
Figure 8s with three bodies.Richard MontgomeryMathematics Dept. UCSC, Santa Cruz, CA 95064USA, email: rmont@cats.ucsc.eduJuly 3, 1999Abstract: We prove the existence of a new type of collision-free periodicorbit for the planar three-body problem with the standard Newtonian po-tential, provided two of the masses are equal. In this orbit the unequal massdescribes a �gure eight around the two equal masses. The construction is non-perturbative. It is based on the direct method of calculus of variation, togetherwith the symmetry of interchanging the two equal masses, and a detailed anal-ysis of the behaviour of the action near collisions. Using these same methodswe also construct a new collision-free periodic orbit which realizes the sequenceof eclipses \earth-moon-sun-earth-moon-sun" in the case where all three massesare equal.1 Introduction and Results1.1 The resultWe investigate collision-free periodic motions of three point masses,m1, m2,m3,moving in the Euclidean plane according to the laws of Newtonian gravitationalattraction. Draw the line between m1 and m2, and work in a moving frame inwhich this line is �xed. Also apply a time-dependent homothety to the motionso that these two masses lie at �xed points on this line. The remaining mass m3now moves about in this new moving coordinate system, avoiding m2 and m3.If the curve traced out by m3 has the topological type of a �gure 8 encirclingm1 and m2, then we will say that m3 draws a �gure 8 around m1 and m2, orsimply that the motion is a �gure 8. See �gure 1.***** INSERT FIGURE 1The masses are positive numbers,m1;m2;m3. (By a standard abuse of notation,we use these same symbols m1;m2;m3 to also stand for the positions of thesemasses. )Theorem 1 Suppose m1 = m2. Then, for any value of m3 and any periodT > 0, there is a collision-free periodic solution to Newton's equations in which1



m3 draws a �gure 8 orbit about m1 and m2. The angular momentum of thisorbit is zero. Viewed in the moving frame described above, the �gure 8 curvetraced out by m3 is symmetric with respect to both the re
ections about the y-axisand about the x-axis, where the y-axis is the line joining m1 to m2.
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1.2 Motivation and history.The study of periodic orbits in the three body problem has a long history.Poincare instructed us to focus attention on the periodic orbits in a famouspassage of his book ([16]). Most of the results in this arena are perturbational,perturbing away from cases where one or more of the masses is zero. Ours isnot. It �ts within the recent tradition of using variational methods to obtainperiodic orbits. See [1], [2], for example. It is a direct outgrowth of the author'searlier paper [15].The fundamental group of the con�guration space for 3 points in the planewithout collision is the colored braid group on three strands. The center ofthis group is generated by rotating the three points rigidly one full revolution.Divided by this center the fundamental group becomes that of the two-sphereminus three points. This two-sphere is realized as the space of oriented sim-ilarity classes of triangles which we henceforth call the shape sphere, andthe three points to be deleted represent the three types of binary collisions:m1 with m2, m1 with m3, and m2 with m3. See �gure 2. Any collision-freemotion of the three bodies projects to a curve on this sphere which misses thethree collision points, and if the motion is periodic modulo rotations then itprojects to a closed loop. Consequently, such a motion represents a free homo-topy class for the thrice-punctured sphere, or, what is the same, a conjugacyclass for its fundamental group. Question: is every free homotopy classfor the sphere minus three points realized by some periodic (modulorotation) solution to the planar three body problem? This question was�rst asked, to my knowledge, by Wu-Yi Hsiang (private communication).Free homotopy classes on the sphere minus collisions can be encoded by �nitesequences of eclipses. Let \2" stand for any non-collision collinear con�gurationin which m2 lies on the line segment joiningm1 and m3. In astronomical terms,this is a con�guration in which m2 has eclipsed, or come between, m1 and m3.Similarly we have symbols 1 and 3 for these respective eclipses. Then the �gure8 drawn (see �gures 1 and 2) is encoded by the word 1323, meaning �rst we havean eclipse of type 1, then 3, then 2, then 3, closing back up with the originaleclipse 1. See �gures A and B. In this way words of even length in the letters1, 2, and 3 encode free homotopy classes. The words are subject to the rule ofgrammar \no stuttering" 1. This means that the combinations 22 , 11, 33 areforbidden within a word. Moreover, since the curves on the sphere are periodic,the words should be viewed as cyclic words: 1323 = 3132 = 2313 = 3231, withthese equivalences corresponding to changing the starting place of the curve onthe sphere. The no stuttering rule applies to all cyclic permutation of the word.For example, 1231 is not an allowed word since it equals 1123.We can now rephrase our above question. Subject to the above rules ofgrammar, is every �nite word in eclipses realized by an actual three-body motion?1We thank Mark Levi for this turn of phrase.3



To date, the only words which are known to exist for all masses are the words12, 13 and 23 and their powers. These correspond to tight binaries : two of themasses circle each other in a near-Keplerian orbit while the third body is faraway and does not participate in the word or motion. Their existence has onlybeen proved for su�ciently high total angular momenta, relative to the totalenergy. (See Moeckel [13].) We should add the existence of an orbit representingthe \empy word" with no letters. This orbit is the Lagrange orbit in which themasses form an equilateral triangle which then rotates rigidly. (The empty wordthus corresponds to the generator of the center of the colored braid group.)Using Poincare's perturbation methods we can �nd a vast array of words inthe restricted three-body problem (m3 = 0), and these survive for m3 verysmall. As far as we know, ours is the �rst nonperturbative existence result forperiodic orbits which represent homotopy classes beyond the empty word, thetight binaries 12, 13, and 23, and their powers, 1212, 121212, etc.1.3 A result for three equal masses.We now have the language to state our other existence result.Theorem 2 Let T be any nonzero period and suppose that all three masses areequal: m1 = m2 = m3. Then there is a periodic noncollision orbit representingthe eclipse sequence 123123. SEE FIGURE 3. Each of the six collinearitiesof this orbit occurs at an Euler con�guration, meaning that the eclipsing masslies at the midpoint between the two masses which it eclipses. The angularmomentum for the orbit is zero. The orbit is symmetric with respect to thecomposition of the following three maps: cyclic permutation m1 ! m2 ! m3 ofthe triangle vertices, re
ection of the instantaneous triangle, and translation oftime by 1=6th of the period.2 The methods.We combine the following tools:� 1) the direct method of the calculus of variations,� 2) A knowledge of the geometry of the reduced con�guration space C, bywhich we mean the space of oriented congruence classes of triangles,and� 3) the re
ectional symmetry corresponding to interchanging the two equalmasses.Tool 1 has been used in a great number of papers on the N-body problem([1] and references therein), but to our knowledge has not resulted in any new4



collision-free solutions to the Newtonian N-body problem 2. Tools 1 and 2 wereused together in my paper [15], and also in Sbano [17]. See Hsiang([6], [20] fora closely related approach using the Jacobi metric.2.1 Tool 1: The Direct method.As is well-known, Newton's equations can be reformulated as the critical pointequations for the classical actionA(
) = Z
 Ldt;where L = K + Uis the Lagrangian which is the sum of the kinetic energy K plus the minuspotential energy U . To be precise, suppose that 
 : [0; T ] ! Q is a possiblemotion of the three masses, by which we mean a curve in Q = IR2 � IR2 � IR2,and suppose that 
 has no collisions. Then if 
 is a critical point of A amongall such possible motions which share 
's domain [0; T ] and its endpoints, then
 is indeed a solution to Newton's equations.In ([15]) I applied the direct method by minimizing A over all loops in a�xed free homotopy class, for example, the class represented by the �gure 8.It worked very well, provided the negative of the potential U satis�es thebound U � c=r2ij whenever the interparticle distance rij is su�ciently small.This bound excludes �nite action solutions with collision. However, it alsoexcludes the case under present study, which is the case of most interest, theNewtonian case of U = �mimj=rij. Here the central analytic di�culty with thedirect method is binary collision, or near-collision with very small time intervalsbetween successive eclipses. To circumvent this di�cult, we instead pose:Problem P: Suppose that m1 = m2. Consider the class of all curves which startat any collinear con�guration realizing an eclipse of type 2 and ending in thecollinear Eulerian con�guration of type 3: (r13 = r32 = 12r12), and which taketime T=4 to join these con�gurations. Find a curve in this class which minimizesthe action among all curves in this class.Proposition 1 A solution to problem P exist. Any such solution is a smoothcollision-free solution to Newton's equations. Its only collinear points are itsendpoints.Our main theorem, theorem 1, follows directly from this proposition. Letc1 be a solution to problem P. Using the operation of re
ection in the plane ofmotion, together with the operation of interchanging m1 and m2, we can form2after this paper was written, we learned of simultaneous works of Terracini et al, and ofChenciner, in which such new solutions are found, solutions di�erent from ours5



