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FEATURED REVIEW.Carnot-Carathéodory, or CC, metric consists of a subbundleH of the
tangent bundleTV of a manifoldV , together with a fiber-inner product onH. These metrics
arise in the studies of: (1) limits of Riemannian and other metric spaces, (2) the Mostow rigidity
phenomenon, (3) optimal control and (4) PDE, specifically, hypoelliptic operators. CC metrics are
also known as sub-Riemannian metrics or singular Riemannian metrics. Gromov is the inventor
of (1) [in Proceedings of the International Congress of Mathematicians (Helsinki, 1978), 415–
419, Acad. Sci. Fennica, Helsinki, 1980;MR 81g:53029; Structures ḿetriques pour les variét́es
riemanniennes, Edited by J. Lafontaine and P. Pansu, CEDIC, Paris, 1981;MR 85e:53051; Inst.
HautesÉtudes Sci. Publ. Math. No. 53, (1981), 53–73;MR 83b:53041]. See [P. Pansu, Ann. of
Math. (2)129 (1989), no. 1, 1–60;MR 90e:53058] for (2). See [R. W. Brockett, inProceedings
of the International Congress of Mathematicians, Vol. 1, 2 (Warsaw, 1983), 1357–1368, PWN,
Warsaw, 1984;MR 86k:93068] for (3), which can also serve as an introduction to CC geometries.
The seminal work in (4) is [L. Ḧormander, Acta Math.119(1967), 147–171; MR36#5526], with
[L. P. Rothschild and E. M. Stein, Acta Math.137(1976), no. 3-4, 247–320; MR55#9171] being
another good early source. For a friendly philosophical overview of CC spaces I recommend the
paper by R. S. Strichartz [Math. Intelligencer9 (1987), no. 3, 56–64;MR 88h:35002]. Another
source with a review-like nature by Strichartz is [J. Differential Geom.24 (1986), no. 2, 221–
263; MR 88b:53055], but note the corrections [J. Differential Geom.30 (1989), no. 2, 595–596;
MR 90f:53081]. The book under review is another book-within-a-conference proceedings by

Gromov. (For earlier work by Gromov, see [inGeometric group theory, Vol. 2 (Sussex, 1991),
1–295, Cambridge Univ. Press, Cambridge, 1993;MR 95m:20041].)

Call a curve inV horizontal if it is tangent toH. We can measure the length of such a curve by
using the inner product onH. We obtain a distance functiondist onV by declaring thatdist(x, y)
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be the infimum of the lengths of the horizontal curves joiningx to y. In the “extrinsic” point
of view, one uses stronglyH sitting within the tangent bundle, and all the consequent geometry
relating the twisting ofH and of its inner product. The “intrinsic” point of view, the “seen from
within” of this book’s title, refers to viewingV simply as a metric space and seeing how far one
can get with the metric alone. In this way the book is a natural continuation of the author’s earlier
book [op. cit.; MR 85e:53051], where this viewpoint is adopted towards Riemannian geometry.
(The latter reference was recently expanded and translated into English [Metric structures for
Riemannian and non-Riemannian spaces, Translated from the French by Sean Michael Bates,
Progr. Math., 152, Birkḧauser Boston, Boston, MA, 1999;MR 2000d:53065].)

A basic intrinsic question addressed by the book is: Can we recover the distributionH from
dist alone? Other questions addressed in the book are: What is the nature of a CC minimal
surface? What is the nature of CC isoperimetric inequalities? What are the Hausdorff dimensions
of submanifolds ofV ? What form do the Sobolev inequalities take in the CC world?

The fundamental theorem of the subject is Chow’s theorem, also called the Chow-Rashevskiı̆
theorem. It is the subject of Chapter 1. This theorem asserts that ifH generatesTV under iterated
Lie bracket then the distancedist(x, y) is finite for y in a neighborhood ofx. In other words,
if y can be joined tox by some path, then it can be joined to it by a horizontal path. It is
a kind of opposite to the Frobenius integrability theorem. Gromov’s treatment of Chow is not
so different from other treatments, with one exception. He provides a proof that the horizontal
connecting paths can be taken to be smooth. All proofs rely somehow on the “quadrilateral
approximation”exp(−tY ) exp(−tX) exp(tY ) exp(tX)(x) = x+ t2[X, Y ](x)+O(t4) to the Lie
bracket of vector fieldsX andY , and without further work yield piecewise smooth, as opposed to
smooth, horizontal connectors.

