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Abstract: We prove the existence of a new type of collision-free periodic
orbit for the planar three-body problem with the standard Newtonian po-
tential, provided two of the masses are equal. In this orbit the unequal mass
describes a figure eight around the two equal masses. The construction is non-
perturbative. It is based on the direct method of calculus of variation, together
with the symmetry of interchanging the two equal masses, and a detailed anal-
ysis of the behaviour of the action near collisions. Using these same methods
we also construct a new collision-free periodic orbit which realizes the sequence
of eclipses “earth-moon-sun-earth-moon-sun” in the case where all three masses
are equal.

1 Introduction and Results

1.1 The result

We investigate collision-free periodic motions of three point masses, my, ms, ms,
moving in the Euclidean plane according to the laws of Newtonian gravitational
attraction. Draw the line between m; and ms, and work in a moving frame in
which this line is fixed. Also apply a time-dependent homothety to the motion
so that these two masses lie at fixed points on this line. The remaining mass ms
now moves about in this new moving coordinate system, avoiding ms and ms.
If the curve traced out by ms has the topological type of a figure 8 encircling
my and my, then we will say that mg draws a figure 8 around m; and ms, or
simply that the motion is a figure 8. See figure 1.
Frix INSERT FIGURE 1

The masses are positive numbers, my, ma, ms. (By astandard abuse of notation,
we use these same symbols my, my, ms to also stand for the positions of these
masses. )

Theorem 1 Suppose m1 = msy. Then, for any value of ms and any period
T > 0, there is a collision-free periodic solution to Newton’s equations in which



ms draws a figure 8 orbit about my and ms. The angular momentum of this
orbit is zero. Viewed in the moving frame described above, the figure 8 curve
traced out by ms is symmetric with respect to both the reflections about the y-axis
and about the z-axris, where the y-axris is the line joining my to mo.



1.2 Motivation and history.

The study of periodic orbits in the three body problem has a long history.
Poincare instructed us to focus attention on the periodic orbits in a famous
passage of his book ([16]). Most of the results in this arena are perturbational,
perturbing away from cases where one or more of the masses is zero. Ours is
not. It fits within the recent tradition of using variational methods to obtain
periodic orbits. See [1], [2], for example. Tt is a direct outgrowth of the author’s
earlier paper [15].

The fundamental group of the configuration space for 3 points in the plane
without collision is the colored braid group on three strands. The center of
this group is generated by rotating the three points rigidly one full revolution.
Divided by this center the fundamental group becomes that of the two-sphere
minus three points. This two-sphere is realized as the space of oriented sim-
ilarity classes of triangles which we henceforth call the shape sphere, and
the three points to be deleted represent the three types of binary collisions:
my with ms, m; with mg, and my with ms. See figure 2. Any collision-free
motion of the three bodies projects to a curve on this sphere which misses the
three collision points, and if the motion is periodic modulo rotations then it
projects to a closed loop. Consequently, such a motion represents a free homo-
topy class for the thrice-punctured sphere, or, what is the same, a conjugacy
class for its fundamental group. Question: is every free homotopy class
for the sphere minus three points realized by some periodic (modulo
rotation) solution to the planar three body problem? This question was
first asked, to my knowledge, by Wu-Yi Hsiang (private communication).

Free homotopy classes on the sphere minus collisions can be encoded by finite
sequences of eclipses. Let “2” stand for any non-collision collinear configuration
in which my lies on the line segment joining m; and m3. In astronomical terms,
this is a configuration in which ms has eclipsed, or come between, m; and ms.
Similarly we have symbols 1 and 3 for these respective eclipses. Then the figure
8 drawn (see figures 1 and 2) is encoded by the word 1323, meaning first we have
an eclipse of type 1, then 3, then 2, then 3, closing back up with the original
eclipse 1. See figures A and B. In this way words of even length in the letters
1, 2, and 3 encode free homotopy classes. The words are subject to the rule of
grammar “no stuttering” . This means that the combinations 22 , 11, 33 are
forbidden within a word. Moreover, since the curves on the sphere are periodic,
the words should be viewed as cyclic words: 1323 = 3132 = 2313 = 3231, with
these equivalences corresponding to changing the starting place of the curve on
the sphere. The no stuttering rule applies to all cyclic permutation of the word.
For example, 1231 is not an allowed word since it equals 1123.

We can now rephrase our above question. Subject to the above rules of
grammar, is every finite word in eclipses realized by an actual three-
body motion?

IWe thank Mark Levi for this turn of phrase.



To date, the only words which are known to exist for all masses are the words
12, 13 and 23 and their powers. These correspond to tight binaries : two of the
masses circle each other in a near-Keplerian orbit while the third body is far
away and does not participate in the word or motion. Their existence has only
been proved for sufficiently high total angular momenta, relative to the total
energy. (See Moeckel [13].) We should add the existence of an orbit representing
the “empy word” with no letters. This orbit is the Lagrange orbit in which the
masses form an equilateral triangle which then rotates rigidly. (The empty word
thus corresponds to the generator of the center of the colored braid group.)

Using Poincare’s perturbation methods we can find a vast array of words in
the restricted three-body problem (mgz = 0), and these survive for mg very
small. As far as we know, ours is the first nonperturbative existence result for
periodic orbits which represent homotopy classes beyond the empty word, the
tight binaries 12, 13, and 23, and their powers, 1212, 121212, etc.

1.3 A result for three equal masses.

We now have the language to state our other existence result.

Theorem 2 Let T be any nonzero period and suppose that all three masses are
equal: m1 = ms = mgz. Then there is a periodic noncollision orbit representing
the eclipse sequence 123123. SEFE FIGURE 3. FEach of the siz collinearities
of this orbit occurs at an Fuler configuration, meaning that the eclipsing mass
lies at the midpoint between the two masses which it eclipses. The angular
momentum for the orbit is zero. The orbit s symmetric with respect to the
composition of the following three maps: cyclic permutation m; — ms — ms of
the triangle vertices, reflection of the instantaneous triangle, and translation of
time by 1/6th of the period.

2 The methods.

We combine the following tools:
e 1) the direct method of the calculus of variations,

e 2) A knowledge of the geometry of the reduced configuration space C', by
which we mean the space of oriented congruence classes of triangles,
and

o 3) the reflectional symmetry corresponding to interchanging the two equal
masses.

Tool 1 has been used in a great number of papers on the N-body problem
([1] and references therein), but to our knowledge has not resulted in any new



collision-free solutions to the Newtonian N-body problem 2. Tools 1 and 2 were
used together in my paper [15], and also in Sbano [17]. See Hsiang([6], [20] for
a closely related approach using the Jacobi metric.

2.1 Tool 1: The Direct method.

As is well-known, Newton’s equations can be reformulated as the critical point
equations for the classical action

Aly) = / Ldt,

where

L=K+U

is the Lagrangian which is the sum of the kinetic energy K plus the minus
potential energy U. To be precise, suppose that v : [0,7] — @ is a possible
motion of the three masses, by which we mean a curve in Q = IR? x IR? x IR?,
and suppose that + has no collisions. Then if v is a critical point of A among
all such possible motions which share +’s domain [0, 7] and its endpoints, then
~ 1s indeed a solution to Newton’s equations.

In ([15]) T applied the direct method by minimizing A over all loops in a
fixed free homotopy class, for example, the class represented by the figure 8.
It worked very well, provided the negative of the potential U satisfies the
bound U > c/rizj whenever the interparticle distance r;; is sufficiently small.
This bound excludes finite action solutions with collision. However, 1t also
excludes the case under present study, which is the case of most interest, the
Newtonian case of U = Ym;m; /r;;. Here the central analytic difficulty with the
direct method is binary collision, or near-collision with very small time intervals
between successive eclipses. To circumvent this difficult, we instead pose:

Problem P: Suppose that m; = my. Consider the class of all curves which start
at any collinear configuration realizing an eclipse of type 2 and ending in the
collinear Eulerian configuration of type 3: (r13 = r3z = %rlz), and which take
time 7'/4 to join these configurations. Find a curve in this class which minimizes

the action among all curves in this class.

