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1. Introduction.
The action principle is returning to life in celestial mechanics. In our lectures at this conference Alain

Chenciner and I reported how we used the direct method of the calculus of variations to find a surprising
new orbit for the three-body problem with three equal masses, an orbit in which the masses chase each other
around a fixed figure eight curve in the plane. (See the preprint [ChencMont] and the author’s web page:
http://www.orca.ucsc.edu/ rmont.) The paper[ChencVent], also of this year, is the only other paper I know
of which in which the principle is used to obtain new results for the Newtonian N-body problem. Alain will
report further on the use of this method elsewhere in this proceedings.

In this report I explain how and why collisions form the central obstacle to implementing the direct
method of the calculus of variations. The two theorems presented say that if the infimum of the action over
all closed collision-free paths representing a given free homotopy class is greater than or equal to a certain
collision value then that infimum is realized by a collision orbit. At the end of the report I give a speculative
picture of the action spectrum: the plot of action versus orbit type. I propose that the first, and perhaps
the only possible interesting homotopy class as far as minimizing action is concerned is that of a figure eight
in the shape sphere.

2. The direct method and the two ways compactness fails.

We review the direct method of the calculus of variations as it applies to the N-body problem. We begin
by fixing a class Λ of paths in configuration space. The art of the method lies largely in constructing this
class. Two standard choices of Λ are constructed by either fixing two submanifolds of configuration space,
or by fixing a free homotopy class in the configuration space minus collisions. The first class consists of all
paths which begin on one submanifold at time 0 and end on the other at time T . The second class consists
of all collision-free closed curves which realize the given homotopy class in time T . In both cases when I
say “all paths” I mean all absolutely continuous paths. Recall that a curve is “absolutely continuous” if it
is differentiable a.e. and can be recovered by integraging its derivative. We then form the infimum of the
action over Λ:

a(Λ) = infc∈ΛA(c).

where A is the standard action:
A =

∫
c

Ldt,

with
L =

1
2
K + U

being the usual Lagrangian of mechanics. Thus the usual energy is

H =
1
2
K − U,

while K = Σmaẋa · ẋa is twice the standard kinetic energy and U = Σmamb/rab is the negative of the usual
potential energy. Here we use the following notation. A typical path is written c = (x1(t), . . . , xN (t)) where
xa is the position of the ath body in a fixed inertial plane. Its tangent is the curve ċ = (ẋ1, . . . , ẋN ) of
velocities. The mass of the ath body is ma. And rab = |xa − xb| is the distance between the ath and bth
body.
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By definition of infimum, there is a sequence cn ∈ Λ with A(cn) → a(Λ). Such a sequence is called a
minimizing sequence. The direct method of the calculus of variations proceeds by taking such a minimizing
sequence {cn}, showing that it converges to some curve c∗, showing that this c∗ is sufficiently smooth,
showing that c∗ satisfies Newton’s equations, and finally, showing that c∗ has whatever additional properties
one desires.

The only obstacles to completing this program are the two “noncompactnesses” of configuration space;
Precisely, one should ask:

rab(cn(tn)) → ∞? [NC1]

or
rab(cn(tn)) → 0? [NC2]

In English, do some of the masses become infinitely separated from each other? Or do some of them collide?
If we can exclude both possibilities, then we are guaranteed a solution with all the desired properties.

We explain. From now on we suppose that the center of mass is fixed at the origin:

Σmaxa = 0.

Then the motion is bounded provided
rab < C,

for some positive constant C and all pairs a, b. Such a bound answers question [NC1], which is the easier
of the two noncompactnesses. This bound can be achieved, for example by basing Λ on an interesting free
homotopy class, one for which the length of any curve realizing it must tend to infinity as rab → ∞. (These
are the ‘tied’ classes of Gordon [Gordon].)

The set of paths whose action is less than or equal to a fixed constant is an equicontinuous family by
an argument we will soon recall. The Arzela-Ascoli theorem asserts any bounded equicontinous sequence of
curves in IRn (or indeed in any complete metric space) has a convergent subsequence. Thus the cn converge
in the C0 sense to some continuous path c∗.

