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1. INTRODUCTION

Distributions. that is, subbundles of the tangent bundle, are generaliza-
tions of line fields. It has proven to be very useful to find a frame of vector
fields for a given distribution (i.e., the pointwise values of the vector fields
form a basis for the distribution) which generates a finite dimensional
nilpotent Lie algebra. (For applications to control theory see Hermes,
Lundell, and Sullivan [1], Grayson and Grossman [2], and Lafferriere
and Sussmann [3]. For applications to hypoelliptic operators see Folland
and Stein {4], and Rothschild and Stein [57.) When does such a frame
exist? More generally, when does a distribution admit a frame of vector
fields which generates a finite dimensional Lie algebra?

The purpose of this note is to prove that the generic rank r distribution
on an »n dimenstonal manifold does not admit such a frame, provided

rin—ry>n (1)

We will prove

THFOREM 1. Let %(r,n) denote the space of germs at 0 of rank r
distributions on R". Put the Whitney topology on %(r, n). (See Section 3 for
more on this topology.) Let ¥ < Z(r, n) denote the subset consisting of those
distributions which admit some frame which generates a finite dimensional
Lie algebra. Suppose that r(n—r)>n. Then the complement of X is the
countable intersection of open dense sets. In particular this complement is
dense.

A special case of this theorem is stated without proof by Gershkovich
and Vershik [6] and the present paper was partly inspired by reading their
very nice paper.

The only cases excluded by inequality (1) are r=1 (vector ficlds),
r=n—1, and r=2, n=4. In each of these cases the generic distribution
does admit a frame which generates a finite dimensional algebra. Not only,
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that but in these cases the generic distribution is stable in the usual sense
of singularity theory (Arnold er al. [87], Golubitsky and Guillemin [7]).
For r=1 this fact is called the “straightening out lemma.” For r =n — 1 this
1s the Darboux theorem and the algebra generated is the Heisenberg
algebra provided # is odd. In the special case (r, n)=(2, 4) the algebra
generated is sometimes called the Engel algebra. The theorem for this case
is attributed to Engel. See Gardner [9] and Gershkovich and Vershik [6].

2. HEeurisTic PrROOF: How TO COUNT

The counting proof which we are about to give contains the main idea
behind Theorem 1. A careful proof is given later.

A distribution on R” is an assigment of r-dimensional subspace of R” to
each point of R”. Thus it is a map from R” to G, , the Grassmannian of
r-planes in n-space. G, , is a manifold of dimension r(n — r) so we need this
many functions (of n variables) in order to specify a distribution. Two
distributions are equivalent if there is a diffeomorphism of R" taking one
to the other and » functions are required to sepcify such a diffeomorphism.
Thus r(n —r)— n functions of n variables are required to specify a distribu-
tion up to diffeomorphism. So when the inequality (1) holds the space of
rank r distributions on R” up to difftomorphism is parameterized by a
Sunction space and as such is infinite dimensional. So the orbit of any single
distribution under the action of the diffeomorphism group has infinite
codimension. This is the crucial fact.

The set of Lie algebras (up to isomorphism) whose dimension is N forms
a finite dimensional real algebraic variety and up to some additional finite
dimensional set of parameters this variety parameterizes, again up to
difffomorphism, the space 2, of distnibutions which admit a frame which
generates a Lie algebra dimension N. Thus L, is a finite dimensional
subvariety of an infinite dimensional variety and as such its complement is
open and dense. The set 2 of the theorem is the union of the X', and so
its complement is the countable intersection of open dense sets. Such an
intersection is dense since the space of distributions forms a Baire space
with respect to the Whitney topology (see, for instance, Guillemin and
Golubitsky [7]) and we are done.

3. INGREDIENTS OF THE PROOF

If UcR" is a neighborhood of 0 let %(r, n; U) denote the space of
smooth rank r distributions defined on U. As in the preceding section, we
can and will identify (r, n; U) with the space of smooth maps from U to
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the Grassmannian G, , of r-planes in n-space. Put the Whitney smooth
topology on this space of maps. Thus a sequence o, converges in Z(r, n; U)
if it converges with respect to the C* topology for all k. If ¥ < U we obtain
a continuous open map %(r, n, U) — %(r, n; V') by restriction. (If U and V
are contractible this restriction map is onto.} 2(r, n) can be identified as
the direct limit of the spaces Z(r, n; U;) where U, is the ball of radius 1//
about 0. We put the direct limit topology on 2(r, n).
One easily checks the following facts regarding these topologies.

