ2Φ1)∗D̃s−1 ⊂ · · · ⊂ (Φ2Φ1)∗D̃3 ⊂ D2 ⊂ D1 described
by the tuple of 1-forms ω1, ω2, (Φ2Φ1)∗ω̃3, . . . , (Φ2Φ1)∗ω̃s which is Cs−2-close to the tu-
ple ω1, ω2, ω3, . . . , ωs. Continue applying Proposition 6.1 (s− 3) times more we to obtain
a sequence of diffeomorphisms Φ3, . . . ,Φs−1 for which the composition Φs−1Φs−2 · · ·Φ1

brings the flag F̃ to the flag F̂ described by 1-forms ω1, ω2, . . . , ωs−1, ω̂s, where ω̂s =
(Φs−1Φs−2 · · ·Φ1)∗ω̃s. The 1-forms ω̂s and ωs are C1-close. Using Proposition 6.1 for
one last time we obtain a diffeomorphism Φs which brings the flag F̂ to the flag F . The
diffeomorphism ΦsΦs−1Φs−2 · · ·Φ1 brings the flag F̃ to the flag F . Q.E.D.

Proof of Theorem 2 – structural stability. This follows from Theorem A.3 part
1 and the Proposition 6.2 part 1 in the same way that Theorem 3 followed from Theorem
A.2 and Proposition 6.1.

Proof of Theorem 2– s-determinacy.
The proof is essentially the same as the proof of theorem 3 above, except we use

Theorem A.3, part 2 instead of theorem A.2, and the second part of Proposition 6.2 instead
of Proposition 6.1. Namely, we start with two germs F and F̃ at a fixed point p of Goursat
flags of length s described by s-tuples of 1-forms ω1, . . . , ωs−1, ωs and ω̃1, . . . , ω̃s−1, ω̃s as
in the proof of theorem 3 above, and having the same s-jets at p. Using Theorem A.3,
part 2 and then Proposition 6.2, part 2, s − 2 times we conclude that F̃ is equivalent to
the germ of another Goursat flag F̂ at p, where F̂ is described by the tuple of 1-forms
ω1, . . . , ωs−1, ω̂s and where ω̂s(p) = ω(p). Now apply Proposition 6.2, part 2, with l = 0
to conclude that the germ of F̂ is equivalent to the germ of F .
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Proof of Proposition 6.1. The proof will consist of three steps.

First step. We will show that for sufficiently large N the flag

FN,t : Ds,N,t ⊂ Ds−1 ⊂ · · · ⊂ D1, Ds,N,t = (Ds, ωN,t), ωN,t = ω + t(ωN − ω)

is a Goursat flag for any t ∈ [0, 1]. To show this we have to check the following statements:

(a) ωN,t|Ds,N,t(p) is a nonzero 1-form for any p ∈ M , t ∈ [0, 1] and sufficiently large N ;

(b) dωN,t|Ds,N,t(p) is a nonzero 2-form for any p ∈ M , t ∈ [0, 1] and sufficiently large
N ;

(c) if µ is a 1-form annihilating the distribution Ds−1 then dµ|Ds,N,t(p) = 0 for any N ,
any p ∈ M and t ∈ [0, 1].

The statements (a) and (b) follow from the fact that they are valid for t = 0, the
condition that ωN tends to ω in the C1-Whitney topology (here we use that l ≥ 1 in the
formulation of Proposition 6.1), and the observation that the hyperplane Ds,N,t(p) as well
as the restrictions of the forms ωN,t and dωN,t to this hyperplane depend on the 1-jet at
p of the form ωN,t only.

To prove (c) we consider the space L(Ds−1)(p). By the sandwich lemma 2.1 it is a codi-
mension 2 subspace of Ds−1(p) and the 1-forms ω and ωN annihilate this space. Therefore
ωN,t annihilates L(Ds−1)(p) for all t, i.e. L(Ds−1)(p) is a hyperplane in Ds,N,t(p), indepen-
dent of N . Because L(Ds−1)(p) is the kernel of the 2-form dµ restricted to Ds−1(p), where
µ annihilates Ds−1 but not Ds−2 (see Lemma 2.2), any hyperplane in Ds−1(p) containing
L(Ds−1)(p) is isotropic for dµ. In particular, Ds,N,t(p) is isotropic for dµ.