Here is the equicontinuity argument. Since U is positive, we have
∫

c
1
2K ≤ A(c). Now write

K = 〈ċ, ċ〉 := ‖ċ‖2

thus defining the usual mass inner-product on configuration space. Apply the Cauchy-Schwartz inequality∫
fg ≤

√∫
f2

√∫
g2 to f = ‖ċ‖, g = 1 to obtain

∫
‖ċ‖ ≤

√∫
K

√∫
1. Also use ‖

∫
ċ‖ ≤

∫
‖ċ‖. Integrating

from time t to time s we conclude that

‖c(t) − c(s)‖ ≤
√

2A(c)
√
|t − s|.

It follows that the set of curves with action less than a constant (e.g. less than a(Λ) + 1) are equicontinous.

Once we have c∗, it is rather standard functional analysis, involving the weak topology on the Sobolev
space H1 of paths with square integrable derivative, to show that:

• A(c∗) = a(Λ) [P1]

• the set of collision times for c∗ has measure zero [P2]

• on the complement of the collision times, c∗ satisfies Newton’s equations [P3]

See for example Gordon [Gordon], 965-967, for a proof. Thus, if we want an honest solution to Newton’s
equations, we are faced with the difficulty of showing that (NC2) does not occur, that is to say, that there are
no collisions along c∗. If we cannot, then all we know about our alleged “solution” is that it is a concatenation
of possibly countably many solutions, glued together continuously at the collision times. These strange
piecewise “solutions” are called “generalized solutions” in much of the literature in this area [Ambrosetti],
[Rabinowitz].
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Open question: Suppose c∗ has an isolated binary collision at time t∗. Does c∗, restricted to a small
interval about t∗, correspond to a Levi-Civita regularized solution to Newton’s equations?

There is no reason to believe the answer is yes. Of course, if it were yes, the whole notion of these
generalized solutions would be more useful and palatable.

3. Gordon’s work on Kepler.
In 1970 W. Gordon found out what happened when one applies the direct method to the Kepler problem.

This work is remarkably prescient. He pointed out the main difficulties in applying the method, described
some possible routes around them, and even described a ‘toy problem’ which turns out to include all the
relevant features of the three body problem. We summarize his work.

Collision in the planar Kepler problem corresponds to passing through the origin. Consider the space
Λ of all closed curves c : [O, T ] → IR2 which avoid the origin, and whose winding number about the origin
is nonzero.

Background Theorem. [Gordon] The infimum over this class Λ is realized by any Keplerian orbit of
period T , including the limiting case of the elliptic collision-ejection orbit which passes through the origin.
Excluding the latter, these all have winding number 1 or −1.

There are two especially important features here. The first is that all Keplerian orbits of the same
period have the same action. Indeed, specifying the semi-major axis is the same as specifying the energy, or
the action, or the period. If our Lagrangian is:

L =
1
2
m|ẋ|2 + γ/|x|

then this action is given by:

AKep = A(m, γ;T ) =
3
2
(4π2mγ2)1/3T 1/3 [KEP ].

The second feature is the concavity of the action as a function of the period T . By this we mean that
whenever T1 + T2 = T with T1, T2 positive then

A(T1) + A(T2) > A(T ),

which follows simply from this same fact for the function T 1/3.
The importance of the second feature is that it eliminates multiple collision times. Gordon’s proof is as

follows. By the same steps as above, Gordon knew he had a minimizer satisfying properties [P1], [P2], [P3]
above. Now if the minimizer did have multiple collision times, then these would separate it into countably
many collison-free arcs with the sums of the time intervals of these arcs being the total period T . Along
each arc the curve must be a solution, and hence an collision-ejection solution of the given duration. Now
the concavity inequality shows that one decreases the action by replacing all these collision arcs by a single
one of duration T .

Corollary. Label the masses for the N-body problem in increasing order, so that m1 is the smallest. (All
masses are allowed to be equal, in which case any ma will do.) Then the infimum of the action over all paths
which suffer some collision in the time T is

a(collision) =
1
2

3
2
(4π2)1/3 m1m2

(m1 + m2)1/3
(2T )1/3.

This infimum is realized by any sequence cn in which masses 1 and 2 execute half of the collision-ejection
orbit, while all other masses ma remain fixed in time, far from 1 and 2 and far from each other, with their
distances from 1 and 2 and from each other tending to infinity as n → ∞.