Proposition 1 A solution to problem P exist. Any such solution is a smooth
collision-free solution to Newton’s equations. Its only collinear points are its
endpoints.

Our main theorem, theorem 1, follows directly from this proposition. Let
c1 be a solution to problem P. Using the operation of reflection in the plane of
motion, together with the operation of interchanging m; and ms, we can form

2after this paper was written, we learned of simultaneous works of Terracini et al, and of
Chenciner, in which such new solutions are found, solutions different from ours



three new “reflected” copies of ¢;. Altogther these four arcs concatenate to form
a figure 8. The first variation equation shows that their derivatives match up
at the concatenation points, thus resulting in a periodic solution to Newton’s
equation. See section 2.3 for details.

2.2 Tool 2: Geometry of the reduced configuration space.

In order to use and to prove proposition 1, we will need some knowledge of
the geometry of the reduced oriented configuration space C'. C'is the space
of oriented congruence classes of triangles. Oriented congruence is almost the
same as usual congruence except that we do not allow reflections: a triangle
of nonzero area and its reflection are not equivalent. The three side lengths
T12,T23, 13 are good coordinates on C' except near the collinear configurations
— the triangles of zero area.

Formally speaking, C' is the quotient space Q/SFE(2) obtained by dividing
the usual planar three-body configuration space Q = IR? x IR? x IR? by the group
SE(2) of orientation-preserving isometries of the plane. SE(2) is generated
by rotations and translations of the plane and acts on ) by moving each of the
three points simultaneously. In other words, think of the triangle formed by the
three masses and move this triangle rigidly.

Points of ¢ will be written ¢ = (g1, g2, ¢3) with ¢; denoting the position of
m; in the inertial plane. As is standard, we first get rid of the translational part
of the group action by setting the center of mass equal to zero:

Elel = Oa

thus defining a four-dimensional linear subspace Qo C . This subspace is
invariant under the dynamics provided the total linear momentum Xm; ¢; is zero,
which we henceforth assume. Then C' = @/SO(2) where SO(2) C SE(2)

consists of rotations about the the center of mass. Write
T:Qo—=C orm:Q—C

for the natural projections.
The kinetic energy K of a motion ¢(t) = (q1(¢), ¢2(t), ¢3(¢)) € Qq is given by
the standard expression
2K = Ymy|g:(1)])°

It defines an inner product on Q. The kinetic energy splits into two orthogonal
parts, one corresponding to shape changes, i.e. to motions in C', and the other
corresponding to rotations:

o N |
2K(q,q) = 2K¢(e,¢) + ﬁjz.



Here ¢ = m(q) is the projection of the motion to C. K¢ is the kinetic energy
corresponding to a metric on C which will be described shortly.

J =Xmiq; A g

is the total angular momentum of the system. (For v = (vy,v2), w = (w1, ws) €
IR? we will write v A w = viws — vaws.)

1

R2 — 2

Emimjrizj = Ym;lql’,
is the total moment of inertial of the instantaneous triangle ¢ and provides a
measure of the overall size of the triangle.

Since J2/R? is non-negative, it follows that any minimizer for problem P
must have total angular momentum J = 0. Now the potential energy, or its
negative

U=-V= Emimj/rij

is a function on C'. Tt follows that any minimizer ¢ to problem P projects
to form a minimizer ¢ = 7 o ¢ for the problem of minimizing the integral of
Ko 4+ U over curves on (', subject to endpoint conditions corresponding to
those of problem P. Note that these endpoint conditions are invariant under the
group of rigid motions. Conversely, if ¢(t) is any solution to this minimization
problem on C, let ¢(t) € Qo be a curve with zero angular momentum which
projects to e. Then ¢(¢) will be a minimizer for problem P. (The condition
“angular momentum equals zero” defines a connection for the principal circle
bundle Q¢ \ {0} — C\ {0}. Consequently the set of all such “zero angular
momentum lifts” forms a circle’s worth of curves.) In other words, problem
P, and its analogue on C are equivalent via the projection .

As a topological space C' is homeomorphic to IR3. As a metric space it is not
isometric to 3. The metric structure on C'is defined by thinking of the kinetic
energy 2K ¢ for €' as a Riemannian metric on C' (away from the triple collision).
Using this metric, C' becomes isometric to C'(5%(1/2)), the cone over the sphere
of radius one-half. By the cone over a Riemannian manifold X, we mean the
standard topological cone, [0,00) x X with {0} x X collapsed to a point, and
with the Riemannian metric dR? + R?d%; where R parameterizes the dilational
ray [0,00). Unless X is a sphere of radius 1, this metric is not smooth —i.e not
Euclidean up to a quadratic error — at the cone point R = 0. In our case the
cone point corresponds to triple collision. The sphere 5% = 5%(1/2) is the space
of oriented similarity classes of triangles in the plane. Collinear configurations
are represented by the cone C'(F) over the standard equator F C S. The three
types of binary collisions are represented by three points b2, b13,b93 € E/ , and
consequently to three rays:

C(b”) = {71'((]) 4 = Qj} ccC



intersecting at the origin, which is the cone point. The metric d?sc on C
corresponding to the kinetic term K¢ is given by

1
d’sc = dR? + R2(§d0')2,

where do? is the standard metric on the two-sphere S? of radius 1 (in spherical
coordinates do? = d¢? + sin?¢d0?).

These facts can be seen by first observing that ¢y with the kinetic energy
inner product 2K is simply a four-dimensional real inner product space, and
that the circle action of SO(2) on it is equivalent to the diagonal action of
SO(2) on IR? x IR? = C2. Thus Qo — Qo/SO(2) is the same as C? — C2/S*.
Finally, the restriction of this projection to S = {R = 1} C Qo is the usual
Hopf fibration $3 — S?. The fact that the radius of our S? is one-half that of
the S3 comes about because any two antipodal points (zq, 21) = (—z0, —21) € 5®
project to the same point in S2.

These facts regarding the metric structure of C' are old. They can be found in
various forms within Lemaitre [10], Deprit-Delie [5], Twai [8], Montgomery [14],
and Hsiang [6]. We also recommend the statistics book [18] for a description of
this sphere valid in the case of equal masses. Moeckel [13] gives a particularly
clear and useful picture of the sphere and its relation with the triple collision
manifold.

The distance function d on C' defined by this metric has the following direct
description. Points of C' are group orbits in (. ¢ has a distance function,
d(q,p) = /Xm;||¢; — pi]|? induced by kinetic energy. The distance between
two points of C' is the distance between their corresponding orbits in
(2, which is to say it is the minimum of all of the distances between the points
on the corresponding orbits in Q. (Because the group acts by isometries, it is
enough to take a single point on one of the orbit, and then minimize its distance
to the other orbit.)

We will be using spherical coordinates (R, ) on C, with o € S, R € [0, 00).
R is the coordinate described above. We also use Ro instead of (R, o) for the
corresponding point of C'. (This provides the homeomorphism of C' with IR3.)
For Q C S? we use the notation

CQ)={Ro:0€Q} CC,

for the cone over Q. We have already seen this notation, where we used C'(b;;)
for the ray consisting of all binary collisions of m; with m;.

We have the following useful relationship between the Euclidean distance r;;
between masses m; and m; in the inertial plane and distances in C'.

Vi rila) = diste(x(q), C(biy), (1)

where
pij = mimg/(m; +m;),



and where distc 1s the usual distance between a point and a subset in a metric
space C'.

Let A; denote the equatorial arc which represents the collinear configurations
with m; lying between m; and my, with ¢, j, k any ordering of 1,2,3. Assume
that m; = my. Let e3 € E C S? denote the collinear configuration for which
mg is midpoint between m; and ma, and C(eg) the corresponding ray. (The
“¢” here is for Euler. This is is one of the three Eulerian configurations.) Then
we can restate PROBLEM P: Minimize the action

T/4
Ac(e) = /0 Kel(e,é)+Ule)dt

among all arcs ¢ : [0,7/4] := C which satisfy the boundary conditions

and

e(T/4) € Ces).