Second step. We have proved that FN,t is a Goursat flag for sufficiently large N
and all t ∈ [0, 1]. In what follows assume that N is sufficiently large. Now we start to
construct a path ΦN,t of global diffeomorphisms such that (ΦN,t)∗FN,t = FN,0 = F and in
particular (ΦN,1)∗FN = F . We use the homotopy method. The second step of the proof
is to reduce the construction of ΦN,t to the construction of a path XN,t of global vector
fields satisfying the linear equations

(XN,tcdωN,t + ωN − ω)|Ds,N,t
= 0, XN,t ∈ L(Ds−1). (6.1)

Assume that XN,t satisfies (6.1). Consider the following ordinary differential equation and
the initial condition with a parameter p ∈ M :

dΦN,t(p)
dt

= XN,t(ΦN,t(p)), ΦN,0(p) = p, p ∈ M. (6.2)

Since M is a compact manifold and t varies on the compact segment [0, 1], the solution
of (6.2) is a path ΦN,t of global diffeomorphisms on M . Let us show that (ΦN,t)∗FN,t =
FN,0. The condition XN,t ∈ L(Ds−1) implies that ΦN,t preserves the distribution Ds−1.
Therefore to show that (ΦN,t)∗Ft = F0 it is suffices to show that there exists a path HN,t

of nonvanishing functions such that

(HN,tΦ∗N,tωN,t − ω0)|Ds−1 ≡ 0. (6.3)
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We will seek for HN,t in the form HN,t = ehN,t , where hN,0 is a function identically equal
to 1. Let AN,t = HN,tΦ∗N,tωN,t−ω0. Then AN,0 is the zero 1-form and therefore (6.3) can
be replaced by the equation (dAN,t

dt )|Ds−1 ≡ 0. We have

dAN,t

dt
= HN,t

dhN,t

dt
Φ∗N,tωN,t + HN,tΦ∗N,t(LXN,t

ωN,t +
dωN,t

dt
),

where LXN,t
is the Lie derivative for the vector field XN,t. Let qN,t be a path of functions

on M such that dhN,t

dt = qN,t(ΦN,t). Then the equation (dAN,t

dt )|Ds−1 ≡ 0 is equivalent to
the equation

(qN,tωN,t + LXN,t
ωN,t + ωN − ω)|Ds−1 = 0 (6.4)

with respect to the path of functions qN,t. By the sandwich lemma L(Ds−1) is a subset
of Ds,t for all t. Therefore ωN,t annihilates XN,t ∈ L(Ds−1). It follows that LXN,t

ωN,t =
XN,tcdωN,t. Then (6.4) can be written in the form

(qN,tωN,t + XN,tcdωN,t + ωN − ω)|Ds−1 = 0.

This equation has a solution qN,t due to the relation (6.1), and the definition of Ds,N,t.

Third step. Note that the diffeomorphisms ΦN,t defined by the ordinary differential
equation (6.2) tend to the identity diffeomorphism as N → ∞ in the same topology in
which XN,t → 0. Therefore to finish the proof of Proposition 6.1 it suffices to prove that
(6.1) has a solution XN,t tending to the zero vector field as N → ∞ in the Cl-Whitney
topology. The third step of the proof is to construct such XN,t.

Fix a Riemannian metrics on M . Let VN,t(p) ⊂ Ds,N,t(p) be the orthogonal com-
plement to L(Ds,N,t)(p) within Ds,N,t(p) with respect to this metric. By Lemmata 2.1
and 2.2 dim VN,t(p) = 2 and rank(dωN,t)|VN,t(p) = 2. Therefore there is a unique vector
Xp,N,t ∈ VN,t(p) such that

(Xp,N,tcdωN,t + ωN − ω)|Vt(p) = 0, p ∈ M, t ∈ [0, 1]. (6.5)

Set XN,t(p) = Xp,N,t. Since ωN − ω tends to 0 in the Cl-Whitney topology, XN,t → 0 as
N → ∞ in the same topology. We will show that the path XN,t satisfies (6.1). This will
complete the proof of Proposition 6.1.

Since L(Ds,t)⊕ Vt = Ds,N,t the first condition in (6.1), which is to say the validity of
equation there, follows immediately from (6.5) once we have shown that all the forms in
that equation, namely dωN,t, ωN and ω annihilate L(Ds,t). The fact that dωN,t annihilates
any vector in L(Ds,t) is contained in Lemma 2.2. To prove that ω and ωN annihilate, use
the sandwich lemma 2.1 twice to conclude that L(Ds−1)(p) is contained in both Ds(p) and
in Ds,N (p). Therefore ω and ωN annihilate the space L(Ds−1)(p). But the sandwich lemma
also gives L(Ds,t)(p) ⊂ L(Ds−1)(p), and therefore these forms annihilate L(Ds,t)(p).

It remains to prove the inclusion XN,t ∈ L(Ds−1) of equation (6.1). The validity of
the first equation in (6.1) and the fact that ω and ωN annihilate the space L(Ds−1)(p)
imply

(Xp,N,tcdωN,t)|L(Ds−1)(p) = 0. (6.6)
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By the sandwich lemma L(Ds−1)(p) is a hyperplane in Ds,N,t. Every such hyperplane is
isotropic, so (6.6) implies that either Xp,N,t ∈ L(Ds−1)(p) or that Xp,N,t is a nonzero vector
in the kernel of the 2-form (dωN,t)|Ds,N,t

. The latter possibility is excluded by the con-
dition Xp,N,t ∈ VN,t(p), the orthogonal complement to L(Ds,N,t)(p) = ker(dωN,t)|Ds,N,t

.
Proposition 6.1 is now proved. Q.E.D.