The Chow connectivity theorem becomes quantitative upon introducing the sheaves of vec-
tor fieldsHj defined byH1 = H, H2 = [H,H] + H andHj+1 = [H,Hj] + Hj. In other words
Hj is spanned by alls-fold Lie brackets of horizontal vector fields, withs ≤ j. The assumption
that bracket byH generates the tangent bundle is the requirement thatHr = TV for r suffi-
ciently large. Then0 ⊂ H ⊂ H2 ⊂ · · · ⊂ Hr = TV forms a filtration of the tangent sheaf. Set
Wj(x) = Hj(x)/Hj−1(x), andkj(x) = dim(Wj(x)). Gromov calls a distribution equiregular if
thesekj(x)’s are independent of the pointx. Suppose this to be the case. SetGr(H)(x) = H(x)⊕
W2(x)⊕ · · · ⊕Wr(x) ∼= Rk1 ⊕Rk2 ⊕ · · · ⊕Rkr . Choose norms‖ · ‖i on the factorsRki and set
Box(ε) = {(x1, x2, · · · , xr) ∈Rk1 ⊕Rk2 ⊕ · · · ⊕Rkr : ‖xi‖i ≤ εi}. The ball-box theorem asserts
that there exist coordinatesx = (x1, · · · , xr), xi ∈ Rki, centered at equiregularq ∈ V , together
with positive constantsc, C such that in these coordinatesBox(cε)⊂Bdist(q, ε)⊂ Box(Cε). Ver-
sions of this can be found in the papers by Rothschild and Stein [op. cit.], A. Nagel, Stein and S.
Wainger [Acta Math.155(1985), no. 1-2, 103–147;MR 86k:46049], and V. Ya. Gershkovich and
A. M. Vershik [J. Geom. Phys.5 (1988), no. 3, 407–452;MR 91j:58011]. Gromov gives his own
proof. Perhaps the most careful version in existence is that of A. Bellaı̈che [inSub-Riemannian
geometry, 1–78, Progr. Math., 144, Birkhäuser, Basel, 1996;MR 98a:53108], which precedes
Gromov’s contribution to this conference proceedings.
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The coordinate volume ofBox(ε) is a constant timesεN , whereN =
∑

iki. It follows from
this and the ball-box theorem that the Hausdorff dimension ofV with respect todist is N . On the
other hand, the topological dimension isn =

∑
ki. It follows that for a CC geometry (H 6= TV )

the Hausdorff dimension is always greater than the topological dimension.
Another important theorem, closely related to the ball-box theorem, is Mitchell’s theorem [J. W.

Mitchell, J. Differential Geom.21(1985), no. 1, 35–45;MR 87d:53086]. To state it, one begins by
observing that the Lie bracket of vector fields induces a Lie algebra structure onGr(H)(x) in the
equiregular case. This becomes a graded nilpotent Lie algebra. The exponential of this algebra is a
simply connected nilpotent groupG with a canonical CC structure: takeH(x) and left-translate it
about the group. SuchG’s are called Carnot groups by Gromov’s school, and homogeneous groups
by Stein and his school [G. B. Folland and E. M. Stein,Hardy spaces on homogeneous groups,
Princeton Univ. Press, Princeton, N.J., 1982;MR 84h:43027]. If (V,H) is a contact manifold then
thisG is then-dimensional Heisenberg group, and is independent ofx. In general, it depends on
x. Mitchell’s theorem asserts that the Gromov tangent cone to(V,dist) atx is this Carnot group.
We find a proof of this in Chapter 1. For the most careful proof available, again see Bellaı̈che’s
article (cited above) preceding Gromov’s. Bellaı̈che works even in the nonequiregular case.