2.3 Tool 3 and the proof of the theorem.

Any isometry ¢ — F(o) of the shape sphere S? induces an isometry of C' =
C(S?) by sending Ro to RF(c). (All isometries of C' arise in this way.) A
reflection 7 about a great circle in is an isometry of S?, and we will refer to the
induced isometry of C' as a reflection as well, and we will use the same symbol
T for it.

Two reflections are central to our proof. One is the symmetry m of reflecting
about the collinear equator of S2. This corresponds to reflecting triangles in
the inertial plane. (The line of reflection in the plane does not matter, as the
oriented equivalence class | or point of C' will be the same.) The other reflection
T3, corresponds to the interchange mj <+ ms of vertices in the Euclidean plane.
On 5? it acts as reflection about the great circle r13 = ry3 which is the locus of
points equidistant between b3 and by3. This great circle is perpindicular to the
equator F at the midpoint e of arc Az C F.

Now any reflection is a symmetry of the reduced kinetic energy K¢, no
matter what the masses are. The reflection 7 is always a symmetry of the
potential energy as well, since it preserves the r;;. If my = ms then 73 is also
a symmetry of the potential energy. It follows that in the equal mass case
To, T3, and 79 o 73 take zero angular momentum solutions of Newton
equations to other such solutions.

The composition 7y o 73 is a half-twist about the ray es, both geometrically
speaking, and in our Euclidean coordinates Ro. This means that it leaves the
points of the ray C'(e3) fixed, and when restricted to tangent planes orthogonal
to C'(eg) it is the operation v — —v of 180 degree rotation.



Let ¢; be the solution of proposition 1. According to the first variation
formula for the action, ¢; must be orthogonal to sector C'(As2) at its starting
point, and orthogonal to the ray C'(es) at its endpoint. Indeed the first variation

for the action has boundary term <é,(5c>|g/4, where (-,-) is the Riemannian
metric on C and dc¢ denotes a variation of the curve e. In our case the variation
dc is an arbitrary vectors field along ¢ subject only to the constraint that it
is tangent to the respective endpoint submanifolds C'(A2) and C(ez) at t = 0
and t = T'/4: i.e. §¢(0) € TC(Az) and de(T/4) € TC(e3). Now the boundary
term of the first variation must vanish in order for ¢; to be a minimizer, and
this boundary term is (¢1, (5c>|g/4, hence the orthogonality of ¢; to the endpoint
sets. Tt follows that (7 o 73).¢1(T/4) = —é1(T/4). Consequently the curve
ea(t) = mpors(er(T/2—1)) satisfies ¢o(T/4) = ¢1(T/4). Since ¢s is also a solution
to Newton’s equation, we see that continuing the solution ¢; past ¢ = T/4 is
the same as concatenating it with c¢a. We now have a solution ¢ : [0,7/2] —» C
which represents the eclipse sequence 1 3 2.

Similarly, since ¢;(0) is perpindicular to F and since 7y, acts by v = —v on
vectors orthogonal to E | the process of dynamically continuing é past T/2 is
the same as concatenating it with the curve 70 é(T'—1),T/2 <t < T. The
result is a closed solution curve in C representing the figure 8. with
symbol sequence 1323.

We now have a closed curve on C which, by the above-mentioned principle,
is the projection from Qg of a zero-angular momentum solution ¢(¢). A priori, ¢
need not be closed, but rather only be closed modulo rotations: ¢(T") = g¢(0) for
some rotation g. Tt follows from the “area rule” ([8], [14]) and symmetry that ¢(¢)
is indeed closed. This area rule asserts that the rotation g 1s counterclockwise
rotation by © radians, where O is equal to the signed spherical area enclosed
by the spherical image o(t) of ¢(t) = R(t)o(t). Since the figure 8 curve ¢
just constructed encloses zero area by symmetry, © = 0, this rotation g is the
identity. Consequently any of the lifted solution curves ¢(t) € Qg which project
to ¢(t) are also closed.

2.4 The proof of theorem 2.

Replace problem P by the problem of minimizing the action among all arcs
¢ :[0,T/6] = C which connect the ray C(e2) to the ray C(es). Thus instead
of minimizing to C'(es) starting from C'(A3) as in problem P we insist that we
start on the subset C'(e3) C C(Az). The analogue of Proposition 1 holds, with
the result being collision-free solution arc joining the two rays, whose interior
lies in the upper hemisphere. ( See proposition 2 below.) In addition to 7y and
73 used in proving theorem 1, we will use the two other reflections, 7, which
corresponds to the interchange ms <+ mg, and 7, which corresponds to the
interchange m; < ms3. Applying 79 o 73 to ¢; and shifting and reflecting the
time as we did just above in the proof of theorem 1, we are able to continue ¢
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on to a solution arc joining C'(es) to C'(e1). Continue this process around the
equatorial circle using 7y o 7, and then 1y o 72, we go around the circle in jumps
of 2/3 of the way around, realizing the eclipse sequence 132. The derivatives
match up by the same first variation argument of theorem 1 : the solution arcs
intersect each ray C'(e;) orthogonally, and m o 7; is a half-twist about this ray.
The result is a non-collision solution curve ¢ : [0,7/2] — C, which is closed,
but whose endpoint derivatives do not match up: indeed ¢(7/2) = —¢(0). To
continue, either repeat the process again, or simply reflect ¢ about the equator —
the results are the same — a smooth closed solution curve with eclipse sequence
231231 = 123123. SEE FIGURE 3. Its zero-angular momentum lift to Qg
is closed for the same reasons that the figure 8 constructed in theorem 1 was
closed.

3 Proof of proposition 1.

SKETCH: B B
Replace problem P by its closure, problem P. Problem P is the problem of
finding a minimizer for A(y) among all paths v which satisfy

7(0) € C(Az2) 55(T/4) € Ces).

These endpoint conditions are the closures of the endpoint condition sets of
problem P. Thus either endpoint may now be a triple collision, and the initial
endpoint ¥(0) is allowed to be a type 12 or 23 binary collision initial conditions.

Upon closing problem P we can directly apply The Arzela-Ascoli theorem.
The resulting minimizer may have, a priori, collisions. Most of our work lies in
showing that it has no collisions, not even at its endpoints. Having no collisions
at its endpoints means that it is a minimizer for the original problem P, thus
proving the main proposition.

Doing all this is just as difficult as doing it for the general case in which
the endpoint constraint sets C'(As) and C(e3) are replaced by the cones over
essentially arbitrary closed disjoint subsets of the sphere S2.

Proposition 2 Let o and 3 be closed disjoint subsets of the shape sphere S?.
Then, among all curves v : [a,b] — C = C(5?%) satisfying v(a) € C(a), and
¥(b) € C(B) there is at least one which minimizes the action A(y). If o and
B are symmetric with respect to the reflection 1y about the equator of the shape
sphere then every such minimizer s free of triple collisions on the whole interval
[a,b], free of binary collisions on the open interval (a,b), and is represented by a
solution to the Newtonian three-body equations. If the binary collision points are
not isolated points of a or of B then every such minimizer is free of collisions
throughout the entire closed interval [a,b].

11



3.1 Existence.

Let 7, be a minimizing sequence for the problem. This means that A(y,) —
inf., A(y) where the infimum is taken over all curves satisfying the boundary con-
ditions y(a) € C'(«), ¥(b) € C(F). The kinetic energy term of A, together with
the positivity of the negative potential U and the Cauchy-Schwartz inequality
provides the following standard bound:

100 70(5) < € (1:5) = | 0l < VEAGOVE=SL (@)

Since the A(yy) tend to an infimum, we have A(y,) < A*, for some uniform
bound A*, independent of n. This established equicontinuity of the ~,.

The conical nature of the metric and of the boundary conditions implies
the boundedness of the =,, which is to say that it prevents R(vy,(tn)) — .
Indeed, as we will show momentarily, we have

Ry (tn))sin(distsz (a, B)) < £(vn)

for any times ¢,, in the interval [a, b]. Since the distance occuring in the argument
of the sine is positive and less than or equal to 7/2, we see that R(y,(t,) — o0
for some sequence of times ¢, would imply that £(v,) — oo, and which would
contradict the bound A(y,) < A*, according to equation (1).