Proof of Proposition 6.2. The proofs of the statements of Proposition 6.2 with
` > 0 are almost the same as as the proof we have just given. The difference occurs mainly
in the construction of the diffeomorphism ΦN,t by the ordinary differential equation (6.2).
Concerning the case of part 1, the problem is that if XN,t is a time-dependent vector fields
on a neighborhood U of a point p then its flow will typically map out of that neighborhood
– hence the business with domains UN

i in part 1. Although there may be no single flow
ΦN,t, t ∈ [0, 1] of diffeomorphisms on a single neighborhood of p, nevertheless, for N large
the vector XN,t(p) is sufficiently close to zero so that its solution defines diffeomorphisms
ΦN,t : UN

1 → UN
2,t, t ∈ [0, 1], where UN

1 is a neighbourhood of p contained in U and UN
2,t is

an open subset of U (which may or may not contain p).
In the case of part 2 we have to show that Φt(p) = p and U2,t contains p. This follows

because XN,t(p) = 0 for all t.

The proof of Proposition 6.2 part 2 with l = 0 is also the same, except that we meet a
difficulty in the first step of the proof. We have to show that the restriction θt(p) of the form
dω+t(dω̃−dω) to the space Ds(p) = D̃s(p) does not vanish for all t ∈ [0, 1]. This is true for
t = 0 and t = 1, but if l = 0 then dω(p) might not be close to dω̃(p) even in the C0-topology
and consequently θt(p) might vanish for some t ∈ (0, 1). Since θt(p) depends linearly on t,
this is impossible if θ0 and θ1 define the same orientation of the 2-space Ds(p)/L(Ds)(p)
(the orientations are well-defined since L(Ds)(p) is the kernel of θ0(p) and θ1(p)). If the
orientations are different then we have to show the existence of a symmetry of the germ
at p of the distribution Ds−1 which also preserves ω(p) and the foliation L(Ds)(p) and
changes the defined above orientation. We can find local coordinates centered at p such
that L(Ds−1) = (dx1, . . . , dxs+1)⊥ and L(Ds) = (dx1, . . . , dxs+1, dxs+2)⊥, and such that
the forms defining the Di can be taken to be independent of xj , j ≥ s + 2. It follows from
the sandwich lemma that the diffeomorphism xs+2 → −xs+2 is a symmetry of the required
type.

Appendix A. Generalization of the Gray Theorem

Gray’s theorem states that for any path of global contact structures Dt, t ∈ [0, 1] on an
odd-dimensional manifold M there exists a family of global diffeomorphisms Φt : M → M
such that (Φt)∗Dt = D0, t ∈ [0, 1]. See [Gray, 1959]. It follows that two global contact
structures D and D̃ are equivalent provided that D̃ is sufficiently close to D in the Whitney
C1-topology.

In this section we generalize Gray’s theorem to corank one distributions D of any
constant class. Let ω be any nonvanishing 1-form describing D near p. By the class of D
at p we will mean the odd number 2r+1 such that ω∧(dω)r(p) 6= 0 and ω∧(dω)r+1(p) = 0.
The even integer 2r is the rank of the restriction of the two-form dωp to Dp.

A corank one distribution has constant class if this class 2r + 1 does not depend on
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the point p ∈ M . The definition of the class is due to [Frobenius, 1887] and [Cartan, 1899].
For example, the class of a contact structure is the dimension of the underlying man-

ifold. The maximal possible class of a corank one distribution on a manifold of even
dimension 2k is 2k − 1. Such a distribution is called a quasi-contact , or even-contact,
structure. A foliation of codimension one has class 1, the minimal possible class. In sec-
tion 2 we proved that the corank one distribution D1 of a Goursat flag has constant class
3.

Recall that the characteristic foliation L(D) of the distribution D is the foliation
generated by vector fields X ∈ D such that [X, D] ⊂ D, i.e. [X, Y ] ∈ D for any Y ∈ D.
The characteristic foliation L(D) ⊂ D for a corank 1 distribution D of constant class 2r+1
has codimension 2r within D. It is the kernel of the 2-form dω|D(p), where ω is as above.
(See the proof of Lemma 2.2.) This kernel coincides with the kernel of the (2r + 1)-form
ω ∧ (dω)r(p) on the space TpM . (By the kernel of an exterior q-form on a vector space
we mean the subspace of vectors v such that the form annihilates every q-tuple of vectors
containing v.)