three new \re
ected" copies of c1. Altogther these four arcs concatenate to forma �gure 8. The �rst variation equation shows that their derivatives match upat the concatenation points, thus resulting in a periodic solution to Newton'sequation. See section 2.3 for details.2.2 Tool 2: Geometry of the reduced con�guration space.In order to use and to prove proposition 1, we will need some knowledge ofthe geometry of the reduced oriented con�guration space C. C is the spaceof oriented congruence classes of triangles. Oriented congruence is almost thesame as usual congruence except that we do not allow re
ections: a triangleof nonzero area and its re
ection are not equivalent. The three side lengthsr12; r23; r13 are good coordinates on C except near the collinear con�gurations{ the triangles of zero area.Formally speaking, C is the quotient space Q=SE(2) obtained by dividingthe usual planar three-body con�guration space Q = IR2�IR2�IR2 by the groupSE(2) of orientation-preserving isometries of the plane. SE(2) is generatedby rotations and translations of the plane and acts on Q by moving each of thethree points simultaneously. In other words, think of the triangle formed by thethree masses and move this triangle rigidly.Points of Q will be written q = (q1; q2; q3) with qi denoting the position ofmi in the inertial plane. As is standard, we �rst get rid of the translational partof the group action by setting the center of mass equal to zero:�miqi = 0;thus de�ning a four-dimensional linear subspace Q0 � Q. This subspace isinvariant under the dynamics provided the total linear momentum�mi _qi is zero,which we henceforth assume. Then C = Q0=SO(2) where SO(2) � SE(2)consists of rotations about the the center of mass. Write� : Q0 ! C or � : Q! Cfor the natural projections.The kinetic energy K of a motion q(t) = (q1(t); q2(t); q3(t)) 2 Q0 is given bythe standard expression 2K = �mik _qi(t)k2:It de�nes an inner product on Q. The kinetic energy splits into two orthogonalparts, one corresponding to shape changes, i.e. to motions in C, and the othercorresponding to rotations:2K(q; _q) = 2KC(c; _c) + 1R2J2:6



Here c = �(q) is the projection of the motion to C. KC is the kinetic energycorresponding to a metric on C which will be described shortly.J = �miqi ^ _qiis the total angular momentum of the system. (For v = (v1; v2); w = (w1; w2) 2IR2 we will write v ^w = v1w2 � v2w1.)R2 = 1�mi�mimjr2ij = �mijqij2;is the total moment of inertial of the instantaneous triangle q and provides ameasure of the overall size of the triangle.Since J2=R2 is non-negative, it follows that any minimizer for problem Pmust have total angular momentum J = 0. Now the potential energy, or itsnegative U = �V = �mimj=rijis a function on C. It follows that any minimizer q to problem P projectsto form a minimizer c = � � q for the problem of minimizing the integral ofKC + U over curves on C, subject to endpoint conditions corresponding tothose of problem P. Note that these endpoint conditions are invariant under thegroup of rigid motions. Conversely, if c(t) is any solution to this minimizationproblem on C, let q(t) 2 Q0 be a curve with zero angular momentum whichprojects to c. Then q(t) will be a minimizer for problem P . (The condition\angular momentum equals zero" de�nes a connection for the principal circlebundle Q0 n f0g ! C n f0g. Consequently the set of all such \zero angularmomentum lifts" forms a circle's worth of curves.) In other words, problemP, and its analogue on C are equivalent via the projection �.As a topological space C is homeomorphic to IR3. As a metric space it is notisometric to IR3. The metric structure on C is de�ned by thinking of the kineticenergy 2KC for C as a Riemannian metric on C (away from the triple collision).Using this metric, C becomes isometric to C(S2(1=2)), the cone over the sphereof radius one-half. By the cone over a Riemannian manifold X, we mean thestandard topological cone, [0;1)� X with f0g �X collapsed to a point, andwith the Riemannian metric dR2 +R2dsX where R parameterizes the dilationalray [0;1). Unless X is a sphere of radius 1, this metric is not smooth {i.e notEuclidean up to a quadratic error { at the cone point R = 0. In our case thecone point corresponds to triple collision. The sphere S2 = S2(1=2) is the spaceof oriented similarity classes of triangles in the plane. Collinear con�gurationsare represented by the cone C(E) over the standard equator E � S. The threetypes of binary collisions are represented by three points b12; b13; b23 2 E , andconsequently to three rays:C(bij) := f�(q) : qi = qjg � C7



intersecting at the origin, which is the cone point. The metric d2sC on Ccorresponding to the kinetic term KC is given byd2sC = dR2 +R2(12d�)2;where d�2 is the standard metric on the two-sphere S2 of radius 1 (in sphericalcoordinates d�2 = d�2 + sin2�d�2).These facts can be seen by �rst observing that Q0 with the kinetic energyinner product 2K is simply a four-dimensional real inner product space, andthat the circle action of SO(2) on it is equivalent to the diagonal action ofSO(2) on IR2 � IR2 = C2. Thus Q0 ! Q0=SO(2) is the same as C2 ! C2=S1.Finally, the restriction of this projection to S3 = fR = 1g � Q0 is the usualHopf �bration S3 ! S2. The fact that the radius of our S2 is one-half that ofthe S3 comes about because any two antipodal points (z0; z1) = (�z0;�z1) 2 S3project to the same point in S2.These facts regarding the metric structure ofC are old. They can be found invarious forms within Lemaitre [10], Deprit-Delie [5], Iwai [8], Montgomery [14],and Hsiang [6]. We also recommend the statistics book [18] for a description ofthis sphere valid in the case of equal masses. Moeckel [13] gives a particularlyclear and useful picture of the sphere and its relation with the triple collisionmanifold.The distance function d on C de�ned by this metric has the following directdescription. Points of C are group orbits in Q. Q has a distance function,d(q; p) =p�mikqi � pik2 induced by kinetic energy. The distance betweentwo points of C is the distance between their corresponding orbits inQ, which is to say it is the minimum of all of the distances between the pointson the corresponding orbits in Q. (Because the group acts by isometries, it isenough to take a single point on one of the orbit, and then minimize its distanceto the other orbit.)We will be using spherical coordinates (R; �) on C, with � 2 S , R 2 [0;1).R is the coordinate described above. We also use R� instead of (R; �) for thecorresponding point of C. (This provides the homeomorphism of C with IR3.)For 
 � S2 we use the notationC(
) = fR� : � 2 
g � C;for the cone over 
. We have already seen this notation, where we used C(bij)for the ray consisting of all binary collisions of mi with mj .We have the following useful relationship between the Euclidean distance rijbetween masses mi and mj in the inertial plane and distances in C.p�ijrij(q) = distC(�(q); C(bij)); (1)where �ij = mimj=(mi +mj);8