To prove the above inequality, note that the ~, lies on the two-dimensional
cone C([oy]) where [o,] C S? denotes the image of the spherical projection o,
of 4, = Rn0y,. Since o, must connect « to 3, the spherical length ¢,, of [o,] is
greater than or equal to distgz(a, 7). The geometry of C'([e,]) is that of a cone
over the circle of circumference ¢,. This geometry is flat everywhere except
at the cone point. Elementary planar geometry now shows that if v i1s a curve
lying on the cone over the circle of circumference ¢, that if v which has a point a
distance R from the cone point, and if v which sweeps out the full circumference
¢ then its length ¢ satisfies £ > Rsin(¢) if ¢ < /2, and £ > R if ¢ > n/2. This
is the desired inequality, since ¢, < distg2(a, 3).

We have seen that there is some constant C' such that R(y,(t) < C for
the entire sequence. The 7, thus form an equicontinuous bounded sequence
of curves in the complete metric space C'. The Arzela-Ascoli theorem now ap-
plies, yielding a convergent subsequence of the =, , converging uniformly to
some 7. Since the convergence is uniform, v also satisfies the requisite endpoint
conditions, y(a) € C(a) and v(b) € C(3). [Here is where we need that the end-
point conditions are closed.] By the Lebesque dominated convergence theorem
A(y) < limA(y,). So 7 is a minimizer. If v were collision-free, we would be
done. The basic calculus of variations would imply that it is a solution to the
Euler-Lagrange equations which are Newton’s equations.
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4 Getting rid of collisions.

THE OVERALL PLAN. It remains to show that the minimizer v just constructed
for proposition 2 is without collisions. The set of collision times is a closed set
of measure zero; closed because v is continuous, measure zero because U = +oo
on the collisions and A(y) < co. A priori, this set of collision times could be a
Cantor set.

Our first task will be to show that the set of collision times has no cluster
points. This implies that it is a finite set. Then we will remove these remaining
finite number of collisions one-by-one by explicit action-decreasing perturba-
tions.

4.1 Some tools.

We will need the following a priori properties of any minimizer v . Note that the
complement of the collision times is a countable union of disjoint open intervals.

e (i) Restricted to any collision-free interval, the minimizer satisfies the
Euler-Lagrange equations. Hence we will call the restriction of a mini-
mizer to such an arc a solution arc.

e (ii) In the neighborhood of a binary collison time the motion of the mass
which is not participating in the collision 1s twice continuosly differen-
tiable. The same holds for the Jacobi vector &, which is the vector join-
ing this nonparticipating mass to the center of mass of the two colliding
masses.

o (iii) The energy H = £|¥|* — U(7) is constant almost everywhere.

Proof of (i). The minimizer is continous. Let I = (a,b) be a collision-free
open solution interval. If the Fuler-Lagrange equations are not satisfied, then
dA(7y)(67) < 0 for some variation 5 whose support is contained within 7. We
can follow this variation with an actual perturbation v = 5 + edy + O(€?),
thus decreasing the action while leaving +’s endpoints fixed. This contradicts
minimality.

Proof of (ii). Although U, and consequently A, are not differentiable
near binary collision, they are differentiable in the direction of perturbations in
which only the non-participating mass is varied. Specifically, suppose that m;
and ms collide at time t., while 13,723 > 0. As before, let ¢ = (q1,¢2,93)
denote the positions of the three planets in the FEuclidean plane. Write
U = Ulq,92,93) = Zmym;/ri;. U is differentiable with respect to ¢3 in a
neighborhood of any 12 binary collision configuration. Consider variations in
which q1(%), ¢2(t) are fixed, while ¢3(t) varies to ¢s(t) 4+ €dqs(t). The action
functional is differentiable for such a perturbation. Consequently, the gs-Euler-
Lagrange equations are satisfied, for the same reasons as in (i). These equations
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2
are of the form mgjt—Qq?, = _:7;81)33((]3 —q1) — %(93 — ¢2). The r;3(t) are

continuous functions, bounded away from zero, and the ¢; are continuous, thus
¢3 has continuous second derivative.

The proof that the Jacobi vector § has continuous second derivative is the
same, once we realize that the Lagrangian has the form 2 (u|¢|?+v|¢]?)+ U (x, €)
in the Jacobi variables, @ = ¢ — ¢q2, £ = ¢q3 — m(mlql + maqa). (The
constants y, v are “reduced masses” and depend only on the m;.)

Notation and Terminology. Above we used the following notation, which
we will try to use consistently from now on. Whenever v is a curve in C', then
any zero-angular momentum curve in (g whose projection to C' is v will be
written ¢(¢) = (q1(), ¢2(2), ¢2(2)). We may also say that ¢ represents v. Recall
that if v is a minimizer, or a solution to the Euler-Lagrange equations, then the
same is true for q.

Proof of (iii). Vary the action with respect to changes of parameterization:
gl (t) = qi(7(t)) where 7 : [a,b] — [a,b] is a smooth invertible time change.
Write ¢ = t(r) for the inverse function, and A = dt/dr, evaluated at 7. Write
V' = —U for the potential, so that the Lagrangian is K — V, and the energy
is H =K+ V. We compute L(¢",¢7)dt = [%K — AV]dr. Consequently, the
differential of the action with respect to parameterization change at A = 1
(corresponding to 7 =1t) is [ dA(¢)H (t)dt. Here JA(t) denotes the change in the
differential of parameterization. This energy H (t) is defined almost everywhere
since the solution intervals of (i) have full measure. Remember the constraint

f; Adr = [dt = b — a, and use the method of Lagrange multipliers to conclude
that [(—H(t) + ¢)dA(t)dt = 0 for all possible parameterization changes. We
conclude that H(t) = ¢ a.e.

A reflection principle. We will have occassion to use the reflection prin-
ctple which asserts that if v is a minimizer, then so i1s 7y o 7, provided that the
endpoint conditions for 4 are invariant under 79. Here 7y : C' = (' is the reflec-
tion about the collinear states C'(F). Tt holds because the Lagrangian on C' is
invariant under 75. (We already used this principle in concatenating solutions
to proposition 1 in order to prove our theorems.)

4.2 Central configurations : topography of the potential.

We will need some understanding of the topography of U, and in particular of
the important role played by the Lagrange configuration. The potential U is
homogeneous of degree —1 with respect to dilations. It can be written in the
form

U(Ro) = %U(U)

where [7(0') is a positive function on the sphere with poles at the binary collision
points 12, 13, and 23.
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The absolute minimum of U over the sphere occurs at the two La-
grange points. These two points represent the two oriented similarity classes
of equilateral triangles. They are related to each other by the reflection 7y.
Either point will be refered to as op.

U has five critical points in all. Besides the two Lagrange points there are
the three Euler points, denoted e1, es,e3. These are saddle points for I/. They
lie on the equator E of collinear states, with one for each of the three arcs A;,
which is to say one for each type of eclipse 1,2, or 3.

Together these five points form the central configurations, which are the
critical points of U. If one starts with a central configuration at rest, then its
shape remains the same, while it shrinks toward triple collision. In our spherical
coordinates, such solution curves have the form R(t)o., where o, is one of the five
central configurations. More generally, fix a realization {¢1(0), ¢2(0), ¢3(0)} C
IR? of a given central configuration o, as a particular triangle in the plane, with
size R(0) = 1. Identify the plane IR? with the complex numbers C. Plug the
ansatz ¢;(t) = z(t)¢;(0), ¢ = 1,2,3 into Newton’s equations. One finds that
Newton’s equation is satisfied if and only if the complex number z(t) evolves
as if it were a point in the z-plane subject to a Newtonian central force with
potential U(c.)/|z|. The solution just described which shrinks to triple collision
is of this form, with z(¢t) = R(¢) real, and with z(0) = 0. For this motion the
three bodies motion shrink to triple collison z(¢.) = 0 at some time, keeping
their shape o, the same throughout. It is convenient to continue this path
through ¢. by having it retraces its path, arriving back at its maximal size of
z(0) at time 2¢.. Such a continuation is natural, in that it can be made to fit
analytically within the family of all solutions for the planar Keplerian problem
motion through collision. We will call such an orbit a elliptic collision rejection
orbit with shape o..