For example, the characteristic foliation of a quasi-contact structure is a line field.
The characteristic foliation of a contact structure is trivial: it is the zero section of the
tangent bundle. The characteristic foliation of an involutive corank one distribution is the
distribution itself. The characteristic foliation of the corank one distribution of a Goursat
flag has codimension 3 within the manifold.

The following theorems generalizes Gray’s theorem. By a cooriented corank one dis-
tribution we mean a distribution which can be globally described by a 1-form.

Theorem A.1. Let Dt be a path of cooriented corank one distributions on a compact
manifold M of constant class 2r+1 such that L(Dt) = L(D0), t ∈ [0, 1]. Then there exists
a path Φt of global diffeomorphisms of M such that (Φt)∗Dt = D0, t ∈ [0, 1].

For quasi-contact structures Theorem A.1 is known to specialists, although is unpub-
lished to our knowledge. ,

Using Theorem A.1 we obtain Theorem A.2 below. We need it for our proofs of
Theorems 2 and 3 in the body of the present paper, where it is applied to the case of
corank one distributions of constant class 3.

Theorem A.2. Let D and DN , N = 1, 2, . . . be cooriented corank one distributions
on a compact manifold M of constant class 2r + 1 such that DN → D as N → ∞ in the
Cl+1-Whitney topology, l ≥ 1, and L(DN ) = L(D) for all N . Then there exists a sequence
ΦN of global diffeomorphisms of M such that ΦN → id as N → ∞ in the Cl-Whitney
topology and (ΦN )∗DN = D0 for sufficiently big N .

Proof of Theorem A.1. Fix a Riemannian structure on M . For p ∈ M , denote by
Vt(p) ⊂ Dt(p) the 2r-dimensional subspace of Dt(p) which is the orthogonal complement
to L(Dt)(p) with respect to this metric. Let ωt be the path of 1-forms describing Dt.
The form 2-form dωt|Vt(p) is nondegenerate because L(Dt) = ker dωt|Dt(p). Therefore the
equation (Xt(p)cdωt)|Vt(p) = µt(p) has a unique solution Xt(p) ∈ Vt(p) for any 1-form
µt(p) on Vt(p). We need this solution when µt = −dωt

dt |Vt(p). The solution Xt(p) depends
smoothly (analytically) on the point p and on t, and so defines a smooth (analytic) path
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Xt of vector fields on M . The relation Xtcdωt = −dωt

dt in fact holds upon restriction to
the entire space Dt(p). This is because L(Dt)(p) = kerdωt(p) and because the 1-form dωt

dt
vanishes on L(Dt)(p). The latter fact is a consequence of the condition that L(Dt) = L(D0)
does not depend on t. This is the only place in the proof where this condition is used.

Now define the path Φt of global diffeomorphisms to be the solution to the ordinary
differential equation dΦt

dt = Xt(Φp) with the initial condition Φ0 = id. We will show that
(Φt)∗Dt = D0. We have d

dt ((Φt)∗ωt) = Φ∗t (LXt
ωt + dωt

dt ), where L is the Lie derivative
along Xt. Since Xt is annihilated by ωt the Lie derivative is equal to Xtcdωt. We showed
that (Xtcdωt + dωt

dt )|Dt(p) = 0 for any point p. This implies that Xtcdωt + dωt

dt = htωt

for some path of functions ht. Therefore the path of 1-forms At = (Φt)∗ωt satisfies the
linear ordinary differential equation dAt

dt = h̃tAt with h̃t = ht(Φt) with initial condition
A0 = ω0. We can integrate this equation. Indeed the ansatz At = Htω0 yields the scalar
differential equation dHt

dt = h̃tHt with solution Ht = exp{
∫ t

0
h̃sds}. We have shown that

At := Φ∗t ωt = Htω0 which means that (Φt)∗Dt = D0. Q.E.D.

Proof of Theorem A.2. Let ω be a global 1-form describing D, and let ω̂N be
global 1-forms describing DN and such that ω̂N → ω in the Whitney Cl+1-topology. Since
the (2r + 1)-forms ω̂N ∧ (dω̂N )r and ω ∧ (dω)r have the same kernel L(DN ) = L(D) of
codimension 2r+1 then ω̂N∧(dω̂N )r = HNω∧(dω)r, where HN is a nonvanishing function.
Replace ω̂N by ωN = ω̂N

Hr+1
N

. . The forms ωN also describe distributions DN , and we have

ωN ∧ (dωN )r = ω ∧ (dω)r (A.1)

The value of HN at any point depends on the values of ω, ω̂N and their differentials at the
same point only, therefore HN → 1 in the Whitney Cl-topology. Consequently ωN → ω
in the same topology.