and where distC is the usual distance between a point and a subset in a metricspace C.Let Ai denote the equatorial arc which represents the collinear con�gurationswith mi lying between mj and mk, with i; j; k any ordering of 1; 2; 3. Assumethat m1 = m2. Let e3 2 E � S2 denote the collinear con�guration for whichm3 is midpoint between m1 and m2, and C(e3) the corresponding ray. (The\e" here is for Euler. This is is one of the three Eulerian con�gurations.) Thenwe can restate PROBLEM P: Minimize the actionAC (c) = Z T=40 KC (c; _c) + U (c)dtamong all arcs c : [0; T=4] :! C which satisfy the boundary conditionsc(0) 2 C(A2)and c(T=4) 2 C(e3):2.3 Tool 3 and the proof of the theorem.Any isometry � ! F (�) of the shape sphere S2 induces an isometry of C =C(S2) by sending R� to RF (�). (All isometries of C arise in this way.) Are
ection � about a great circle in is an isometry of S2, and we will refer to theinduced isometry of C as a re
ection as well, and we will use the same symbol� for it.Two re
ections are central to our proof. One is the symmetry �0 of re
ectingabout the collinear equator of S2. This corresponds to re
ecting triangles inthe inertial plane. (The line of re
ection in the plane does not matter, as theoriented equivalence class , or point of C will be the same.) The other re
ection�3, corresponds to the interchange m1 $ m2 of vertices in the Euclidean plane.On S2 it acts as re
ection about the great circle r13 = r23 which is the locus ofpoints equidistant between b13 and b23. This great circle is perpindicular to theequator E at the midpoint e3 of arc A3 � E.Now any re
ection is a symmetry of the reduced kinetic energy KC , nomatter what the masses are. The re
ection �0 is always a symmetry of thepotential energy as well, since it preserves the rij. If m1 = m2 then �3 is alsoa symmetry of the potential energy. It follows that in the equal mass case�0, �3, and �0 � �3 take zero angular momentum solutions of Newtonequations to other such solutions.The composition �0 � �3 is a half-twist about the ray e3, both geometricallyspeaking, and in our Euclidean coordinates R�. This means that it leaves thepoints of the ray C(e3) �xed, and when restricted to tangent planes orthogonalto C(e3) it is the operation v 7! �v of 180 degree rotation.9



Let c1 be the solution of proposition 1. According to the �rst variationformula for the action, c1 must be orthogonal to sector C(A2) at its startingpoint, and orthogonal to the ray C(e3) at its endpoint. Indeed the �rst variationfor the action has boundary term h _c; �cijT=40 , where h�; �i is the Riemannianmetric on C and �c denotes a variation of the curve c. In our case the variation�c is an arbitrary vectors �eld along c subject only to the constraint that itis tangent to the respective endpoint submanifolds C(A2) and C(e3) at t = 0and t = T=4: i.e. �c(0) 2 TC(A2) and �c(T=4) 2 TC(e3). Now the boundaryterm of the �rst variation must vanish in order for c1 to be a minimizer, andthis boundary term is h _c1; �cijT=40 , hence the orthogonality of c1 to the endpointsets. It follows that (�0 � �3)� _c1(T=4) = � _c1(T=4). Consequently the curvec2(t) = �0��3(c1(T=2�t)) satis�es _c2(T=4) = _c1(T=4). Since c2 is also a solutionto Newton's equation, we see that continuing the solution c1 past t = T=4 isthe same as concatenating it with c2. We now have a solution ~c : [0; T=2]! Cwhich represents the eclipse sequence 1 3 2.Similarly, since _c1(0) is perpindicular to E and since �0, acts by v !�v onvectors orthogonal to E , the process of dynamically continuing ~c past T=2 isthe same as concatenating it with the curve �0 � ~c(T � t); T=2 � t � T . Theresult is a closed solution curve in C representing the �gure 8. withsymbol sequence 1323.We now have a closed curve on C which, by the above-mentioned principle,is the projection from Q0 of a zero-angular momentum solution q(t). A priori, qneed not be closed, but rather only be closed modulo rotations: q(T ) = gq(0) forsome rotation g. It follows from the \area rule" ([8], [14]) and symmetry that q(t)is indeed closed. This area rule asserts that the rotation g is counterclockwiserotation by � radians, where � is equal to the signed spherical area enclosedby the spherical image �(t) of c(t) = R(t)�(t). Since the �gure 8 curve cjust constructed encloses zero area by symmetry, � = 0, this rotation g is theidentity. Consequently any of the lifted solution curves q(t) 2 Q0 which projectto c(t) are also closed.2.4 The proof of theorem 2.Replace problem P by the problem of minimizing the action among all arcsc : [0; T=6]! C which connect the ray C(e2) to the ray C(e3). Thus insteadof minimizing to C(e3) starting from C(A2) as in problem P we insist that westart on the subset C(e2) � C(A2). The analogue of Proposition 1 holds, withthe result being collision-free solution arc joining the two rays, whose interiorlies in the upper hemisphere. ( See proposition 2 below.) In addition to �0 and�3 used in proving theorem 1, we will use the two other re
ections, �1, whichcorresponds to the interchange m2 $ m3, and �2, which corresponds to theinterchange m1 $ m3. Applying �0 � �3 to c1 and shifting and re
ecting thetime as we did just above in the proof of theorem 1, we are able to continue c110



on to a solution arc joining C(e3) to C(e1). Continue this process around theequatorial circle using �0 � �1, and then �0 � �2, we go around the circle in jumpsof 2=3 of the way around, realizing the eclipse sequence 132. The derivativesmatch up by the same �rst variation argument of theorem 1 : the solution arcsintersect each ray C(ei) orthogonally, and �0 � �i is a half-twist about this ray.The result is a non-collision solution curve c : [0; T=2] ! C, which is closed,but whose endpoint derivatives do not match up: indeed _c(T=2) = � _c(0). Tocontinue, either repeat the process again, or simply re
ect c about the equator {the results are the same { a smooth closed solution curve with eclipse sequence231231 = 123123. SEE FIGURE 3. Its zero-angular momentum lift to Q0is closed for the same reasons that the �gure 8 constructed in theorem 1 wasclosed.3 Proof of proposition 1.Sketch:Replace problem P by its closure, problem �P . Problem �P is the problem of�nding a minimizer for A(
) among all paths 
 which satisfy
(0) 2 C( �A2) ; 
(T=4) 2 C(e3):These endpoint conditions are the closures of the endpoint condition sets ofproblem P. Thus either endpoint may now be a triple collision, and the initialendpoint 
(0) is allowed to be a type 12 or 23 binary collision initial conditions.Upon closing problem P we can directly apply The Arzela-Ascoli theorem.The resulting minimizer may have, a priori, collisions. Most of our work lies inshowing that it has no collisions, not even at its endpoints. Having no collisionsat its endpoints means that it is a minimizer for the original problem P, thusproving the main proposition.Doing all this is just as di�cult as doing it for the general case in whichthe endpoint constraint sets C( �A2) and C(e3) are replaced by the cones overessentially arbitrary closed disjoint subsets of the sphere S2.Proposition 2 Let � and � be closed disjoint subsets of the shape sphere S2.Then, among all curves 
 : [a; b] ! C = C(S2) satisfying 
(a) 2 C(�), and
(b) 2 C(�) there is at least one which minimizes the action A(
). If � and� are symmetric with respect to the re
ection �0 about the equator of the shapesphere then every such minimizer is free of triple collisions on the whole interval[a; b], free of binary collisions on the open interval (a; b), and is represented by asolution to the Newtonian three-body equations. If the binary collision points arenot isolated points of � or of � then every such minimizer is free of collisionsthroughout the entire closed interval [a; b].11