4.3 Getting rid of triple collision cluster times

We show that there are at most two triple collision times. The main step here
is:

Lemma 1 Among all finite-action curves ¢ : [0,b] — C beginning and ending
at triple collision, the action is minimized by the Lagrange elliptic collision-
rejection orbit with period b. There are two minimizers corresponding to the
two Lagrange points o, € S%, and these are the only two minimizers.

ProoF: Let R(t)o(t), 0 < ¢ < b be any competing curve, meaning that
R(0) = R(b) = 0. Keep R(t) the same, while replacing o(t) everywhere by
one of the two Lagrange configurations, or. This decreases both the kinetic
energy K and the negative potential energy U. Indeed, before the replacement
K = JR*+ LR1)?||6()||?], and afterward it is L R%. And LU (o (t)) > U (or)
with equality if and only if o(t) = or. Tt follows that A(y) > A(yz) with
equality if and only if R(t)o(t) = R(t)orL.
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This reduces the minimization problem to the problem of minimizing the
one-dimensional Keplerian action fob %RZ + %[j(UL) over all scalar curves R(t),
0 <t < b satisfying R(0) = R(b) = 0. The two-dimensional version was studied
in detail by Gordon [7]. His results apply directly and imply that R(¢) must be
the collinear collision-ejection Kepler orbit, as claimed.

GORDON’S ARGUMENT. For completeness; we recall Gordon’s argument.
For the Kepler problem, as for our problem, the complement of the collision
times consists of a countable union of open intervals seperated from each other
by the collision times. On each open interval the minimizer must satisfy the
Euler-Lagrange equations, and it must tend to collision at the endpoints, i.e. the
minimizer consists of an at most countable collection of solution arcs, attached
at collisions.

For the one-dimensional Kepler problem there is only solution arc on a given
interval, with collision at both endpoints. This is the collision-rejection solution
arc defined on that interval. If the Kepler Lagrangian is %uRZ + & then the
action of these period T solution arcs is computed to be ¢t/ | where ¢ =
%(271')2/3(poz2)1/3. (This is also the action of any period ¢ periodic solution for

the two-dimensional Kepler problem.) In our case, ¢ = 1 and o = U(O'L).
Consequently the action of of our alleged minimizer is cE(ti)l/?’ where the ¢; are
the lengths of the solution intervals. These open intervals are of full measure, so
that ¥t; = b. But the function ¢ — t'/3 is strictly concave, which implies that
()3 > (Xt;)'/3 with equality if and only if all but one of the #;’s is zero. In
other words, in order that it minimize the curve must consist of a single solution
arc, in which case it is the collision-ejection orbit of period b.

Lemma 2 If~ s a minimizer then it has at most two triple collison times.

Proof: The set of triple collision times for v i1s a closed subset of the in-
terval. If it is empty, or consists of one point, we are done. Otherwise, it has
a smallest point ¢, and a largest point d, and these are not equal. The arc
¥([¢, d]) joins triple collision to triple collision. This arc must be the Lagrange
collision-ejection orbit over this interval. For if not, replace this section of 4 with
this Lagrange orbit. The resulting concatenated curve is still continuous and
satisfies the correct boundary conditions, but its action is smaller than that of
~, according to the previous proposition. This would contradict the minimality
of v.

QED

4.4 Getting rid of binary collision cluster times.

We start the process of showing that the binary collision times have no cluster
times. We will first need to dispense with the perverse possibility that a sequence
of binary collisions converges to a triple collision. In other words, we want to
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dispose of the following scenario: R(t) — 0 as t — t. while U(c(t;)) = 400
for times t; — t.. We use a proof by contradiction. By translating time, we
may assume that ¢, = 0. (This shifts the domain of 4.) Suppose that there are
binary collision times ¢; — 0. Set

m = limy_oInf ﬁ(a(t)).

First, we discard the possibility that m = 4+0c0. Suppose m = 400, Then
for any (large) value M for U there is an § > 0 such that U(o(t)) > M over
the interval 0 < ¢ < §. We may take d to be the smallest time at which
U(O'(t)) =M. (Take M sufficiently large so this value is realized.) Now replace
v over the interval [0,6] by R(t)o(§). The resulting curve still reaches triple
collision at 0, but we have decreased both its kinetic energy, and its potential
energy, since U(Rco) = %U(U). Consequently the action of the curve has been
decreased, contradicting minimality of ~.

Now suppose that m is finite. Then there are times ¢; — 0 with U(U(tj)) —
m. Write

Yn=1o: U(U) =m}CS? D, = distsz(Zeo, Xm).

Here Yoo = {b12,b13,b23} = {0 € 5% : [7(0') = oo} is the binary collision set.
The distance D, is positive. The arc v consists of a countable collection of
solution arcs I; at whose endpoints the curve tends to binary collision. We
may take the times ¢; just introduced to be maximum points for ﬁ(a(t)) over
their solution arcs ;. By construction, we can find among the ¢; one for which
U(U(tj) is sufficiently close to m so as to guaranteee that

d(o(t;),Xm) < Dp, /2 while d(0(t;), Z0c) > D /2.

Let [t;_, ;4] be the solution interval [; within which this maximum lies. Let 5
be the geodesic — an arc of a great c1rcle on S? — which joins o (¢;) to X,,. Start
n off at time ¢; and parameterize it according to |n(t)| = |o(¢ )|, t > ;. Since
the spherical length ft o(t)|dt of o over the interval [t;,¢;4] is greater than

D,,/2 and since the length of nis d(o(t;),Xm) < Dn/2 , the geodesic n will
have reached X, before we have run out of time in the interval I;. Let ¢, be

the time when we hit ¥,,, so that U(n(t.)) = m. Replace our alleged minimizer
¥(t) = R(t)o(t) by 4(t) = R(t)&(t) where

oft), ift<t,
gty =q n(t), ift; <t <t
n(ts), ift>t..

Then the kinetic energy of this replacement curve is the same up to ¢, after
which time it is zero, while the negative potential term U (%) is the same as that
of v up to t; and thereafter it is LESS than that of 4. Consequently the per-
turbed action A(¥) is less than the unperturbed action A(y), again contradicting
minimality.
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4.5 Isolating binary collisions

We finish the proof that the the set of binary collision times can have no cluster
point. From the previous subsection, we know that the binary collisions along
any minimizing path are bounded away from triple collision. Consequently the
overall size R of a configuration at any binary collision time ¢; is bounded away
from zero and from infinity:

R, < R(tj;) < R* whenever ri(t;) =0

where R, < R* are positive numbers.

According to the conical geometry of (', the distance in C between two
successive binary collisions ¥(¢;), ¥(¢x) involving different masses, eg. 12 and
13, is subject to the bound

2R.sin(502) < dir(t5),2(t2))

where 0 < @23 < 7 is the spherical distance between the binary collision points
b1z and by3, on the shape sphere S? . (See §3.1 for a similar argument.) Since
d(y(t),v(s)) < /2A()/It — s|, (eq. (2) ) this bounds the time [t; —t5| between
two such binary collisions away from zero.

Thus, if ¢,, 1s a sequence of binary collision times tending to a limit ¢, , then
from some point N on these binary collision v(t,) must all be of the same type.
Without loss of generality, we may assume that this type is 12, so that we have
times ¢, — t. with ri2(ty) = 0, while R(¢,) > R.. We show that the existence
of such a sequence contradicts minimality. In order to do this, we will need
all three of the facts referred to at the beginning of this section: (i): on the
open intervals [; cut out by the collision times the minimizer must satisfy the
Euler-Lagrange equations; (ii): the derivative of the Jacobi vector, and hence
|€|%, is continuous at binary collisions, and so near t.; (iii): the value of the
energy H on different solution arcs |7, is the same.