Define the path
ωN,t = ω + t(ωN − ω), t ∈ [0, 1]

of one-forms. Let DN,t be the field of kernels of ωN,t. We show that for sufficiently big
N the distribution DN,t is a corank one distribution of the same constant rank 2r + 1
and with the same characteristic foliation L(DN,t) = L(D) for all t ∈ [0, 1]. This follows
immediately from the following two statements:

(a) ωN,t ∧ (dωN,t)r(p) 6= 0 (for sfficiently big N , any t ∈ [0, 1], and any p ∈ M);

(b) dωN,t(Z, YN,t) = 0 for any vector field Z ∈ L(D) and any vector field YN,t ∈ DN,t.

Statement (a) follows from the Cl-closeness of ωN,t to ω, the compactness of the segment
[0, 1] and the condition l ≥ 1.

To prove the second statement we use the equality (A.1). Fix a vector field Z ∈ L(D).
We know that Z(p) belongs to the kernel of dω(p)|D(p) for any point p of the manifold.
This condition implies that Zcdω = hω for some function h. Similarly ZcdωN = hNωN

for some function hN . To prove (b) it suffices to show that hN = h. Indeed, if hN = h
then for any vector field YN,t ∈ DN,t we have:
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dωN,t(Z, YN,t) = (1− t)dω(Z, YN,t) + tdωN (Z, YN,t) =

= (1− t)hω(YN,t) + thωN (YN,t) = hωN,t(YN,t) = 0.

To prove that hN = h we take the Lie derivative LZ of the relation (A.1) along the
vector field Z. Since Z belongs to the kernel of each of the (2r + 1)-forms in (A.1), we
obtain LZ(ω ∧ (dω)r) = Zc(dω)r+1 = (r + 1)(dω)r ∧ (Zcdω) = (r + 1)hω ∧ (dω)r and, in
the same way, LZ(ωN ∧ (dωN )r) = (r + 1)hNωN ∧ (dωN )r. But (A.1) holds, and hence so
does the Lie derivative of (A.1) with respect to Z. We conclude that hN = h.

We have proved that the path of distributions DN,t satisfies the conditions of Theorem
A.1. By this theorem there exists a diffeomorphism ΦN sending DN = DN,1 to D = DN,0.
Tracing the proof of Theorem A.1 we see that as N → ∞ the diffeomorphism ΦN tends
to the identity diffeomorphism in the same topology in which the 1-form dωN,t

dt tends to
zero 1-form. Since dωN,t

dt = ωN −ω and ωN → ω in the Cl-Whitney topology, we have that
ΦN → id in the same topology. Q.E.D.

We also need the following local version of Theorem A.2. Its proof is the almost the
same.

Theorem A.3.

Part 1 (for germs at a nonfixed point). Let D and DN be corank one distributions on
a manifold M of constant class 2r+1 described by 1-forms ω and ωN such that jl

pω̃N → jl
pω

for some point p ∈ M , and for l ≥ 1. Let U be any neighbourhood of the point p. Then
for sufficiently large N there exist open sets (possibly disjoint) UN

1 , UN
2 ⊂ U with p ∈ UN

1

and a diffeomorphism ΦN : UN
1 → UN

2 which sends the distribution DN restricted to UN
1

to the distribution D restricted to UN
2 , and satisfies j`−1

p ΦN → j`−1
p id as N →∞.

Part 2 (for germs at a fixed point). Let D and D̃ be germs at a point p of corank one
distributions of constant class 2r + 1 with the same l-jets at p, l ≥ 1. Then there exists a
local diffeomorphism Φ such that jl−1

p Φ = jl−1
p id and Φ∗D̃ = D.

Note that in Part 1 in general ΦN (p) 6= p. To make sense of the condition jl−1
p ΦN →

jl−1
p id one should take U to be a coordinate neighborhood and identify the `-th jet with

the `-th order Taylor expansion of ΦN .

Appendix B. Proof of Lemma 3.2.

This lemma is based on the following statement.

Proposition B.1. Let D be any Goursat distribution of corank s ≥ 2. All eigenvalues
of the linearization at p of any local symmetry Φ ∈ Symmp(D) are real.

We prove this Proposition at the end of this Appendix. To show how it implies Lemma
3.2 we need several reduction steps.

Step 1. The projectivity gΦ of the circle S1(D)(p) depends on j1
pΦ only. Therefore

to prove Lemma 3.2 it suffices to prove the following statement:
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R1. Let Φ ∈ Symmp(D). Then we can express Φ2 in the form Φ2 = Ψ1exp(V ) where
Ψtexp(tV ) ∈ Symmp(D), V is a vector field germ at p, vanishing at p and Ψt is a family
of local diffeomorphisms such that j1

pΨt = id, t ∈ R.

Note that we are not asserting that Ψt or exp(tV ) lie in Symmp(D).