(1) The map which assigns to a distribution &% € Z(r, n; U) its germ
H#)Ye &(r, n) at O is continuous and open. Also the map j* which assigns
to each distribution its k-jet (k=0, 1, 2,...) at 0 is an open continuous pro-
jection from %(r, n) (or %(r, n; U)) onto the space J*&(r, n)=J*R", G, ,)
of k-jets at 0.

(2) The group Diff(n) of (germs of) diffeomorphisms which take Q to
0 (or U to U) acts continuously on %(r, n) (on Z(r, n; U)). The projection
J* intertwines this action with the action of the finite dimensional algebraic
group J** ! Diff(n) on J*Z(r, n). J* ! Diff(n) denotes the group of k+ 1
jets at O of diffeomorphisms of R” which take 0 to 0.

(3) The spaces &(r, n; U) are Baire spaces: the intersection of any
countable family of open dense sets is dense. It follows that &(r, n) is also
Baire.

Theorem 1 is now an immediate consequence of

ProrosiTion 1. Let X\ < %(r, n) denote the set of germs of distributions
which admit a frame which generates a Lie algebra of dimension N. Suppose
that rin—r)>n. Then the complement of X contains an open dense set.

Now recall the notion of the codimension of a subset of Z(r, n). This will
allow us to prove and sharpen Proposition 1.

DErFINITION 1. Let S< %(r, n) be a subset of the space of distributions.
Suppose that for each k the space j*(S) of k-jets of S is an algebraic
subvariety of J* 2(r, n). If the codimensions of these subvarieties tend to
infinity as k - oo then we say that S has infinite codimension.

Remark 1. In place of “algebraic” in this definition we could use
“subanalytic.”

Remark 2. 1f § is a set of infinite codimension (or even positive finite
codimension) then its complement is open and dense. This follows
immediately from the facts listed above concerning the Whitney topologies
and the fact that the complement of an algebraic subset of positive
codimension is open and dense within a finite dimensional manifold.
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THEOREM 2. When r(n—r) > n the orbits S = Diff(n)(Z) of any distribu-
tion 2 € Z(r, n) under the action of Diff(n) has infinite codimension within
G(r, n). Specifically, codim(j*(S)) ~ r(n —r)(k"/n) as k tends to .

It follows from this theorem and the last remark that in the given
dimension range the complement of any orbit in &(r, n) is open and dense.
Consequently, when inequality (1) holds it is impossible for any single
distribution to be stable in the usual sense of singularity theory. A family
of distributions might still be stable but it would have to be an infinite
dimensional family modulo Diff(n). The proof of Proposition 1 would be
complete if we could show that the families X, are all finite dimensional
modulo Diff(n). This is essentially what we do.

In order to do this we use the notion of a cross-section to a group action.
For us the group in question is Diff(n).

DErFINITION 2. Ler S be a subset of %(r, n) which is invariant under the
action of Diff(n). A “finite dimensional cross-section” to S is a smoothly
embedded finite dimensional subvariety i:4 — Z(r,n) whose orbit under
Diff(n) is all of S: Diff(n)yi{¥")=S. Here “smoothly embedded” means that
the maps j*-i: ¥ —JXR", G, ) are algebraic embeddings of a real
algebraic variety.

Remark 3. Suppose that S is as in the definition and that r(n—r)>n.
Then the codimension of S is infinite by Theorem 2. To see this observe
that j5(S)y=J**"Diff(n) - j*(i(+"}) so that dim j*(S)< dim(individual
orbit)+dim(¥"). Thus codim(j*(S)) = codim(individual orbit)—~dim(¥ ) ~
rin—ryk™ ' = o as k- oc.

It follows that, given Theorem 2, we will have proved Proposition 1 (and
hence Theorem 1} if we can show that each of the sets 2 there admits a
finite dimensional cross-section. Unfortunately, this is not true in general.
However, we will exhibit a dense open subset %(r, n),,, of Z(r, n) with the
property that the set X =2 NnD(r, n)

gen

does admit such a cross

N, gen gen
section. Then its complement 2 _, is open and dense. Thus
e ( - . ’
Zf\ - Z( \\ gen N 1 Z(’\/ U "(ﬁ(r’ n )gw: } < Z(w gen m g(r’ n)gen

and so is contained in an open dense set, the intersection of two other open
dense sets.

DeFINITION 3. Let &% be a distribution defined in a neighborhood of 0.
We say & is bracket generating at 0 if it admits a frame E;, i=1,2, .;r,
such that the E, together with their iterated Lie brackets, [E, E;].
[E, LE, E.]]. .. span R" upon evaluation at 0.