For the remainder of this subsection we will reserve the notation
O(1) to mean any function along the path 4 which is bounded as t — ¢.. For
example, it follows from the above discussion that 1/ry3 and 1/r3 are both
O(1). To prove the impossibility of the sequence, it will suffice to prove the

bound 21
my +m

gt = % +0(1), (B)
uniformly on all of the solution arcs tending to ¢.. To see why this suffices,
assume the bound for the moment. The complement of the collision times
is a union of open intervals (¢,,%,4+1) at whose endpoints we have collision:
r12(tn) = 0 = r12(tn41). In between, the function 715 achieves a maximum at
some point 7). The second derivative of 712 must be negative or zero at these

points:
mi + ma

+O(1) <0

12
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which yields
k(my 4+ ma) <r1a(t7)

where |O(1)] < 1/k. Now recall (eq. (1)) the equality d(P, C(b12)) = \/It,,712,
relating 712 and the C-distance between a configuration and the nearest 12-type
binary collision. (Here p112 = 2402 ) Using the distance bound d(v(t), y(s)) <

mi+mo

V2A(7)V's —t of eq. (2) we obtain
ki (may 4 mz2) < V2A() /1 =t

This shows that |t} —1,| cannot go to zero, so that the time sequence t,, cannot
be Cauchy, and consequently cannot converge to t..

We return to the proof of the bound (B). Levi-Civita [11] proved this bound
in the case of a single solution arc. ( See also Sundman [19].) We follow the lines
of Wintner’s treatment (see [21], p. 268) of the Levi-Civita bound We felt it is
worth including the derivation, as opposed to simply quoting it, 1t not entirely
obvious how to extend Levi-Civita’s analysis to our situation of a a countable
number of solution arcs with the same energy. Let ¢1, g2, g3 be the vertices of
the triangle in the plane and ¢;; = ¢; — ¢; as usual. Set

L =4q12.
The bound (B) will follow from the bound

my + my

r

1,.
il - = o), (©)
where for convenlence we set

r=riy = ||

for the rest of this subsection. To see why (B) follows from (C), note that

21, d?

Newton’s equations assert that

d? x
pt =~ me) 5+ f,
where 931 932
f= m3(— — —)
ETI
(Wintner [21] , eq. (12), p. 260.) Since 1/r3; and 1/rz2 are both O(1) we have
[f1=00),
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so that
frz=0(@).

Putting these results together, we obtain

> 1,0 et my

) =il = T 4 o),

Now eq (C) implies that

. m; +m m; +m
|2 — 1 2 _ 2—1—0(1)
r r
from which eq. (B) now follows.
It remains to derive the bound of eq (C), which is that ¢(¢) := %|l‘|2 — %
is O(1). The energy is
mpms mamg

I/ .
H = )+ — 2————’
g (t) 2|€| s s

where £ is the Jacobi vector, as in fact (ii) above. According to that fact, |€|2
is bounded near t. since ¢ is C? near t.. And the 1/r;5 are also O(1). Fact
(iii) above asserts that this energy H is constant a.e., and in particular is the
same constant for all of the solution arcs. Call this constant h. We have proved

g(t) = Lh+O(1) = O(1) near t., as desired.

T
4.6 Deleting Isolated Triple collisions

4.6.1 The Set-up.

We have shown that there are at most two triple collisions. We will show how
to get rid of these remaining two.
Suppose that v has an i1solated triple collision at ¢ = ¢.. We will construct
a perturbation 7. which agrees with v except in a small neighborhood of ¢,
has no collision in this neighborhood, still satisfies the endpoint conditions of
problem P, but for which
Alve) < A).

By a time translation we may assume that the collision time occurs at ¢t = 0.
This translation shifts the domain of . The collision time may be an interior
point, or it may be either endpoint of the domain of . The arcs of 4 on either
side of 0 (or on one side if t, = 0 is an endpoint) are solutions to Newton’s
equations (fact (i) above) which tend to triple collision at ¢ = 0, and which have
the same fixed energies H = h (fact (iii) above). These collision solutions were
investigated in some detail by Sundman, and later by other researchers, notably
Siegel and McGehee. We will need some of their results.
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4.6.2 Results needed from Sundman.

Let ¢(t) = (q1(¢), q2(2), ¢3(t)) € Qo denote asolution to the three-body equations
with a triple collision at time ¢ = 0, and let R(¢)o(f) be its projection to the
shape space C'. Sundman shows that :

R(t) = ct*® + O(tY3), ¢ >0

. 2
R= gct_l/?’ +O@'/3)
lims oo (t) := og

and that the limiting shape o¢ is one of the five central configurations o, dis-
cussed above. Moreover, this limiting shape is not just an abstract. The vertices
of the triangle in the inertial plane settle down to a fixed triangle representing
one of the o, after being appropriately rescaled:

limi o ﬁq(t) =q(0)

exists. Neccessarily 7(¢(0)) = og. Moreover

d .
Eq_O(l) ast — 0

where §(t) = q(t)/ R(?).

4.6.3 The perturbation

Let ¢(t),0 < ¢ < b be a solution arc with triple collision at ¢ = 0. We will
construct a perturbation of ¢ supported in an arbitrarily small neighborhood of
0 which decreases the action. This will be our basic tool for getting rid of the
triple collisions.

Fix a shape
of €Q =R’ x IR* x IR?,

of unit size (R(o,) = 1) subject to the constraint:

of; - 4ij(0) > 0, for i # j. (3)

Here Ufj = ol — 0'? denotes the vector connecting vertex m; to vertex m; for
the perturbed triangle, ¢(t) = %q(t) is the normalized solution, ¢(0) is the

limit for these rescaled triangles, and ¢;;(0) is the corresponding ij edge vector
for ¢(0). Define a perturbation ¢¢ of ¢ according to

¢“(t) = q(t)+ef(t)oy
= q(t) +eo(t)
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Here f(t) = f(¢;6) is a strictly decreasing, nonnegative scalar function with
f(0) =1, df/dt(0) < 0, and with support [0,d] C [0,5]. The parameter § is
taken small enough so that the Sundman estimates hold on [0, d]. We also impose
the conditions |f| < ¢/é on [0, 6], while f < —e2/d on [0,6/2] for constants ¢, ¢o
independent of 4.

Proposition 3 (Perturbation Proposition) For all ¢,6 sufficiently small,
A(q%) < Alq), for the perturbation defined above, provided that o is subject to
the inequality (3) above.

Remark: Since the endpoint at ¢ = 0 of ¢° is eo?, we have gotten rid of the
triple collision and at the same time lowered the action.

Proof of Proposition 3.

The perturbed intermass distances are

(ri;)? =1} + E16i]7 + 2€645 - qi;
with ¢i; = ¢; — ¢; = fafj, and 7y = r?j = |¢;;] being the unperturbed

distance. Now ¢;; - q;; = fRO'fj - ;5 so that condition (3) together with the
continuity of ¢ at 0 implies that rf; > r;; for ¢ sufficiently small. Consequently

Ue:=U(¢) < U ="U(q) and so
/UE</U.

/KE</K

where K¢ = %(q'ﬁ, ¢°), is the perturbed kinetic energy, and where we use (¢, v) =
Ym;q; - v; denotes the kinetic energy inner product. The standard identity
{(q,v) = s==%m;m;q;; - vi; shows that condition (3) implies that

We now show that

— Xmy
(p,4(0)) >0, (4)
which will be the key to the desired inequality.
In the remainder of the proof, “%” will denote the derivative with respect

to €, taken at € = 0. We have
d1 € e\ __ /i ¢
2egld5 ) = (0,4)-

And q/) = fap. Also ¢ = R(j + Rdilt(j since ¢ = Rq, where ¢ is the normalized
shape. Thus

d s : d
EKE = fR(op,q(t)) + fR(op, E@
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Now f= 0(1/5), R = O(t*/?), and R = O(t=3), so that the first term,
fR(Up, 4(t)) dominates the integral. But f < 0, R > 0, and, according to con-
dition (4) above, and the continuity of ¢, we have (o}, §(t)) > 0 for ¢, and hence
4, sufficiently small. Consequently, the whole integrand is negative over the do-
main of variation, [0,d], and the integrated kinetic energy has been decreased.