Proof. One easily sees that the sequence defined in the statement of the corollary tends to this quantity,
this being one-half of the action for the collision-ejection orbit of the 1-2 Kepler problem. To see that any
other collision path has greater action, note that letting the distances r1a, r2b → ∞ has the same effect as
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setting all the other masses ma = 0, a �= 1, 2 to zero in each term of K and U appearing in the action,
and that this replacement decreases the action. Finally, to obtain the formula for a(collision), note that
the effective Lagrangian obtained upon dropping all these other masses is of the above Keplerian form, with
m = m1m2/(m1 + m2) being the usual reduced mass, while γ = m1m2. Thus a(collision) = AKep(m, γ, T )
for these choices of m and γ.

QED

Write
AKep(T ) =

3
2
(4π2)1/3 m1m2

(m1 + m2)1/3
(T )1/3,

so that the estimate in the corollary is by 1
2AKep(2T ). By an argument nearly identical to the one just given

we have

Theorem. [Kepler at infinity]. Label the masses for the N-body problem as above. Consider either of the
following two problems. (A): Minimize over all periodic orbits having a collision. (B): Minimize over all
periodic orbits in the free homotopy class defined by having 1 and 2 make one full turn about each other
while the rest of the bodies remain at rest, far away. The infimum for either problem is AKep. The infimum
is realized by a sequence cn in which masses 1 and 2 execute a Keplerian two-body while all the other masses
remain fixed over the time interval, and their distances from these two moving bodies, and from each other
are of the order O(n), so as to tend to infinity as n → ∞. The 1-2 Kepler motion is a collision-ejection orbit
for problem (A) and a 1-2 Keplerian orbit for problem (B).

The theorem above was crucial in our work with Chenciner [ChencMont]. The value AKep was denoted A2

there.

Here is a result regarding triple collisons.

Lemma. For the planar 3 body problem the infimum of the action over all periodic paths of period T which
have a triple collision is realized by doubling the Lagrange homethetic solution.

Proof. We recall Saari’s decomposition of the kinetic energy, which is to say the splitting into reduced
(deformation) and rotational motion:

K = ṙ2 +
1
4
r2‖σ̇‖2 +

‖C‖2

r2
.

Here
r2 = I := 〈x, x〉

is the total moment of inertial of the triangle formed by the three bodies. The variable σ lies on the unit
sphere, and ‖σ̇‖2 is the length squared of the derivative of the moving unit vector σ(t), which is to say
that it corresponds to the Riemannian metric on the unit sphere. The factor of 1/4 is essential, and will
be explained later on. The vector C is the angular momentum and the term containing it represents the
rotational kinetic energy. Moreover the potential term is given by

U = Ũ(σ)/r.

The homogenized potential Ũ is a function on the sphere of crucial import to the three-body problem. Its
absolute minimum occurs at the Lagrange points r12 = r23 = r31 and there we have

ŨLag =
m1m2 + m2m3 + m3m1

m1 + m2 + m3
.

It follows that for any motion we have

L ≥ 1
2
ṙ2 + ŨLag/r.
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with equality if and only if the shape of the triangle is equilateral (i.e. Lagrange) and this triangle are not
spinnning. The right hand side is a Kepler Lagrangian, as treated by Gordon. Its absolute minimum, over
all periodic solutions having a collision (i.e. r = 0 at some time) is as given by Gordon, corresponding to
the following Lagrange’s homothetic solution in to triple collision and then back out.

QED

4. Homotopy Dreams and Shape Space.
The configuration space for the collision-free N-body problem has a rich fundamental group, the colored

braid group on N strands. This rather complicated infinite group is generated by the ij -binaries: the loops in
which masses i and j make one turn around each other while the other masses stay motionless, far away. The
conjugacy classes of the fundamental group are, as always, in one-to-one correspondence with free homotopy
classes.

HQ1: Is every free homotopy class realized by an action-minimizing periodic collision-free solution to the
Newtonian N-body problem?

HQ2: If not, which classes are represented?

These questions were inspired in large part by conversations with Hsiang. See [Hsiang] for his work in this
area. These are basic questions we are pursuing.

Cheating. In [Braids] we cheated by replacing the Newtonian potential function U by a so-called
“strong-force” potential. With this change we were able to prove that the answer to HQ1 ‘yes’ or nearly so.
By a “strong force potential” we mean one of the form Us.f = Σfab(rab) where the two-particle potentials
fab(r) are positive smooth functions, tend to 0 as r → ∞ and, most importantly satisfy f(r) ≥ C/r2

provided r ≤ δ, for some constants C, δ. For example, a good choice is fab(r) = mamb/r + ε(r)/r2 where
the non-negative bump function ε(r) is 0 if r > 10−26 and 1 if r < 10−27.