3.1 Existence.Let 
n be a minimizing sequence for the problem. This means that A(
n) !inf
 A(
) where the in�mum is taken over all curves satisfying the boundary con-ditions 
(a) 2 C(�), 
(b) 2 C(�). The kinetic energy term of A, together withthe positivity of the negative potential U and the Cauchy-Schwartz inequalityprovides the following standard bound:d(
n(t); 
n(s)) � `(
n([t; s]) = Z st k _
n(t)jdt �p2A(
n)pjt� sj; (2)Since the A(
n) tend to an in�mum, we have A(
n) � A�, for some uniformbound A�, independent of n. This established equicontinuity of the 
n.The conical nature of the metric and of the boundary conditions impliesthe boundedness of the 
n, which is to say that it prevents R(
n(tn)) ! 1.Indeed, as we will show momentarily, we haveR(
n(tn))sin(distS2 (�; �)) � `(
n)for any times tn in the interval [a; b]. Since the distance occuring in the argumentof the sine is positive and less than or equal to �=2, we see that R(
n(tn)!1for some sequence of times tn would imply that `(
n) ! 1, and which wouldcontradict the bound A(
n) � A�, according to equation (1).To prove the above inequality, note that the 
n lies on the two-dimensionalcone C([�n]) where [�n] � S2 denotes the image of the spherical projection �nof 
n = Rn�n. Since �n must connect � to �, the spherical length �n of [�n] isgreater than or equal to distS2 (�; �). The geometry of C([�n]) is that of a coneover the circle of circumference �n. This geometry is 
at everywhere exceptat the cone point. Elementary planar geometry now shows that if 
 is a curvelying on the cone over the circle of circumference �, that if 
 which has a point adistance R from the cone point, and if 
 which sweeps out the full circumference� then its length ` satis�es ` � Rsin(�) if � < �=2, and ` > R if � � �=2. Thisis the desired inequality, since �n � distS2(�; �).We have seen that there is some constant C such that R(
n(t) � C forthe entire sequence. The 
n thus form an equicontinuous bounded sequenceof curves in the complete metric space C. The Arzela-Ascoli theorem now ap-plies, yielding a convergent subsequence of the 
n , converging uniformly tosome 
. Since the convergence is uniform, 
 also satis�es the requisite endpointconditions, 
(a) 2 C(�) and 
(b) 2 C(�). [Here is where we need that the end-point conditions are closed.] By the Lebesque dominated convergence theoremA(
) � limA(
n). So 
 is a minimizer. If 
 were collision-free, we would bedone. The basic calculus of variations would imply that it is a solution to theEuler-Lagrange equations which are Newton's equations.12



4 Getting rid of collisions.The overall plan. It remains to show that the minimizer 
 just constructedfor proposition 2 is without collisions. The set of collision times is a closed setof measure zero; closed because 
 is continuous, measure zero because U = +1on the collisions and A(
) < 1. A priori, this set of collision times could be aCantor set.Our �rst task will be to show that the set of collision times has no clusterpoints. This implies that it is a �nite set. Then we will remove these remaining�nite number of collisions one-by-one by explicit action-decreasing perturba-tions.4.1 Some tools.We will need the following a priori properties of any minimizer 
 . Note that thecomplement of the collision times is a countable union of disjoint open intervals.� (i) Restricted to any collision-free interval, the minimizer satis�es theEuler-Lagrange equations. Hence we will call the restriction of a mini-mizer to such an arc a solution arc.� (ii) In the neighborhood of a binary collison time the motion of the masswhich is not participating in the collision is twice continuosly di�eren-tiable. The same holds for the Jacobi vector �, which is the vector join-ing this nonparticipating mass to the center of mass of the two collidingmasses.� (iii) The energy H = 12 j _
j2 � U (
) is constant almost everywhere.Proof of (i). The minimizer is continous. Let I = (a; b) be a collision-freeopen solution interval. If the Euler-Lagrange equations are not satis�ed, thendA(
)(�
) < 0 for some variation �
 whose support is contained within I. Wecan follow this variation with an actual perturbation 
� = 
 + ��
 + O(�2),thus decreasing the action while leaving 
's endpoints �xed. This contradictsminimality.Proof of (ii). Although U , and consequently A, are not di�erentiablenear binary collision, they are di�erentiable in the direction of perturbations inwhich only the non-participating mass is varied. Speci�cally, suppose that m1and m2 collide at time tc, while r13; r23 > 0. As before, let q = (q1; q2; q3)denote the positions of the three planets in the Euclidean plane. WriteU = U (q1; q2; q3) = �mimj=rij: U is di�erentiable with respect to q3 in aneighborhood of any 12 binary collision con�guration. Consider variations inwhich q1(t); q2(t) are �xed, while q3(t) varies to q3(t) + ��q3(t). The actionfunctional is di�erentiable for such a perturbation. Consequently, the q3-Euler-Lagrange equations are satis�ed, for the same reasons as in (i). These equations13



are of the form m3 d2dt2 q3 = � m1m3r13(t)3 (q3 � q1) � m2m3r23(t)3 (q3 � q2). The ri3(t) arecontinuous functions, bounded away from zero, and the qi are continuous, thusq3 has continuous second derivative.The proof that the Jacobi vector � has continuous second derivative is thesame, once we realize that the Lagrangian has the form 12(�j _xj2+�j _�j2)+U (x; �)in the Jacobi variables, x = q1 � q2, � = q3 � 1m1+m2 (m1q1 + m2q2). (Theconstants �; � are \reduced masses" and depend only on the mi.)Notation and Terminology. Above we used the following notation, whichwe will try to use consistently from now on. Whenever 
 is a curve in C, thenany zero-angular momentum curve in Q0 whose projection to C is 
 will bewritten q(t) = (q1(t); q2(t); q2(t)). We may also say that q represents 
. Recallthat if 
 is a minimizer, or a solution to the Euler-Lagrange equations, then thesame is true for q.Proof of (iii). Vary the action with respect to changes of parameterization:q�i (t) = qi(� (t)) where � : [a; b] ! [a; b] is a smooth invertible time change.Write t = t(� ) for the inverse function, and � = dt=d� , evaluated at � . WriteV = �U for the potential, so that the Lagrangian is K � V , and the energyis H = K + V . We compute L(q� ; _q� )dt = [ 1�K � �V ]d� . Consequently, thedi�erential of the action with respect to parameterization change at � = 1(corresponding to � = t) is R ��(t)H(t)dt. Here ��(t) denotes the change in thedi�erential of parameterization. This energy H(t) is de�ned almost everywheresince the solution intervals of (i) have full measure. Remember the constraintR ba �d� = R dt = b� a, and use the method of Lagrange multipliers to concludethat R (�H(t) + c)��(t)dt = 0 for all possible parameterization changes. Weconclude that H(t) = c a.e.A re
ection principle. We will have occassion to use the re
ection prin-ciple which asserts that if 
 is a minimizer, then so is �0 � 
, provided that theendpoint conditions for 
 are invariant under �0. Here �0 : C ! C is the re
ec-tion about the collinear states C(E). It holds because the Lagrangian on C isinvariant under �0. (We already used this principle in concatenating solutionsto proposition 1 in order to prove our theorems.)4.2 Central con�gurations : topography of the potential.We will need some understanding of the topography of U , and in particular ofthe important role played by the Lagrange con�guration. The potential U ishomogeneous of degree �1 with respect to dilations. It can be written in theform U (R�) = 1RÛ (�)where Û(�) is a positive function on the sphere with poles at the binary collisionpoints 12, 13, and 23. 14



The absolute minimum of Û over the sphere occurs at the two La-grange points. These two points represent the two oriented similarity classesof equilateral triangles. They are related to each other by the re
ection �0.Either point will be refered to as �L.Û has �ve critical points in all. Besides the two Lagrange points there arethe three Euler points, denoted e1; e2; e3. These are saddle points for Û . Theylie on the equator E of collinear states, with one for each of the three arcs Ai,which is to say one for each type of eclipse 1,2, or 3.Together these �ve points form the central con�gurations, which are thecritical points of Û . If one starts with a central con�guration at rest, then itsshape remains the same, while it shrinks toward triple collision. In our sphericalcoordinates, such solution curves have the formR(t)�c, where �c is one of the �vecentral con�gurations. More generally, �x a realization fq1(0); q2(0); q3(0)g �IR2 of a given central con�guration �c as a particular triangle in the plane, withsize R(0) = 1. Identify the plane IR2 with the complex numbers C. Plug theansatz qi(t) = z(t)qi(0), i = 1; 2; 3 into Newton's equations. One �nds thatNewton's equation is satis�ed if and only if the complex number z(t) evolvesas if it were a point in the z-plane subject to a Newtonian central force withpotential U (�c)=jzj. The solution just described which shrinks to triple collisionis of this form, with z(t) = R(t) real, and with _z(0) = 0. For this motion thethree bodies motion shrink to triple collison z(tc) = 0 at some time, keepingtheir shape �� the same throughout. It is convenient to continue this paththrough tc by having it retraces its path, arriving back at its maximal size ofz(0) at time 2tc. Such a continuation is natural, in that it can be made to �tanalytically within the family of all solutions for the planar Keplerian problemmotion through collision. We will call such an orbit a elliptic collision rejectionorbit with shape �c.4.3 Getting rid of triple collision cluster timesWe show that there are at most two triple collision times. The main step hereis:Lemma 1 Among all �nite-action curves c : [0; b] ! C beginning and endingat triple collision, the action is minimized by the Lagrange elliptic collision-rejection orbit with period b. There are two minimizers corresponding to thetwo Lagrange points �L 2 S2, and these are the only two minimizers.Proof: Let R(t)�(t), 0 � t � b be any competing curve, meaning thatR(0) = R(b) = 0. Keep R(t) the same, while replacing �(t) everywhere byone of the two Lagrange con�gurations, �L. This decreases both the kineticenergy K and the negative potential energy U . Indeed, before the replacementK = 12 [ _R2+ 14R(t)2k _�(t)k2], and afterward it is 12 _R2. And 1R Û (�(t)) � 1R Û (�L)with equality if and only if �(t) = �L. It follows that A(
) � A(
L) withequality if and only if R(t)�(t) = R(t)�L.15