Let us be a bit more precise regarding this last argument. Let ¢ stand
for a positive constant, independent of €, which can change from inequality to
inequality in the rest of this paragraph. Then, for J sufficiently small, and
t < 6, we have (gp,¢(t)) > ¢, as well as |f] < ¢/d, R > ct=13 and R < et?/3.
Moreover fR < 0, with fR < —%t_l/?’ on a smaller interval, say 0 < ¢ < §/2.
It follows that the change in the integral of the kinetic energy is given by

4K = 19 FR(op, (1)) + O(82/3)
< —c{oy, 4(0))6-113 + O(52/3).

Provided § is small enough. The derivative of the kinetic energy is negative, so
that the integral of the the kinetic energy has been decreased.

We have shown that [ U¢ and [ K¢ are each seperately less than their un-
perturbed counterparts, so the overall action has been decreased.

QED

We now use the perturbation proposition 3 to get rid of all triple collisions
in our minimizer. If ¢, is an interior triple collision time, then on either side of
it are solution arcs, ¢~ (t),t < t., and ¢*(¢),¢ > t. with triple collision at ¢.. If
both have limiting shape ¢(¢.) equal to the Lagrange configuration, then we are
done. For by rotating and possibly reflecting the arc of the alleged minimizer
g on one side of the collision we can arrange that the limiting shape for both
gt and ¢~ are the same (both being equilateral triangles in the plane). Apply
the perturbation of the proposition simultaneously to both arcs ¢*, taking the
perturbed shape to be o = ¢ (t.) = ¢~ (t.). Condition (3) is satisfied because
Ufj = ¢* (tc). The action of the perturbed curve ¢¢ is less than that of ¢, and
the perturbed curve has no triple collision at {.. We have gotten rid of this
collision.

If only one arc, say ¢~ is Lagrange, this trick will still work. For suppose the
other arc is Eulerian. By appropriate rotation and reflection of one of the arcs
we can arrange that the two limiting configurations are as in the figure below

koK

Insert figure 4

ok

By inspection, (jl‘; (te) - q;; (tc) > 0 for this configuration. We can take of to
be either limit, say ¢~ ({.), and continue as above to get rid of this collision.

This same trick works if the triple collision i1s at one of the endpoints of the
time interval, provided the limiting shape is equilateral. For example, suppose
we tend toward Lagrangian triple collision at ¢ = 7'/4, in our original problem,
problem P. Then we must take o” to be the Euler central configuration of type
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132, otherwise the perturbation will violate the endpoint conditions of problem
P. But this works according to the previous paragraph. More generally, if m(op)
lies in the same closed hemisphere of S? as our limiting Lagrage configuration
o then o, can be rotated so that condition (3) is satisfied. This can always
be arranged by reflecting the solution arc. Recall that reflection keeps the
action of a path the same. We need that the reflected arc satisfies the correct
boundary conditions, here ¢(a) € C'(«). This is guaranteed by the assumption
in proposition 3 that the endpoint sets o and [ are symmetric with respect to
reflection. This is the only place where we use this assumption on the
endpoint conditions.

This disposes of the case where the limiting shape(s) (¢.) are Lagrange.
If t. is interior and both endpoints are Euler but equal, or if we are in the
endpoint case and the limiting shape corresponds to that endpoint’s boundary
condition (o or 3) , then the tricks we just used to get rid of limiting Lagrange
shapes carry through verbatim. It remains to deal with the case where ¢, is
interior, but the one-sided limits ¢4 (f.) are different Fulerian configurations,
or where ¢, is one of the endpoints, but the limiting shape ¢(t.) doe not match
up with the boundary condition there. For example, in our original problem P
this situation arises when 7(§(t.) = e2 at t. = T/4 , whereas according to the
boundary conditions we must have m(o?) = ez at T/4.

We are left with trying to decrease the action in the case where the limiting
shape §(t.) is one euler configuration, but the desired perturbed shape, ¢ is a
different Euler configuration, or more generally, any different shape. We proceed
as follows.

Lemma 3 Let ¢(t),0 <t < b be an action minimizer among all curves satisfy-
ing ¢(0) = triple collision, ¢(b) = q', a fived triangle. Then the limiting shape
4(0) is a Lagrangian configuration.

According to this lemma, we can replace any triple collision solution arc by one
which tends to Lagrange, and thereby decrease the action. Now, proceed as
before to get rid of this collision.

ASIDE. An alternative approach uses

Lemma 4 The perturbation proposition still holds if condition (3) there is re-
laxed to Ufj +4i;(0) =0 for all i £ j.

This approach 1s useful if the endpoint sets «, § are subsets of the equator, as
is the case for our original problem P. Suppose that ¢” and ¢;;(0) are both
Eulerian, or simply both collinear. Rotate the lines containing one of the states
so that 1t becomes perpindicular to the line containing the other. The relaxed
condition of this lemma holds, and we can lower the action as before, thus
getting rid of this collision. The proof of lemma 4 follows the lines of the proof
in the final section.

Proof of Lemma 3. Let v be a minimizer for the problem of lemma 3.
Collisions are isolated, so v contains a solution arc which tends toward triple
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collision. The rescaled triangle ¢ tends towards a central configuration. We
suppose that this central configuration is one of the Eulerian configurations ¢
and will show how to lower its action by a perturbation.

Let R(t)o(t) be the spherical decomposition of v. We will keep R(#) the
same throughout our perturbaton.

To define the perturbation of o recall that ¢Z is a saddle critical point of U.
According to the Morse lemma we can write

U:c—l—xz—yz

where 2,y are Morse coordinates on the sphere near ¢¥, and where ¢ = ﬁ(d ).
By the reflectional symmetry of U, and the Zj-equivariant version of the Morse
lemma, we can take m(x,y) = (2, —y) so that the y coordinate is a measure of
the signed distance away from the equator, and so that the upper hemisphere
is given (locally) by y > 0. According to the reflection principle above, we
may assume that our unpertured shape curve ¢ () lies in this hemisphere. This
means that y() > 0 along our curve where (z(t),y(t)) are the coordinates of
the unperturbed curve o(t).
Using these coordinates we define the perturbation by

ot (1) = (2(1), y(t) + [ (1)), € > 0.

Here f is a smooth non-negative, decreasing function with support on [0, d¢]
chosen so that

ft)=1,t<4

and

f(O) — O,t Z 62
where dg and §; will be related to € later. Then

Us=U(c)=c+ 22— (y+cf)®

so that
U€ < U everywhere .
Moreover R R
U —U < =€, for 0 <t <dy.
Also

16517 = Nl ll* + O(e/ (61 — b2)) + O([e/ (61 — 62)17)

Now take §; = kqe, 0o = koc for fixed constants k; < ko. The constants
k1 =1,k2 = 2 will do. Then the kinetic energy estimate becomes

1611 = [l¢]* = O(1)
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It follows that the difference in actions is

Ay = A6 = [ g0 = Dydes [ R 1o

According to Sundman’s estimates for R and R, and the above estimates on

(U = U) and ||6€||> — ||¢]|* we have

01 2 P
A(YS) — A(y) < —c/o tj?dwrc/o t4/3dt

for some constant ¢. Taking into account the linear relation between the é; and
e it follows that

A — Ay) < —e1 3 4 eodTB 4 0(68/3)

for some positive constants c¢1,cs. Taking e sufficiently small, the first term
dominates, showing that the action has been decreased.

We have just shown that we can always decrease the action to triple collision
if the limiting shape is Eulerian. Since the limiting shape of a minimizing
solution arc has to be either Eulerian or Lagrangian, it must be Lagrangian.