CC geometries first crept into Gromov’s work in [op. cit.;MR 83b:53041]. Essentially, he
proved that the tangent cone at infinity of an infinite discrete group of polynomial growth is
a Carnot group. In this way he was able to deduce that all such discrete groups are virtually
nilpotent! This is also one of the first papers which uses the Gromov-Hausdorff topology.

Leaving Chapter 1 and the relatively well-known world of Chow, we come to Chapter 2, which
concerns hypersurfaces inV with metric geometry induced by restricting the CC distance function.
One of the first results is that ifW is a compact subset ofV of topological dimensionn−1 then its
Hausdorff dimension is at leastN −1. A CC isoperimetric inequality is proved:measN−1(∂D)≤
CmeasN(D)(N−1)/N for domainsD lying within compact regions ofV . Heremeask denotes the
Hausdorffk-dimensional measure,∂D is assumed to be smooth, at least in one incarnation of
this result, andC is a fixed constant. Gromov gives two proofs of this inequality. One involves
horizontal flow tubes. Another proof is based on what he calls “Green forms”: CC analogues of
the spherical area form onR3 r 0. A Green form is an(n− 1)-form ω defined onV minus a point
and singular at that point, which is closed and horizontal:ω|H = 0. Gromov proves the existence
of such forms and uses them in a manner similar to the calibrations arising in minimal surfaces to
prove his isoperimetric inequality. The CC Sobolev inequality

∫
|f |N/(N−1) ≤ C(

∫
|df |H)N/(N−1)

follows in a by-now standard way. Heredf |H is the restriction of the differential to the horizontal
spaceH, and the norm of this horizontal differential is defined using the CC inner product. The
derivation of the Sobolev inequality from the isoperimetric inequality follows a well-known line
of thought [see, e.g., N. Th. Varopoulos, L. Saloff-Coste and T. Coulhon,Analysis and geometry
on groups, Cambridge Univ. Press, Cambridge, 1992;MR 95f:43008]. Various other Sobolev
inequalities follow from this basic one. At a critical Sobolev exponent Gromov explores the
bubbling phenomenoǹa la Uhlenbeck. Here we find “pre-bubbles” and “bridges”, a long “trivial”
convergence lemma, and a wild picture, figure 4, which I confess I do not really understand.
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He continues the chapter with investigations of taut CC maps, Hölder estimates in the critical
exponent case. The chapter ends with “remarks and corollaries” centering around relations to
quasi-conformal maps, and hence indirectly to item (2) of our first paragraph above, and to
ideas which stem from his paper on groups of polynomial growth [op. cit.;MR 83b:53041].
Developments here seem to set the stage for a future theory of CC minimal surfaces.

Chapter 3 concerns the case whereH is a contact field onV . As Gromov says at this chapter’s
end: “Our study of(V,H) [is] local and in a sense perpendicular to the global contact explosion
of the last decade.” He investigates the Hölder and Lipschitz properties of mapsRk → V . In
§3.5 Gromov says: “Nobody knows yet (except possibly W. Thurston) whether every (closed
horizontal) surfaceS in the Heisenberg groupHn for n≥ 7 bounds something three-dimensional
of the volume (i.e. the three-dimensional Hausdorff measure) satisfyingvolume ≤ C(Area)3/2.”
Such lapses into friendly conversational style, as if Thurston were standing in a neighboring
room sipping his tea, lighten up the often heavy reading. Gromov goes on to describe Rumin’s
complex, a de Rham type complex adapted to the contact setting with interesting properties near
the Legendrian dimension(n− 1)/2 [see M. Rumin, C. R. Acad. Sci. Paris Sér. I Math. 310
(1990), no. 6, 401–404;MR 91a:58004]. I did not get a clear feeling of where Gromov was going
in this chapter.