This reduces the minimization problem to the problem of minimizing theone-dimensional Keplerian action R b0 12 _R2+ 1R Û (�L) over all scalar curves R(t),0 � t � b satisfying R(0) = R(b) = 0. The two-dimensional version was studiedin detail by Gordon [7]. His results apply directly and imply that R(t) must bethe collinear collision-ejection Kepler orbit, as claimed.Gordon's argument. For completeness, we recall Gordon's argument.For the Kepler problem, as for our problem, the complement of the collisiontimes consists of a countable union of open intervals seperated from each otherby the collision times. On each open interval the minimizer must satisfy theEuler-Lagrange equations, and it must tend to collision at the endpoints, i.e. theminimizer consists of an at most countable collection of solution arcs, attachedat collisions.For the one-dimensional Kepler problem there is only solution arc on a giveninterval, with collision at both endpoints. This is the collision-rejection solutionarc de�ned on that interval. If the Kepler Lagrangian is 12� _R2 + �R then theaction of these period T solution arcs is computed to be ct1=3 , where c =32(2�)2=3(��2)1=3. (This is also the action of any period t periodic solution forthe two-dimensional Kepler problem.) In our case, � = 1 and � = Û (�L).Consequently the action of of our alleged minimizer is c�(ti)1=3 where the ti arethe lengths of the solution intervals. These open intervals are of full measure, sothat �ti = b. But the function t 7! t1=3 is strictly concave, which implies that�(ti)1=3 � (�ti)1=3 with equality if and only if all but one of the ti's is zero. Inother words, in order that it minimize the curve must consist of a single solutionarc, in which case it is the collision-ejection orbit of period b.Lemma 2 If 
 is a minimizer then it has at most two triple collison times.Proof: The set of triple collision times for 
 is a closed subset of the in-terval. If it is empty, or consists of one point, we are done. Otherwise, it hasa smallest point c, and a largest point d, and these are not equal. The arc
([c; d]) joins triple collision to triple collision. This arc must be the Lagrangecollision-ejection orbit over this interval. For if not, replace this section of 
 withthis Lagrange orbit. The resulting concatenated curve is still continuous andsatis�es the correct boundary conditions, but its action is smaller than that of
, according to the previous proposition. This would contradict the minimalityof 
.QED4.4 Getting rid of binary collision cluster times.We start the process of showing that the binary collision times have no clustertimes. We will �rst need to dispense with the perverse possibility that a sequenceof binary collisions converges to a triple collision. In other words, we want to16



dispose of the following scenario: R(t) ! 0 as t ! tc while Û(�(tj)) = +1for times tj ! tc. We use a proof by contradiction. By translating time, wemay assume that tc = 0. (This shifts the domain of 
.) Suppose that there arebinary collision times tj ! 0. Setm = limt!0 inf Û (�(t)):First, we discard the possibility that m = +1. Suppose m = +1, Thenfor any (large) value M for Û there is an � > 0 such that Û(�(t)) � M overthe interval 0 � t � �. We may take � to be the smallest time at whichÛ(�(t)) = M . (Take M su�ciently large so this value is realized.) Now replace
 over the interval [0; �] by R(t)�(�). The resulting curve still reaches triplecollision at 0, but we have decreased both its kinetic energy, and its potentialenergy, since U (R�) = 1R Û (�). Consequently the action of the curve has beendecreased, contradicting minimality of 
.Now suppose that m is �nite. Then there are times tj ! 0 with Û (�(tj))!m. Write �m = f� : Û (�) = mg � S2 ;Dm = distS2(�1;�m):Here �1 = fb12; b13; b23g = f� 2 S2 : Û (�) = 1g is the binary collision set.The distance Dm is positive. The arc 
 consists of a countable collection ofsolution arcs Ij at whose endpoints the curve tends to binary collision. Wemay take the times tj just introduced to be maximum points for Û (�(t)) overtheir solution arcs Ij . By construction, we can �nd among the tj one for whichÛ(�(tj) is su�ciently close to m so as to guaranteee thatd(�(tj);�m) < Dm=2 while d(�(tj);�1) > Dm=2:Let [tj�; tj+] be the solution interval Ij within which this maximum lies. Let �be the geodesic { an arc of a great circle on S2 { which joins �(tj) to �m. Start� o� at time tj and parameterize it according to j _�(t)j = j _�(t)j, t > tj . Sincethe spherical length R tj+tj j _�(t)jdt of � over the interval [tj; tj+] is greater thanDm=2 and since the length of � is d(�(tj);�m) < Dm=2 , the geodesic � willhave reached �m before we have run out of time in the interval Ij . Let t� bethe time when we hit �m, so that Û (�(t�)) = m. Replace our alleged minimizer
(t) = R(t)�(t) by ~
(t) = R(t)~�(t) where~�(t) = 8<:�(t); if t � tj�(t); if tj � t � t��(t�); if t � t�.Then the kinetic energy of this replacement curve is the same up to t�, afterwhich time it is zero, while the negative potential term U (~
) is the same as thatof 
 up to tj and thereafter it is LESS than that of 
. Consequently the per-turbed actionA(~
) is less than the unperturbed action A(
), again contradictingminimality. 17



4.5 Isolating binary collisionsWe �nish the proof that the the set of binary collision times can have no clusterpoint. From the previous subsection, we know that the binary collisions alongany minimizing path are bounded away from triple collision. Consequently theoverall size R of a con�guration at any binary collision time tj is bounded awayfrom zero and from in�nity:R� � R(tj) � R� whenever rik(tj) = 0where R� < R� are positive numbers.According to the conical geometry of C, the distance in C between twosuccessive binary collisions 
(tj); 
(tk) involving di�erent masses, eg. 12 and13, is subject to the bound2R�sin(12 �23) � d(
(tj); 
(tk))where 0 < �23 < � is the spherical distance between the binary collision pointsb12 and b13, on the shape sphere S2 . (See x3.1 for a similar argument.) Sinced(
(t); 
(s)) �p2A(
)pjt� sj, (eq. (2) ) this bounds the time jtj�tkj betweentwo such binary collisions away from zero.Thus, if tn is a sequence of binary collision times tending to a limit tc , thenfrom some point N on these binary collision 
(tn) must all be of the same type.Without loss of generality, we may assume that this type is 12, so that we havetimes tn ! tc with r12(tn) = 0, while R(tn) � R�. We show that the existenceof such a sequence contradicts minimality. In order to do this, we will needall three of the facts referred to at the beginning of this section: (i): on theopen intervals Ij cut out by the collision times the minimizer must satisfy theEuler-Lagrange equations; (ii): the derivative of the Jacobi vector, and hencej _�j2, is continuous at binary collisions, and so near tc; (iii): the value of theenergy H on di�erent solution arcs 
jIj is the same.For the remainder of this subsection we will reserve the notationO(1) to mean any function along the path 
 which is bounded as t ! tc. Forexample, it follows from the above discussion that 1=r13 and 1=r23 are bothO(1). To prove the impossibility of the sequence, it will su�ce to prove thebound d2dt2 12r12 = m1 +m2r12 +O(1); (B)uniformly on all of the solution arcs tending to tc. To see why this su�ces,assume the bound for the moment. The complement of the collision timesis a union of open intervals (tn; tn+1) at whose endpoints we have collision:r12(tn) = 0 = r12(tn+1). In between, the function r12 achieves a maximum atsome point t�n. The second derivative of r12 must be negative or zero at thesepoints: m1 +m2r12 +O(1) � 018