Step 2. Proof of (R1). Fix any k > s = corank(D). It follows from Proposition
6.2, part 2 that if D̃ is a germ at p of a Goursat distribution such that jk

p D̃ = jk
p D̃ then

there exists a local diffeomorphism Φ such that Φ∗D̃ = D and jk−s
p Φ = id. In particular

j1
pΦ = id. Therefore to prove (R1) it suffices to prove the following statement:

R2. Let Φ ∈ Symmp(D). Then there exists a local vector field V such that:

jk+1
p Φ2 = jk+1

p exp(V ), (B.1)

jk
pexp(tV ) ∗D = jk

pD, t ∈ R. (B.2)

Step 3. We show that (B.1) implies (B.2). It is clear that (B.1) implies (B.2) for all
integer t. By Proposition B.1, the eigenvalues of j1

pΦ are real, therefore the eigenvalues of
j1
pΦ2 are positive and consequently those of j1Vp are real. Therefore the relation (B.2) can

be expressed in the form F1(t) ≡ · · · ≡ Fm(t) ≡ 0, where each of the functions F1, . . . , Fm

is a linear combination of real exponential functions with polynomial coefficients. Since
Fi(t) = 0 for any integer t then Fi(t) ≡ 0 and (B.2) holds.

Step 4. We have reduced Lemma 3.2 to the proof of the existence of a vector field V
satisfying (B.1). Let Jk+1

p be the space of the (k + 1)-jets at p of functions vanishing at p.
Consider the linear operator A : Jk+1

p → Jk+1
p such that A(f) = jk+1

p f(Φ2), f ∈ Jk+1
p .

To prove that (B.1) holds for some vector field V it suffices to show that the operator A
admits a logarithm, i.e. that there exists a linear operator B : Jk+1

p → Jk+1
p such that

A = exp(B). To show this it suffices to prove that the eigenvalues of A are real positive
numbers. It is known that the eigenvalues of A have the form λα1

1 · · · · · λαn
n , where λi

are eigenvalues of the linearization of Φ2 at p, and where the αi are non-negative integers
which sum to k+1. By Proposition B.1 these λi’s are real positive numbers. Therefore the
same is true for the eigenvalues of the operator A. The proof of Lemma 3.2 is completed.

Proof of Proposition B.1. To prove Proposition B.1 we will show that in suitable
coordinate system the matrix of j1

pΦ is triangular. Let D = Ds ⊂ Ds−1 ⊂ · · · ⊂ D2 ⊂ D1

be the Goursat flag generated by D. Take a local coordinate system x1, . . . , xn cen-
tered at the point p such that the Engel subflag D2 ⊂ D1 is described by 1-forms
ω1 = dx1 − x2dx3 and ω2 = dx2 − x4dx3 and the characteristic foliations L(Di) have
the form (dx1, . . . , dxi+2)⊥, i = 1, . . . , s. Denote Φi = Φ(xi). The form of the character-
istic foliations and the fact that they are preserved by Φ implies that ∂Φi

∂xj
(0) = 0 for j > i

and j > 3. To show that the matrix of the linear approximation of Φ is triangular in the
chosen coordinate system we have to prove that

∂Φ1

∂x2
(0) =

∂Φ1

∂x3
(0) =

∂Φ2

∂x3
(0) = 0. (B.3)
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To prove (B.3) we use the relations Φ∗ω1 = Hω1 and Φ∗ω2 = H1ω1 + H2ω2 that hold for
some functions H,H1,H2. Write these relations in the coordinate system x1, . . . , xn. We
obtain

dΦ1 − Φ2dΦ3 = H(dx1 − x2dx3), dΦ2 − Φ4dΦ3 = H1(dx1 − x2dx3) + H2(dx2 − x4dx3).

Since Φ2(0) = Φ4(0) = 0 we obtain (B.3). Q.E.D.

Appendix C. Kumpera-Ruiz normal forms, Mormul’s codes, and growth vector

The Kumpera-Ruiz normal forms are preliminary normal forms for corank s Goursat
flags. They are parametrized by a subsets I ⊂ {3, 4, . . . , s} and provide representatives for
the Kumpera-Ruiz singularity classes

Di(0) = L(Di−2)(0), i ∈ I; Di(0) 6= L(Di−2)(0), i 6∈ I

described in section 2. Using Proposition 3.1, Lemma 2.2 and arguing by induction, it is
easy to prove that any such flag germ can be described by s 1-forms ω1, . . . , ωs of the type

ωi = dfi − gidhi, i > 2,

together with
ω1 = dy − z1dx, ω2 = dz1 − z2dx.

The functions fi, gi, hi, i > 2 are as follows:

fi = gi−1, hi = hi−1, gi = zi + ci if i 6∈ I,

fi = hi−1, hi = gi−1, gi = zi if i ∈ I.

The constants ci, i 6∈ I are real parameters arising in the Kumpera-Ruiz normal forms.
The number of these parameters is equal to s minus the cardinality of the set I. These
parameters are not invariants in general. For example when I is the empty set all of the
parameters can be reduced to zero according to the Cartan theorem.