Lemma. Any collision path for a strong force potential has infinite action.

Proof. Suppose masses 1 and 2 collide at time 0. Write r for r12, and only consider that part of the
path for which r < δ. The Lagrangian L along this part of the path is bounded below by C(ṙ2 + 1/r2) for
some constant C. But ṙ2 + 1/r2 ≥ |2ṙ/r| = 2|d(logr)

dt |. Consequently A(c) ≥ C|
∫

d(logr)| = +∞, since |logr|
tends to infinity as r → 0.

QED
Thus, for strong-force potentials we can completely ignore collisions within minimizing sequences. The

only obstruction to getting solutions is insuring that rab is bounded, i.e. the noncompactness [NC1] above.
This bound can be achieved by choosing appropriate free homotopy classes, those classes which Gordon called
“tied” to the singularities. In [Braids] we proved that almost every class is so tied, and thus obtained the
theorem. We also gave a homological characterization of “tied”. The sense of “almost every” is as follows.
A set P of integers is said to have density 1 if #(P ∩ [0, N ])/N tends to 1 as N → ∞. The braid groups are
finitely generated, so countable, and a similar notion of density makes sense. The set of tied classes have
density 1 in this sense. We use “almost every” as a synonym for “of density 1” below.

Background Theorem. [Braids]. Under the strong force assumption on the potential, almost every (as
described above) free homotopy class is realized by a collision-free periodic solution to the N-body problem
with this potential.

Shape Space. We return to the planar three-body problem, and its shape space. The configuration
space for the problem is Q = CI3 for three copies of the plane. Write G for the group orientation preserving
isometries of the Euclidean plane. The shape space is defined to be the quotient space: C = Q/G. To
understand C, first fix the center of mass to be the origin, thus defining the linear subspace Q0 = {x :
Σmixi = 0} ⊂ Q. This is to be identified with Q/translations. The subgroup S1 ⊂ G of rotations about
the origin keeps this center of mass fixed, and we have C = Q0/S1. Shape space inherits a metric from the
kinetic energy metric on Q. The distance between two points of C is defined to be the kinetic energy distance
between the corresponding G orbits in Q. This metric is Riemannian away from triple collision, and we
have encountered it earlier. It is the Riemannian metric whose kinetic energy is the term ṙ2 + r2‖σ̇‖2/4
arising in Saari’s decomposition of the kinetic energy above.
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Q0, with the restricted kinetic energy, is equal to CI2 with its standard inner product, the real part of
the Hermitian inner product. Thus

I = |z1|2 + |z2|2

where (z1, z2) are standard linear complex coordinates on CI2, and can be formed by normalizing Jacobi’s
coordinates. The rotation group acts by scalar multiplication of the vector z by a unit complex number.
Thus C = CI2/S1. This quotient is well-known to be Euclidean three-space, topologically. The quotient map
Q0 → Q0/S1 = C is the Hopf map, also called the Kuustanheimo-Steiffel map CI2 → IR3.

C is not isometric to Euclidean space; rather it is isometric to the cone over the two-sphere S of radius
1/2. Here we use

Definition. The cone Cone(X) over a Riemannian manifold (X, d2sX) is formed by introducing an addi-
tional radial variable r ∈ [0,∞) and forming the Riemannian metric dr2 + r2d2sX on on X × (0,∞). The
associated distance function extends continuosly to the topological cone Cone(X) = (X × [0,∞))/ ∼ where
the “∼” means that all points of the form (x, 0) are to be identified with a single point, written 0, and called
the “cone point” of Cone(X). The parameter r is the distance from the cone point.

This sphere S over which C is the cone represents the space of oriented similarity classes of triangles. We
call it the shape sphere. This is the same sphere drawn and described in Moeckel’s beautiful article [Moeckel].
The cone point of C is triple collision. The distance r from triple collision is the square root of the moment
of ineria, as we saw earlier, the r arising in the kinetic energy splitting formula. The sphere has three marked
points, the three binary collision points, which are the poles of U restricted to S = {r = 1} ⊂ C. These
singularities are lie on the equator of the sphere. This equator represents the locus of all collinear triangles,
or triangles of zero area. Correspondingly, the shape space minus collisions is homeomorphic to IR3 minus
three rays through the origin, and is homotopic to the shape sphere S minus three points.