which yields k(m1 +m2) � r12(t�n)where jO(1)j � 1=k. Now recall (eq. (1)) the equality d(P;C(b12)) = p�12r12,relating r12 and the C-distance between a con�guration and the nearest 12-typebinary collision. (Here �12 = m1m2m1+m2 .) Using the distance bound d(
(t); 
(s)) �p2A(
)ps� t of eq. (2) we obtainkp�12(m1 +m2) � p2A(
)pt�n � tn:This shows that jt�n� tnj cannot go to zero, so that the time sequence tn cannotbe Cauchy, and consequently cannot converge to tc.We return to the proof of the bound (B). Levi-Civita [11] proved this boundin the case of a single solution arc. ( See also Sundman [19].) We follow the linesof Wintner's treatment (see [21], p. 268) of the Levi-Civita bound We felt it isworth including the derivation, as opposed to simply quoting it, it not entirelyobvious how to extend Levi-Civita's analysis to our situation of a a countablenumber of solution arcs with the same energy. Let q1; q2; q3 be the vertices ofthe triangle in the plane and qij = qi � qj as usual. Setx = q12:The bound (B) will follow from the bound12 j _xj2 � m1 +m2r = O(1); (C)where for convenience we set r = r12 = jxjfor the rest of this subsection. To see why (B) follows from (C), note thatd2dt2 (12r2) = _x � _x+ x � d2dt2x:Newton's equations assert thatd2dt2x = �(m1 +m2) xr3 + f;where f = m3(q31r331 � q32r332 ):(Wintner [21] , eq. (12), p. 260.) Since 1=r31 and 1=r32 are both O(1) we havejf j = O(1);19



so that f � x = O(r):Putting these results together, we obtaind2dt2 (12r2) = j _xj2 � m1 +m2r +O(r):Now eq (C) implies thatj _xj2 � m1 +m2r = m1 +m2r + O(1)from which eq. (B) now follows.It remains to derive the bound of eq (C), which is that g(t) := 12 j _xj2� m1+m2ris O(1). The energy isH = �g(t) + �2 j _�j2 � m1m3r13 � m2m3r23 ;where � is the Jacobi vector, as in fact (ii) above. According to that fact, j _�j2is bounded near tc since � is C2 near tc. And the 1=ri3 are also O(1). Fact(iii) above asserts that this energy H is constant a.e., and in particular is thesame constant for all of the solution arcs. Call this constant h. We have provedg(t) = 1�h+O(1) = O(1) near tc, as desired.4.6 Deleting Isolated Triple collisions4.6.1 The Set-up.We have shown that there are at most two triple collisions. We will show howto get rid of these remaining two.Suppose that 
 has an isolated triple collision at t = tc. We will constructa perturbation 
� which agrees with 
 except in a small neighborhood of tc,has no collision in this neighborhood, still satis�es the endpoint conditions ofproblem �P , but for which A(
�) < A(
):By a time translation we may assume that the collision time occurs at t = 0.This translation shifts the domain of 
. The collision time may be an interiorpoint, or it may be either endpoint of the domain of 
. The arcs of 
 on eitherside of 0 (or on one side if tc = 0 is an endpoint) are solutions to Newton'sequations (fact (i) above) which tend to triple collision at t = 0, and which havethe same �xed energies H = h (fact (iii) above). These collision solutions wereinvestigated in some detail by Sundman, and later by other researchers, notablySiegel and McGehee. We will need some of their results.20



4.6.2 Results needed from Sundman.Let q(t) = (q1(t); q2(t); q3(t)) 2 Q0 denote a solution to the three-body equationswith a triple collision at time t = 0, and let R(t)�(t) be its projection to theshape space C. Sundman shows that :R(t) = ct2=3 +O(t4=3); c > 0_R = 23ct�1=3 +O(t1=3)limt!0�(t) := �0and that the limiting shape �0 is one of the �ve central con�gurations �c dis-cussed above. Moreover, this limiting shape is not just an abstract. The verticesof the triangle in the inertial plane settle down to a �xed triangle representingone of the �c after being appropriately rescaled:limt!0 1R(t)q(t) = q̂(0)exists. Neccessarily �(q̂(0)) = �0. Moreoverddt q̂ = O(1) as t! 0where q̂(t) = q(t)=R(t).4.6.3 The perturbationLet q(t); 0 � t � b be a solution arc with triple collision at t = 0. We willconstruct a perturbation of q supported in an arbitrarily small neighborhood of0 which decreases the action. This will be our basic tool for getting rid of thetriple collisions.Fix a shape �p 2 Q = IR2 � IR2 � IR2;of unit size (R(�p) = 1) subject to the constraint:�pij � q̂ij(0) > 0; for i 6= j: (3)Here �pij = �pi � �pj denotes the vector connecting vertex mi to vertex mj forthe perturbed triangle, q̂(t) = 1R(t)q(t) is the normalized solution, q̂(0) is thelimit for these rescaled triangles, and q̂ij(0) is the corresponding ij edge vectorfor q̂(0). De�ne a perturbation q� of q according toq�(t) = q(t) + �f(t)�p:= q(t) + ��(t)21



Here f(t) = f(t; �) is a strictly decreasing, nonnegative scalar function withf(0) = 1 , df=dt(0) < 0, and with support [0; �] � [0; b]. The parameter � istaken small enough so that the Sundman estimates hold on [0; �]. We also imposethe conditions j _f j � c=� on [0; �], while _f < �c2=� on [0; �=2] for constants c; c2independent of �.Proposition 3 (Perturbation Proposition) For all �; � su�ciently small,A(q�) < A(q), for the perturbation de�ned above, provided that �p is subject tothe inequality (3) above.Remark: Since the endpoint at t = 0 of q� is ��p, we have gotten rid of thetriple collision and at the same time lowered the action.Proof of Proposition 3.The perturbed intermass distances are(r�ij)2 = r2ij + �2j�ijj2 + 2��ij � qijwith �ij = �i � �j = f�pij, and rij := r0ij = jqijj being the unperturbeddistance. Now �ij � qij = fR�pij � q̂ij so that condition (3) together with thecontinuity of q̂ at 0 implies that r�ij > rij for � su�ciently small. ConsequentlyU � := U (q�) < U = U (q) and so Z U � < Z U:We now show that Z K� < Z Kwhere K� = 12h _q�; _q�i, is the perturbed kinetic energy, and where we use hq; vi =�miqi � vi denotes the kinetic energy inner product. The standard identityhq; vi = 1�mi�mimjqij � vij shows that condition (3) implies thath�p; q̂(0)i > 0; (4)which will be the key to the desired inequality.In the remainder of the proof, \ dd�" will denote the derivative with respectto �, taken at � = 0. We have dd� 12 h _q�; _q�i = h _�; _qi:And _� = _f�p. Also _q = _Rq̂ + R ddt q̂ since q = Rq̂, where q̂ is the normalizedshape. Thus dd�K� = _f _Rh�p; q̂(t)i + _fRh�p; ddtq̂i:22