4.7 Deleting Isolated Binary Collisions

Suppose our alleged minimizer ¢ has an isolated binary collision. By translating
time we may assume that collision occurs at time ¢ = 0. We perturb ¢ as we
did for isolated triple collisions:

- =q+cfor

where f has the given shape:
INSERT FIGURE FOR f
In other words,
|1, fort<dg
I= { 0 fort>d

f < 0, and |f| < ¢/(d1 — dp). For negative ¢, extend f by reflection. Thus
f(=t) = f(t) and f is defined on both sides of the collision. We will take the
cut-off parameters dy,d; to be given by

60 = 63/2

§ =632 4 e

The point P € ) is a given unit non-collision “perturbed shape” with charac-
teristics to be specified momentarily.
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Solution arcs ¢ of our alleged minimizer ¢ lie on either side of the collision
time. Without loss of generality, we may suppose that m; and my are the
colliding masses. Results going back to Levi-Civita assert that:

7“12(15) = Ct2/3 + O(t4/3),

as t — 0 and that the solution arcs, qi(t) are analytic functions of the variable
/3. (The two arcs ¢ may be different analytic functions.) By analyticity, the
angular coordinate § of the direction vector q12 = q1 — g2 for either arc satisfies
0% = 0F + c4t'/? 4 O(t*/3) which implies that both one sided limits for the
corresponding direction vector §i12 = q12/712 are well-defined:

i = lime o [ — (0 (1) = g (1)
r1a(t)
These limits need not be equal. The condition we impose on the perturbed
shape is that
oly 415(0) 2 0 and ofy - 415(0) > 0.
This is always possible to do by taking o}, to lie along the bisector of the angle
defined by the qliz(O). This inner product criterion implies the condition

oty -4y = (nonmegative) + O(1). )

(This is stronger than the condition 0¥, - ¢, = O(t2/3) which is what we would
have if we used the Levi-Civita decay rate alone with no condition on o*.)

We now show that the action A¢ of each solution arc ¢>F is decreased through
this perturbation. We will only present the case for the positive arc ¢t = ¢(¢),
t > 0. The argument is the same for the negative arc. Let U€ denote U(¢%(¢)),
and U = U(q(t), with similar notation for K¢ , K, and A¢, A. Then

A=A = [P0 -Udt + [{{U - Udt + [ (K — K)dt
= IQ(E) —1—11 (6) —1—12(6)

(In obtaining the expression for Iz(¢), the integrated kinetic difference, we used
the fact that ¢ = ¢ except over the interval [dp,d1].) We must show that the
quantity A — A€ is positive for small enough positive e.

To begin our estimates, we argue that we can replace U by myms/r12, and
U¢ by mymsz/r§,,while at the same time replacing K by %p|q'12|2, and K¢ by
%Mqﬁzp. This replacements in the potentials U are legitimate because 713 and
rog3 are continuous and bounded away from zero, so that the terms in the poten-
tials involving their reciprocals are O(1). Similarly, for the kinetic term, if £ is
the Jacobi vector joining the 12 center of mass to ms, then its time derivative is
O(1). (Fact (ii) of §4.1.) But K = L(uliral?)+v[€P) so that K = LulgraP+0(1)
as t — 0 so the error in K upon ignoring the € term is O(1). Consequently,
these replacements lead to an overall error in A — A® of size O(61) = O(e). But
as we will show below the dominant term of our three integrals is Iy(e) and that
it is of order O(1/¢), and consequently beats out these O(¢) errors.
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4.8 Bounding /.
We estimate Iy. We compute
(r12)? = (r12)* + € f*|oT,]* + 2¢ fol, - Q1i2~
Since f =1 on [0,dp], and since ¢}, - g12 = nonneg. + O(t) we have
(r55)% = (r12)* + €0, |2 + 2¢(nonneg. + Ct + ...)

on this interval. Recall
12 = Ct2/3 + O(t)

with ¢ > 0. These suggest the substitution
t2/3 =cT

in the integral. Ignoring the terms r;3 as discussed in the previous paragraph,
we have Udt = mlmze?’/zrl/zdr/(cer + cpe3/273/2 4 ...), while

mymae3 271247

Utdt =
(c2e272 4 €2|oP|? + €O (e3/273/2))

where the error term O(e3/2r3/2) came from condition (5) above, the Levi-Civita

expansion of 715 and our substitution t = €3/273/2. Consequently, on the interval

in question, we have

1 1
et +O( 2732 \Ve2r2 4 |oP |2 + O(el/273/2)

(U—=U9Ydt = /emymyrt2dr] ].

This integrand is of the form [\/ef(r) + O(€)]dr where f(7) is the positive

function
1 1

f= m1m27'1/2(— -

eT \/m)'
Recalling that 6y = €3/? and that [y = Oéo(U — U€)dt we find that
IQ(E) = C\/E—F O(E),
. 1 ...
with C' = fo f(m)dr a positive number.

4.9 Bounding [,

First, we claim that we can pick a positive constant ¢, arbitrarily small as € — 0,
such that
ria > (1= ce)/Priy
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holds on our interval §y <t < d;. Indeed,
(r55)% = (r12)* + (nonneg.) + 2efo? - qio.

The last term is bounded by Cet according to condition (5). On the other hand
i, = ct*/3 + O(t°/3) by Levi-Civita . What we require then is that t4/3 >> et
which will be the case as long as 113 >> €. Use 6y = €3/2, and ¢ > &y to
conclude that t1/3 > (3/2)1/3 = ¢1/2 > > ¢ over our interval.

Consequently,
1 1

€
12 19

is either nonnegative, or, if negative satisfies

[Neg{r — 7}

€
12 1o

IAIA

< kye(d0) =3,

>

In the first line of this inequality “Neg ” means the negative part of:

Neg{x} = min{0,x}.

In the second and consequent lines of the inequlality % stands for
any constant, which can be taken independent of ¢. Indeed, we will
continue this tradition for £ through the rest of this section. Thus
in going from the second to the third line of the inequality we used the Taylor
expansion \/%—cﬁ—l = %CE—FO(Ez) so that the constant & can be taken to be any

number greater than line %c. And in the third line we again used 15 > kt*/3
and t > dg.
Finally we get

194 kesy *Pdt

= k(6 — 6o)edsy ?
ke

|Neg{l1}|

IA

where we used the defining relations between §p,d; and e. This proves the
desired bound
I (¢) = nonnegative 4+ O(e).
4.10 Bounding /5.
The kinetic difference K — K€ is zero except along the interval [y, 1] where

K—K° = —cfo? g1 —L(f)%|or)?
K, + K.
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This second term is easily bounded. As before, let k& be an arbitrary positive
constant which is allowed to change from inequality to inequality. Then |f]| <

k/(01 — dp), so that

K,

5
Jso

¢ [y /(01 — do)%dt
2k

<
< Pk = ge,

where we used 6; — 6y = ¢. Thus

/m:mq

To bound the first term, [ Ky, will require more work. We will first need
the bound:
oF - g12 = nonnegative + O(1).
To prove this write g1 in polar coordinates: ¢ = r¢, where » = r15 and ¢ = ¢12,
and ¢ = (cosf, sind) where @ is the angle which ¢ makes with the inertial x-axis.
It follows that )
Gi2 = 7q+r0J(q)
= Tq2+rdJg
where we have used the fact that % = Jq where J is ninety degree rotation.
The Levi-Civita asymptotics r = O(t*/3), # = O(t=/3) imply that % =0(t™1),
which combined with condition (5) yield :;0'11)2 - q12 = nonneg. + O(1). We also
have the asymptotics § = O(t=*/3). which yields the bound réojfz Je=0(?3)
for the second term in ¢12. Together these yield the desired bound above on
o? - 413

Now f <0, and |f| < k/(81 — o) = k/e, so that
0< —ef <k

It follows that .
—efoP - ¢ = nonnegative + O(1),

on the interval in question. Consequently

1 . .
|Neg{ [s, [—efo? - 4]dt}
< Jokdt
= ke

61 o-
|Neg{[; K1}l

This proves that f;ol K1 > O(¢). Combined with the same estimate for f Ky we
now have

Ir(e) > O(e).
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SUMMARY OF THE BINARY PERTURBATION ARGUMENT. The
change in action A — A, is the sum of the three integrals Iy, Iy and I», ig-
noring an O(e) error. We have shown that the last two integrals are greater
than or equal to O(e). The first integral Iy is greater than or equal to C'v/€ with
C positive. Thus

A— A > CVe+0(e)

with C' > 0. The action has been decreased.
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