Write C∗ = IR3 \ { three rays } for the collision-free reduced configuration space. Any closed curve
within C∗ can be homotoped so as to intersect the collinear plane transversally, and so as to not intersect
any given sector twice in a row. The intersections with sectors represent eclipses for the corresponding
motion. This shows that the free homotopy classes for the (reduced) planar three-body problem can be
uniquely labelled by cyclic words in the eclipses. For example a 12 binary orbit represents the word 12 = 21.
And the figure eight orbit of [ChencMont] represents the word 123123. The grammatical rules for the words
are: (1) an even number 2� of letters. (2) No stutterring (no ii) , when the word is viewed as cyclic, i.e.
among any of its cyclic permutations. (Thus 2132 is not allowed since it equals 1322 when viewed as being
written out on a circle.)

Our question HQ1 for the planar three body problem thus amounts to asking: Can any periodic sequence
of eclipses, subject to the above grammatical rules, be realized by a periodic orbit? Can this orbit be taken
to minimize the action over this homotopy class?

5. Orbit Surgery and shrinking.
We recall the fundamental scaling symmetry for Newton’s equations with the Newtonian 1/r potential:

c(t) 
→ Sλ(c)(t) = cλ(t) := λc(λ−3/2t).

This scaling maps solutions to solutions, scaling the potential and kinetic energies in the same way so that

A(Sλ(c)) =
√

λA(c).

If the curve c is periodic with period T then Sλ(c) is periodic with period λ3/2T . Note that Sλ is a
deformation of the configuration space (CI2 \ {collisions}) which preserves rays, and in particular takes
collision-free paths to collision-free paths without changing their free homotopy type. Since Sλ commutes
with rotations it induces a homotopy of the collision-free reduced configuration space C∗ also, and we will
use the same symbol for this dilation as well.

Let us fix such a free homotopy class α. Choose a representative c for this class which starts and ends at
a Lagrange configuration. Fix a time T . For T̃ close to T , consider the period T̃ Lagrange collision-ejection
solution, starting at the same configuration, up to scale. It reaches triple collision at time T̃ /2. We may
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assume that our curve c starts at the same point in configuration space (or reduced configuration space)
including scale. Now perform the following surgery, as indicated in the figure below. Follow the Lagrange
orbit down to collision, and stop just short of collision, a distance ε away (i.e. r = ε). This will have taken
a time T̃ /2 − δ with δ = O(ε3/2). Replace c by Sε(c), concatenate it with this part of the Lagrange orbit.
To close the loop, return back up via the Lagrange orbit, along the return leg, the one which before took up
the interval T̃ /2 + δ ≤ t ≤ T̃ . The combined time of transit of this orbit is T̃ − 2δ + ε3/2∆, where ∆ is the
period of the original c. By appropriate choice of T̃ we can guarantee that this period is in fact T .

The action is that of the Lagrange path, minus a little bit for the final collision leg we skipped, plus√
εA(c). As ε → 0 this tends to the Lagrange action. The end result is a family of periodic orbits, all

representing the homotopy class α, and with actions tending to the action ALag of the Lagrange homothetic
orbit. We have proved:

Theorem. Let Λ(α) denote the set of all collision free paths realizing the free homotopy class α in time T ,
and let a(α) = a(Λ(α)) be the infimum of the action over this set of loops, as in the beginning of this article.
Then

a(α) ≤ ALag

with equality if and only if there is a minimizing sequence which converges to the Lagrange homothetic
collision-ejection path.

A Keplerian application
We apply this same idea to the Kepler problem. Write AKep(T ) for the action of a Keplerian orbit

making one tour around the sun (origin). The reader will find a formula for this action above (eq. [KEP]).
Let us write a(k, T ) for the infimum of the action over all closed curves which wind k times around the sun
in time T . Thus a(1, T ) = AKep(T ). The following lemma is a slight addition to Gordon’s fundamental
minimization theorem, quoted above.

Lemma. For all k �= 0 we have a(k, T ) = a(1, T ). Moreover if |k| > 1 then a minimizing sequence cn is
realized by following the collision-ejection orbit almost into the sun, stopping a distance 1/n short of the
sun, making k quick tours around the sun, and then returning along the same collision-ejection orbit.