Lr, M)y = 21, 1)
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will denote the set of all germs of distributions which are bracket generating
atr 0.

Remark 4. Tt is easy to check that the bracket generating property ts
independent of choice of frame. Clearly it is invariant under diffeo-
morphisms. It i1s also generic.

PROPOSITION 2. The set Z(r, n)., consisting of germs of distributions
which are bracket generating at O is an open dense subset of Z(r, n) provided
r> 1.

From the above discussion it follows that Proposition 1 and hence
Theorem 1 will be proved upon proving Theorem 2 and

THEOREM 3. X ., admits a finite dimensional cross-section.

4. PROOF OF THEOREM 2

Let S be the orbit of the theorem and set ¢ = j*(S). According to fact
(3) of the previous section ¢, is the orbit of the point j*(2)eJ* %(r, n)
under the action of the (algebraic) group J5+ 1 Diff(n).

The vector space of real-valued polynomials in » variables whose degree
is less than or equal to k& has dimension equal to the binomial coefficient

(" ). Thus
k
dim(J* 9(r, n)) = r(n—r) ("Z )
and

) K Tveerr 1y n+k+l)_)
dim(J leT(ﬂ))-n(( 4 1).

The —1 comes from the fact that the diffeomorphism germs take 0 to 0 and
hence the constant term of the polynomials which occur here is zero. It
follows that the codimension of the orbit ¢, is at least

r()1—r)(<n:k>—n((n:f_T1)——]). (2)

N
(”+1‘>~—k" as k- o0, (3)

Now

k n'
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Here ~ has the usual meaning employed in asymptotic expansions;

[(n""k)_‘l_kn:]:(((kn l) as k— oc.
k n!

Therefore

”

{
codim ¢, ~o (rin=rYk"—nk + 1))~ [r(n—r)—n] ~

as k — 0.

5. PROOF OF THEOREM 3

Begin by considering the variety of all Lie algebra structures on R”™. This
a finite dimensional real algebraic variety coordinatized by the structure
constants ¢ = ¢, of the Lie algebra. (Thus its dimension is less than N*.)
In addition to this data, consider triples (D,, W, ;) where D,c W, R"
are linear subspaces whose dimensions are indicated by the subscripts,
j:RY > R” is a linear map with the property that j(W,)=R" and that
ker(j) is a Lie subalgebra of R" (with Lie algebra structure as given by the
¢%), and finally where D, generates R"Y as a Lie algebra. Denote the set of
all such data by 7. Clearly this forms a real algebraic variety.

We show how to construct the embedding i: ¥, — X ,. First associated
to t=(c,D,, W,, j)e ¥ the homogencous space G/H where G =G(c)
is the simply connected Lie group with Lie algebra (R" ¢} and
H=H(j, ¢c)= G is the closed subgroup whose Lie algebra is ker(/). G acts
on the homogeneous space and so (R%, ¢) acts infinitesimally. That is, for
each veR" we have a vector field p(v) on G/H and [p(v), p(w)]=
ple(v, w)). Define the distribution p(D,) on G/H to be the one spanned by
the vector fields p(v), ve D,. By construction this distribution admits a
frame (any basis for D,) which generates (RY, ¢) as a Lie algebra.
(Warning: this distribution is not G invariant.) Our embedding will be
complete once we construct a canonical local diffeomorphism (G/H, [¢]) —
(R", 0). Just use the diffeomorphism to push the distribution on G/H over
to R”. Now we have a canonical chart onto a neighborhood of [¢], namely
we W, — exp(w) H. Compose the inverse of this chart with our linear map
J to obtain the desired local diffeomorphism.

The composition j*-i is an algebraic embedding. (Truncate the
Campbell-Baker—Hausforff formula.}

To see that / is indeed a cross-section, let & e 2. Pick a frame {E,]
which generates an N-dimensional Lie algebra %. Choose a linear
isomorphism A:R" — 4 thus inducing a Lie algebra structure ¢ on R™. If
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ey % — R” is the evaluation map at O set j=Loe,. D, = A(Span{E,}). For
W, take any complement to ker(j) which contains D,. We have thus
formed 1= (¢, D,, W,, j)e ¥. Using the transitvity of the infinitesimal %
action on R” and exponential coordinates on G(c) one checks that Z and
i(t) are locally difffomorphic distributions.

This completes the proof of Theorem 3 and the paper.
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