Now _f = O(1=�), R = O(t2=3), and _R = O(t�1=3), so that the �rst term,_f _Rh�p; q̂(t)i dominates the integral. But _f < 0, _R > 0, and, according to con-dition (4) above, and the continuity of q̂, we have h�p; q̂(t)i > 0 for t, and hence�, su�ciently small. Consequently, the whole integrand is negative over the do-main of variation, [0; �], and the integrated kinetic energy has been decreased.Let us be a bit more precise regarding this last argument. Let c standfor a positive constant, independent of �, which can change from inequality toinequality in the rest of this paragraph. Then, for � su�ciently small, andt � �, we have h�p; q̂(t)i > c, as well as j _f j < c=�, _R > ct�1=3, and R < ct2=3.Moreover _f _R < 0, with _f _R < � c� t�1=3 on a smaller interval, say 0 < t < �=2.It follows that the change in the integral of the kinetic energy is given bydd� R K� = R �0 _f _Rh�p; q̂(t)i + O(�2=3)< �ch�p; q̂(0)i��1=3 +O(�2=3):Provided � is small enough. The derivative of the kinetic energy is negative, sothat the integral of the the kinetic energy has been decreased.We have shown that R U � and R K� are each seperately less than their un-perturbed counterparts, so the overall action has been decreased.QEDWe now use the perturbation proposition 3 to get rid of all triple collisionsin our minimizer. If tc is an interior triple collision time, then on either side ofit are solution arcs, q�(t); t < tc, and q+(t); t > tc with triple collision at tc. Ifboth have limiting shape q̂(tc) equal to the Lagrange con�guration, then we aredone. For by rotating and possibly re
ecting the arc of the alleged minimizerq on one side of the collision we can arrange that the limiting shape for bothq+ and q� are the same (both being equilateral triangles in the plane). Applythe perturbation of the proposition simultaneously to both arcs q�, taking theperturbed shape to be �p = q̂+(tc) = q̂�(tc). Condition (3) is satis�ed because�pij = q̂�(tc). The action of the perturbed curve q̂� is less than that of q, andthe perturbed curve has no triple collision at tc. We have gotten rid of thiscollision.If only one arc, say q� is Lagrange, this trick will still work. For suppose theother arc is Eulerian. By appropriate rotation and re
ection of one of the arcswe can arrange that the two limiting con�gurations are as in the �gure below***Insert �gure 4****By inspection, q̂+ij(tc) � q̂�ij(tc) > 0 for this con�guration. We can take �p tobe either limit, say q�(tc), and continue as above to get rid of this collision.This same trick works if the triple collision is at one of the endpoints of thetime interval, provided the limiting shape is equilateral. For example, supposewe tend toward Lagrangian triple collision at t = T=4, in our original problem,problem �P . Then we must take �p to be the Euler central con�guration of type23



132, otherwise the perturbation will violate the endpoint conditions of problem�P . But this works according to the previous paragraph. More generally, if �(�p)lies in the same closed hemisphere of S2 as our limiting Lagrage con�guration�L then �p can be rotated so that condition (3) is satis�ed. This can alwaysbe arranged by re
ecting the solution arc. Recall that re
ection keeps theaction of a path the same. We need that the re
ected arc satis�es the correctboundary conditions, here c(a) 2 C(�). This is guaranteed by the assumptionin proposition 3 that the endpoint sets � and � are symmetric with respect tore
ection. This is the only place where we use this assumption on theendpoint conditions.This disposes of the case where the limiting shape(s) q̂(tc) are Lagrange.If tc is interior and both endpoints are Euler but equal, or if we are in theendpoint case and the limiting shape corresponds to that endpoint's boundarycondition (� or �) , then the tricks we just used to get rid of limiting Lagrangeshapes carry through verbatim. It remains to deal with the case where tc isinterior, but the one-sided limits q̂�(tc) are di�erent Eulerian con�gurations,or where tc is one of the endpoints, but the limiting shape q̂(tc) doe not matchup with the boundary condition there. For example, in our original problem �Pthis situation arises when �(q̂(tc) = e2 at tc = T=4 , whereas according to theboundary conditions we must have �(�p) = e3 at T=4.We are left with trying to decrease the action in the case where the limitingshape q̂(tc) is one euler con�guration, but the desired perturbed shape, �p is adi�erent Euler con�guration, or more generally, any di�erent shape. We proceedas follows.Lemma 3 Let q(t); 0 � t � b be an action minimizer among all curves satisfy-ing q(0) = triple collision, q(b) = q1, a �xed triangle. Then the limiting shapeq̂(0) is a Lagrangian con�guration.According to this lemma, we can replace any triple collision solution arc by onewhich tends to Lagrange, and thereby decrease the action. Now, proceed asbefore to get rid of this collision.Aside. An alternative approach usesLemma 4 The perturbation proposition still holds if condition (3) there is re-laxed to �pij � q̂ij(0) = 0 for all i 6= j.This approach is useful if the endpoint sets �; � are subsets of the equator, asis the case for our original problem �P . Suppose that �p and q̂ij(0) are bothEulerian, or simply both collinear. Rotate the lines containing one of the statesso that it becomes perpindicular to the line containing the other. The relaxedcondition of this lemma holds, and we can lower the action as before, thusgetting rid of this collision. The proof of lemma 4 follows the lines of the proofin the �nal section.Proof of Lemma 3. Let 
 be a minimizer for the problem of lemma 3.Collisions are isolated, so 
 contains a solution arc which tends toward triple24



collision. The rescaled triangle q̂ tends towards a central con�guration. Wesuppose that this central con�guration is one of the Eulerian con�gurations q̂Eand will show how to lower its action by a perturbation.Let R(t)�(t) be the spherical decomposition of 
. We will keep R(t) thesame throughout our perturbaton.To de�ne the perturbation of � recall that q̂E is a saddle critical point of Û .According to the Morse lemma we can writeÛ = c+ x2 � y2where x; y are Morse coordinates on the sphere near q̂E , and where c = Û (q̂E).By the re
ectional symmetry of Û , and the Z2-equivariant version of the Morselemma, we can take �0(x; y) = (x;�y) so that the y coordinate is a measure ofthe signed distance away from the equator, and so that the upper hemisphereis given (locally) by y � 0. According to the re
ection principle above, wemay assume that our unpertured shape curve �(t) lies in this hemisphere. Thismeans that y(t) � 0 along our curve where (x(t); y(t)) are the coordinates ofthe unperturbed curve �(t).Using these coordinates we de�ne the perturbation by��(t) = (x(t); y(t) + �f(t)); � > 0:Here f is a smooth non-negative, decreasing function with support on [0; �0]chosen so that f(t) = 1; t � �1and f(0) = 0; t � �2where �0 and �1 will be related to � later. ThenÛ � = Û (��) = c+ x2 � (y + �f)2so that Û � � U everywhere :Moreover Û � � Û � ��2; for 0 � t � �1:Also k _��k2 = k _�k2 + O(�=(�1 � �2)) +O([�=(�1 � �2)]2)Now take �1 = k1�, �2 = k2� for �xed constants k1 < k2. The constantsk1 = 1; k2 = 2 will do. Then the kinetic energy estimate becomesk _��k2 � k _�k2 = O(1)25



It follows that the di�erence in actions isA(
�)�A(
) = Z 1R2 (Û � � Û)dt+ Z _R2(k _��k2 � k _�k2)dt:According to Sundman's estimates for R and _R, and the above estimates on(Û � � U ) and k _��k2 � k _�k2 we haveA(
�) �A(
) < �c Z �10 �2t4=3dt+ c Z �20 t4=3dtfor some constant c. Taking into account the linear relation between the �i and� it follows that A(
�)� A(
) < �c1�5=3 + c2�7=3 +O(�8=3)for some positive constants c1; c2. Taking � su�ciently small, the �rst termdominates, showing that the action has been decreased.We have just shown that we can always decrease the action to triple collisionif the limiting shape is Eulerian. Since the limiting shape of a minimizingsolution arc has to be either Eulerian or Lagrangian, it must be Lagrangian.4.7 Deleting Isolated Binary CollisionsSuppose our alleged minimizer q has an isolated binary collision. By translatingtime we may assume that collision occurs at time t = 0. We perturb q as wedid for isolated triple collisions: q� = q + �f�pwhere f has the given shape:INSERT FIGURE FOR fIn other words, f = � 1; for t � �00 for t � �1_f � 0, and j _f j � c=(�1 � �0). For negative t, extend f by re
ection. Thusf(�t) = f(t) and f is de�ned on both sides of the collision. We will take thecut-o� parameters �0; �1 to be given by�0 = �3=2�1 = �3=2 + �The point �p 2 Q is a given unit non-collision \perturbed shape" with charac-teristics to be speci�ed momentarily. 26