The idea of the proof is identical to the above, using the same scaling and concatenation trick. We leave
the details to the reader.

6. The action spectrum
By the action spectrum we mean the value of the action of orbits (or infimums of actions) plotted against

some way of indexing these orbits. We are interested in action minimizing periodic orbits in a given free
homotopy class, so the index should be some kind of homotopy index. Thus we mark several points indexing
either possible homotopy types or the two collision possibilities, and we have put in conjectural possibilities
for the corresponding minimizing action a(α). Combining the theorem from section 5 and the theorem from
section 3 we obtain

AKep ≤ a(α) ≤ ALag,

7



which is valid for any nontrivial free homotopy class α in the reduced collision free configuration space. (The
inequality a(α) ≤ ALag is also true in the full collision-free configuration space, and the other inequality
probably holds as well.) Moreover equality at either end almost certainly means that this infimum is not
realized. In other words, there is not an actual periodic orbit having the given action, but rather a sequence
of paths tending to collision as in thee theorems, with action tending to the value in question.

Caveat: The inequality AKep ≤ A(c) ≤ ALag. does not hold for the figure eight curve constructed in
[ChencMont]. Indeed there is no reason it should pertain, as that curve was constructed with the aid of
imposing additional discrete symmetries, and does not achieve the infimum over its homotopy class, but
rather over its homotopy class with these additional symmetries imposed.

The inequality AKep ≤ a(α) deserves a bit of discussion. Being a nontrivial homotopy class, any curve
which realizes α must make a tour around at least one of the collision rays. Say it tours the 12 ray. Now
forget the third mass, thus replacing the action by the 12 Keplerian action. The infimum of this action over
all loops making a tour around the 12 collision is as given by Gordon, hence the bound.

The big question is: are there any classes for which the infimum a(α) lies strictly between these two
extremes? It seems the only viable candidate is a figure eight in shape space: e.g. the eclipse sequence 1232.

We show now that triple collisions will be avoided for the minimizer over this class, at least for nearly
equal masses. The idea is the same as in [ChencMont]. We construct a test curve c which realizes this
homotopy class, and whose action A(c) is less than AL. Since by the lemma above AL is the infimum of
the actions of all period T orbits suffering a triple collision, this inequality will exclude triple collisions. To
construct the test curve c, assume that m2 is the largest of the three masses. Then the maximum of the
reduced potential Ũ among the three Euler configurations occurs at E2, the one in which m2 lies between
m1 and m3. It follows that the equipotential curve Ũ = Ũ(E2) has the shape of an eight passing through
E2, and realizes the homotopy class 1232. Let c(I) be this equipotential curve, on the sphere of radius I
in the reduced configuration space C. As in [ChencMont], choose I = I∗ so that A(c(I∗)) is minimized
among the A(c(I)). This c = c(I∗) is our test curve. Its action A(c) is computed as in [ChencMont] to be

A(c) = a(�;T ) = 3
2 Ũ(E2)

2/3
�2/3T 1/3 where � is the length of the normalized curve c(1) on the unit sphere.

(The constant Ũ(E2) plays the role of γ in our formula [Kep] and � plays the role of m2.) To obtain the
desired inequality A(c(I)) < AL consider the case in which all three masses are equal. Then the curve c(1)
limits to two-thirds of the test curve Ũ = ŨE used in [ChencMont]. (That full equipotential curve was a
double covering of the equator passing through all three Euler points.) This 2/3 of a curve is not smooth,
having corners at E1 and E3, but no matter: it is continuous and closed. We find that Ũ(E2)=ŨE=5√

2
. The

condition a(�;T ) < AL(T ) is equivalent to the condition � < 6
√

2
5 π. This is indeed true, as � = 8�0 where

�0 is the length computed in [ChMont], and which is a bit less than π/5. (The quantity �0 was one-twelfth
the length of the full test curve there.) Now, by continuity, the desired inequality remains in force for nearly
equal masses.

Excluding binary collisions for this shape space eight is almost certainly a more difficult matter, and
is by no means assured. Indeed, there is a candidate binary collision solution which is the limit of curves
realizing the shape space eight and which may realize the infimum. This is Schubart’s orbit [Schubart]. Does
it realize the infimum? We do not know. This is a problem for the future.
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