P.Mormul treats the problem of local classification of Goursat distributions on Rn

of rank 2 as the problem of normalizing the parameters ci by changes of coordinates. To
systematize his results Mormul introduced the following codes. The Kumpera-Ruiz normal
form corresponding to a subset I ⊂ {3, 4, . . . , s} is coded by the tuple of s−2 digits, where
the i-th digit is a 2 if i+2 6∈ I and is a 3 if i+2 ∈ I. The digit 2 acts like an indeterminant:
if the constant ci+2 in the Kumpera-Ruiz normal form can be normalized to 0 then Mormul
changes it to 1, if ci+2 cannot be normalized to 0 but can be normalized to either 1 or to
−1 then Mormul replaces the 2 by either a bold 2 or a 2-. However, if i + 2 6∈ I, but one
does not know, or does not want to specify whether or not the ci+2 can be normalized,
then Mormul leaves it as a 2.

These codes allow Mormul to formulate his results in a very compact way. For example
the assertion “ 3.3.1.2.2 ≡ 3.3.1.2.1” of [Mormul, first paper of 1988, p.15]) means that
in the Kumpera-Ruiz normal form for Goursat flags of length 7 corresponding to the
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set I = {3, 4} ⊂ {3, 4, . . . , 7}, one can reduce the constant c7 to 0 provided that the
parameters c5, c6 have been normalized to 0 and 1 respectively. Translating this result
to our language we obtain the following. If D is a Goursat distribution of corank 6 on
Rn (any n ≥ 8) generating the flag D = D6 ⊂ · · · ⊂ D1 with singularity D3(0) =
L(D1)(0), D4(0) = L(D2)(0) and such that D5(0) is tangent to the submanifold of points
at which this singularity holds whereas D6(0) is generic, then the space L(D5) is the only
fixed point of the circle S1(D)(0) and therefore the set

√
D consist of two orbits.

The Cartan theorem admits an alternative formulation in terms of the growth vec-
tor. The growth vector at a point p of a distribution D (not necessarily Goursat) is the
sequence g1, g2, . . ., where gk is the dimension of the space spanned by all vectors of the
form [X1, [X2, [X3, . . . Xj ]]]...](p) with X1, . . . , Xj ∈ D, and j ≤ k. For nonholonomic
distributions on an n-manifold gl = n for some finite l and so the growth vector is an
l-tuple g = (r, . . . , n) starting with the rank r of D and ending with n. The number l as
well as the growth vector g may depend on the point p. At generic points of a Goursat
distribution, as described by Cartan’s normal form (C) of section 1, this growth vector
is g = (r, r + 1, r + 2, r + 3, . . . , n). This is the growth vector with the fewest number of
components (s = n− r), or fastest growth, given the constraint that it is that of a Goursat
distribution. Murray [Murray, 1994] proved the converse: a point of a Goursat distribution
with this growth vector is a nonsingular point.

This, together with other computations, suggested the conjecture that the growth
vector is a complete invariant of Goursat distributions, i.e. that two germs of Goursat
distributions at a point p are equivalent if and only if they have the same growth vectors
at p. Mormul showed that this conjecture is false for s > 6, although it is valid for s ≤ 6.
The growth vectors of Goursat distributions can be quite complicated. For example using
normal forms Mormul found a Goursat 2-distributions on R9 whose growth vector at the
origin is 2, 3, 4, 4, 5, 5, 5, 6, 6, 6, 6, 6, 7, . . . 7, 8, . . . 8, 9 where 7 is repeated 8 times and 8 is
repeated 13 times.

The number gr(s) of all possible growth vectors for Goursat distributions of a fixed
corank s is finite. (Computing the growth vector from the normal form is a straightforward
tedious job.) Mormul obtained the following table comparing gr(s) with the number or(s)
of orbits in the space of germs of Goursat distributions of the same corank s.

s 2 3 4 5 6 7 8 9

or(s) 1 2 5 13 34 93 ∞ ∞

gr(s) 1 2 5 13 34 89 not known not known

The tuple gr(2), gr(3), ..., gr(7) is the list of the first 6 odd Fibonacci numbers F2s−3.
Conjecturally, this pattern continues: gr(s) is the (2s−3)-d Fibonacci number for all s. In
particular gr(8) = 233, gr(9) = 610. Results in this direction have been obtained by [Jean,
1996], [Sordalen, 1993] and [Luca, Risler, 1994] for the Goursat distribution corresponding
to the kinematic model of a truck pulling s− 1 trailers.

In the next Appendix we use our Theorem 1 to give a simple proof that the local
classification of Goursat distributions corresponding to the model of a truck with s trailers
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and the local classification of arbitrary Goursat flags of length s + 1 are the same problem.
This allows us to extend some of these truck-trailer results on gr(s) to arbitrary Goursat
distributions.

Appendix D. The kinematic model of a truck with trailers.