Solution arcs q� of our alleged minimizer q lie on either side of the collisiontime. Without loss of generality, we may suppose that m1 and m2 are thecolliding masses. Results going back to Levi-Civita assert that:r12(t) = ct2=3 + O(t4=3);as t! 0 and that the solution arcs, q�(t) are analytic functions of the variablet1=3. (The two arcs q� may be di�erent analytic functions.) By analyticity, theangular coordinate � of the direction vector q12 = q1� q2 for either arc satis�es�� = ��0 + c�t1=3 + O(t2=3) which implies that both one sided limits for thecorresponding direction vector q̂12 = q12=r12 are well-de�ned:q̂�12 := limt!0� [ 1r�12(t) (q�1 (t) � q�2 (t))]:These limits need not be equal. The condition we impose on the perturbedshape is that �p12 � q̂+12(0) � 0 and �p12 � q̂�12(0) � 0:This is always possible to do by taking �p12 to lie along the bisector of the anglede�ned by the q�12(0). This inner product criterion implies the condition�p12 � q�12 = (nonnegative) +O(t): (5)(This is stronger than the condition �p12 � q�12 = O(t2=3) which is what we wouldhave if we used the Levi-Civita decay rate alone with no condition on �p.)We now show that the actionA� of each solution arc q�;� is decreased throughthis perturbation. We will only present the case for the positive arc q+ = q(t),t � 0. The argument is the same for the negative arc. Let U � denote U (q�(t)),and U = U (q(t), with similar notation for K� , K, and A�, A. ThenA� A� = R �00 (U � U �)dt + R �1�0 (U � U �)dt + R �1�0 (K �K�)dt= I0(�) +I1(�) +I2(�):(In obtaining the expression for I2(�), the integrated kinetic di�erence, we usedthe fact that _q = _q� except over the interval [�0; �1].) We must show that thequantity A�A� is positive for small enough positive �.To begin our estimates, we argue that we can replace U by m1m2=r12, andU � by m1m2=r�12,while at the same time replacing K by 12�j _q12j2, and K� by12�j _q�12j2. This replacements in the potentials U are legitimate because r13 andr23 are continuous and bounded away from zero, so that the terms in the poten-tials involving their reciprocals are O(1). Similarly, for the kinetic term, if � isthe Jacobi vector joining the 12 center of mass to m3, then its time derivative isO(1). (Fact (ii) of x4.1.) ButK = 12(�j _q12j2)+�j _�j2) so thatK = 12�j _q12j2+O(1)as t ! 0 so the error in K upon ignoring the _� term is O(1). Consequently,these replacements lead to an overall error in A�A� of size O(�1) = O(�). Butas we will show below the dominant term of our three integrals is I0(�) and thatit is of order O(p�), and consequently beats out these O(�) errors.27



4.8 Bounding I0.We estimate I0. We compute(r�12)2 = (r12)2 + �2f2j�p12j2 + 2�f�p12 � q�12:Since f = 1 on [0; �0], and since �p12 � q12 = nonneg: +O(t) we have(r�12)2 = (r12)2 + �2j�p12j2 + 2�(nonneg:+Ct+ :::)on this interval. Recall r12 = ct2=3 +O(t)with c > 0. These suggest the substitutiont2=3 = ��in the integral. Ignoring the terms ri3 as discussed in the previous paragraph,we have Udt = m1m2�3=2�1=2d�=(c�� + c2�3=2�3=2 + :::), whileU �dt = m1m2�3=2�1=2d�(c2�2�2 + �2j�pj2 + �O(�3=2�3=2))where the error term O(�3=2�3=2) came from condition (5) above, the Levi-Civitaexpansion of r12 and our substitution t = �3=2�3=2. Consequently, on the intervalin question, we have(U�U �)dt = p�m1m2�1=2d� [ 1c� +O(�1=2�3=2)� 1pc2�2 + j�pj2 +O(�1=2�3=2) ]:This integrand is of the form [p�f(� ) + O(�)]d� where f(� ) is the positivefunction f = m1m2�1=2( 1c� � 1pc2�2 + j�pj2 ):Recalling that �0 = �3=2 and that I0 = R �00 (U � U �)dt we �nd thatI0(�) = Cp�+ O(�);with C = R 10 f(� )d� a positive number.4.9 Bounding I1First, we claim that we can pick a positive constant c, arbitrarily small as �! 0,such that r�12 � (1� c�)1=2r1228



holds on our interval �0 � t � �1. Indeed,(r�12)2 = (r12)2 + (nonneg.) + 2�f�p � q12:The last term is bounded by C�t according to condition (5). On the other handr212 = ct4=3+O(t5=3) by Levi-Civita . What we require then is that t4=3 >> �t,which will be the case as long as t1=3 >> �. Use �0 = �3=2, and t � �0 toconclude that t1=3 � (�3=2)1=3 = �1=2 >> � over our interval.Consequently, 1r12 � 1r�12is either nonnegative, or, if negative satis�esjNegf 1r12 � 1r�12 gj � j11 � 1p1�c� j 1r12� k�r12� k2�(�0)�2=3; :In the �rst line of this inequality \Neg " means the negative part of:Negfxg = minf0; xg:In the second and consequent lines of the inequlality k stands forany constant, which can be taken independent of �. Indeed, we willcontinue this tradition for k through the rest of this section. Thusin going from the second to the third line of the inequality we used the Taylorexpansion 1p1�c��1 = 12c�+O(�2) so that the constant k can be taken to be anynumber greater than line 12c. And in the third line we again used r12 � kt2=3and t � �0.Finally we get jNegfI1gj � R �1�0 k���2=30 dt= k(�1 � �0)���2=30= k�where we used the de�ning relations between �0; �1 and �. This proves thedesired bound I1(�) = nonnegative +O(�):4.10 Bounding I2.The kinetic di�erence K �K� is zero except along the interval [�0; �1] whereK �K� = �� _f�p � _q12 �12�2( _f )2j�pj2= K1 +K2:29



This second term is easily bounded. As before, let k be an arbitrary positiveconstant which is allowed to change from inequality to inequality. Then j _f j �k=(�1 � �0), so that R �1�0 jK2j � �2 R �1�0 k=(�1 � �0)2dt� �2 k� = k�;where we used �1 � �0 = �. ThusZ K2 = O(�):To bound the �rst term, R K1, will require more work. We will �rst needthe bound: �p � _q12 = nonnegative +O(1):To prove this write q12 in polar coordinates: q = rq̂, where r = r12 and q̂ = q̂12,and q̂ = (cos�; sin�) where � is the angle which q̂ makes with the inertial x-axis.It follows that _q12 = _rq̂ + r _�J(q̂)= _rr q12 + r _�Jq̂where we have used the fact that dq̂d� = Jq̂ where J is ninety degree rotation.The Levi-Civita asymptotics r = O(t2=3), _r = O(t�1=3) imply that _rr = O(t�1),which combined with condition (5) yield _rr�p12 � q12 = nonneg: + O(1). We alsohave the asymptotics _� = O(t�1=3). which yields the bound r _��p12 �Je = O(t1=3)for the second term in _q12. Together these yield the desired bound above on�p � _q12.Now _f � 0, and j _f j � k=(�1 � �0) = k=�, so that0 � �� _f � k:It follows that �� _f�p � _q = nonnegative +O(1);on the interval in question. ConsequentlyjNegfR �1�0 K1gj = jNegfR �1�0 [�� _f�p � _q]dtg� R �1�0 kdt= k�:This proves that R �1�0 K1 � O(�). Combined with the same estimate for R K2 wenow have I2(�) � O(�):30
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