In this Appendix we use Theorem 1 to give a simple proof that

the local classification of Goursat distributions corresponding to the model of a truck with
s trailers and the local classification of arbitrary Goursat flags of length s+1 are the same
problem.

The kinematic model of a truck towing s trailers can be described by a 2-distribution
on R2 × (S1)s+1 generated by vector fields

Xs
1 =

∂

∂θs
,

Xs
2 = cosθ0f

s
0

∂

∂x
+ sinθ0f

s
0

∂

∂y
+ sin(θ1 − θ0)fs

1

∂

∂θ0
+ · · ·+ sin(θs − θs−1)fs

s

∂

∂θs−1
,

where

fs
i = Πs

j=i+1cos(θj − θj−1), i ≤ s− 1, fs
s = 1,

(x, y) are the coordinates of the last trailer (trailer number s), θs is the angle between
the truck and the x-axis, and θi is the angle between the trailer number s − i and the x-
axis. See [Fliess et al, 1992], [Sordalen, 1993] and [Jean, 1996]. This representation holds
under the condition that the distance between the truck and the first trailer is equal to the
distance between the i-th and the (i + 1)-st trailers. The distribution (Xs

1 , Xs
2) generated

by Xs
1 and Xs

2 satisfies the Goursat condition. (See [Jean, 1996].)

Proposition D1. The Goursat distribution spanned by Xs
1 , Xs

2 and defining the kine-
matics of a truck pulling s trailers is diffeomorphic to the (s+1)-fold Cartan prolongation
of the tangent bundle to the Euclidean plane.

Combining this proposition with Theorem 1 and the reduction from Goursat k-
distributions to Goursat 2-distributions given in section 1, we obtain the following corollary.

Corollary D1. All corank s + 1 Goursat germs occur within the truck-trailer model
with s trailers. Namely, any germ D of any Goursat 2-distribution on Rs+3 is equivalent to
the germ of the distribution spanned by (Xs

1 , Xs
2) at some point p = p(D) of R2× (S1)s+1.

More generally, any germ of any rank k Goursa -distribution on Rk+s+1 is equivalent to
the germ of the distribution span{Xs

1 , Xs
2} ⊕Rk−2 on R2 × (S1)s+1 ×Rk−2.

Remark. We now can state Theorem 1 in the following picturesque way. Every
singularity for a corank s Goursat distribution corresponds to some way of jacknifing a
truck towing s− 1 trailers.
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Proof of Proposition D1. We show that the distribution spanned by (Xs+1
1 , Xs+1

2 )
on R2 × (S1)s+2 is the Cartan prolongation of the distribution spanned by (Xs

1 , Xs
2) on

R2×(S1)s+1. Let p ∈ R2×(S1)s+1. The set of directions in the space spanned by Xs
1(p) and

Xs
2(p) is parametrized by an angle φ ∈ [0, π) by representing each direction by the span of

the vector cosφXs
1(p)+sinφXs

2(p). The Cartan prolongation of the distribution spanned by
(Xs

1 , Xs
2) is the distribution on R2×(S1)s+2 spanned by Y s+1

1 = ∂
∂φ and Y s+1

2 = cosφXs
1 +

sinφXs
2 . Replace φ by the angle θs+1 = φ+θs. In the new coordinates x, y, θ1, . . . , θs, θs+1

we have Y s+1
1 = ∂

∂θs+1
= Xs+1

1 and Y s+1
2 = Xs+1

2 mod Xs+1
1 . Therefore (Y s+1

1 , Y s+1
2 ) and

(Xs+1
1 , Xs+1

2 ) span the same 2-distribution. Q.E.D.

Now we can extend known results on the growth vector of the truck-trailer distribu-
tions Ts = span{Xs

1 , Xs
2} to arbitrary Goursat flags. Jean [Jean,1996] proved that the

number of distinct growth vectors g(p) for Ts, as p varies over the truck-trailer configu-
ration space R2 × (S1)s+1), does not exceed F2s−1. Here Fi denotes the i-th Fibonacci
number. Sordalen [Sordalen, 1993] and Luca-Risler [Luca, Risler, 1994] estimated the de-
gree of nonholonomy of the Ts from above. Recall that this is the length ` = `(p) ( the
number of components) of the growth vector g(p) at p. They proved `(p) ≤ Fs+3 at any
point p ∈ R2 × (S1)s+1 and that there exist certain points where equality is achieved.
(These certain points correspond to the case where each trailer, except the last , is per-
pendicular to the one in front of it.) These results, combined with Corollary D1 have the
following corollaries.

Corollary D2. Let D be a Goursat distribution of corank s on an n-dimensional
manifold M . Then the degree of nonholonomy of D at any point of M does not exceed the
Fibonacci number Fs+2.

Corollary D3. The number gr(s) of all possible growth vectors of Goursat distribu-
tions of corank s does not exceed the Fibonacci number F2s−3.
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