Of all the chapters, Chapter 4 captured my interest the most. LetV ′ ⊂ V be a submanifold.
Set H ′

i = Hi ∩ TV ′. Set k′i = rank(H ′
i/H ′

i−1), and call the submanifold equiregular if these
dimensions are constant along the submanifold. We find the formulaN ′ =

∑
ik′i for the Hausdorff

dimension of(V ′,dist|V ′), an equiregular submanifold. Gromov turns this formula around: fixN ′

(or fix various of thek′i) and view this relation as a PDE forV ′, or more accurately, a PDR (R
for “relation” ). He investigates this PDR using tools from his earlier impenetrable masterpiece
[Partial differential relations, Springer, Berlin, 1986;MR 90a:58201]. Sections 4.1 to 4.3 concern,
in the main, horizontal submanifolds of a given dimension, which is the caseN ′ = dim(V ′) =
k′1. The curvature of a distribution is defined to be the mapΩ: Λ2H → TV/H sendingX ∧ Y to
[X, Y ] mod H: = Ω(X, Y ). (W. P. Thurston calls this curvature the “torsion” of the distribution
[Three-dimensional geometry and topology. Vol. 1, Edited by Silvio Levy, Princeton Univ. Press,
Princeton, NJ, 1997;MR 97m:57016].) Fix a local coframeη1, · · · , ηn−k of one-forms for the
subbundle ofT ∗V which annihilatesH. Viewed as anm = (n− k)-vector-valued form, theηi

provide an identification ofTV/H with Rm and the restrictions of the differentialsdηi to H ×H
provide a realization of this curvature. Horizontality of a submanifold is expressed by the relation
f ∗η = 0 wheref is the immersion. One can linearize these equations by varyingf and using
Cartan’s formula for the Lie derivative. (Here as in many places in the book we find notational
ambiguities which might throw the inexperienced reader into confusion: see the last line on p.
249.) The linearization at a pointp of the alleged manifold, with alleged horizontal tangent space
S, defines a linear mapHp → Hom(S, (TQ/H)p). Gromov defines an “Ω-regular subspace” of
S ⊂ Hp to be one for which this map is onto. Note thatΩ-regularity can only hold when the
corank ofH is not too big. Gromov then asserts the validity of various h-principles for families
of horizontal submanifolds in whichΩ-regularity is in force. The example of rigid curves arising

/msnmain?fn=105&fmt=pdfdoc&r=1&pg1=MR&s1=83b:53041
/msnmain?fn=105&fmt=pdfdoc&r=1&pg1=MR&s1=91a:58004
/msnmain?fn=105&fmt=pdfdoc&r=1&pg1=MR&s1=90a:58201
/msnmain?fn=105&fmt=pdfdoc&r=1&pg1=MR&s1=97m:57016


in rank-2 distributions serves as a warning to any sweeping validity of horizontal h-principle
theorems. (Their tangents are notΩ-regular subspaces.) These are horizontal curves which admit
noC1 horizontal variations with fixed endpoints. They are a generic phenomenon in rank 2. These
curves have their roots in developments in the calculus of variations at the beginning of this century
[see R. L. Bryant and L. Hsu, Invent. Math.114(1993), no. 2, 435–461;MR 94j:58003]. For what
these curves imply for CC geodesy, see the reviewer’s papers [SIAM J. Control Optim.32 (1994),
no. 6, 1605–1620;MR 95g:49006; in Sub-Riemannian geometry, 325–339, Progr. Math., 144,
Birkhäuser, Basel, 1996;MR 97m:58042] and also [W. Liu and H. J. Sussmann, Mem. Amer.
Math. Soc.118(1995), no. 564, x+104 pp.;MR 96c:53061; in Sub-Riemannian geometry, 341–
364, Progr. Math., 144, Birkḧauser, Basel, 1996;MR 98a:58040]. Gromov discusses them briefly
(pp. 259–260).
§4.1 contains an exposition on Cartan’s prolongation, which Gromov uses as a springboard for

conjectures about families of horizontal submanifolds.§4.1 D continues topological work begun
by Thom in the case whereV is an “affine prolongation”—more precisely the bundleJk(M,N)
of k-jets of maps fromM to N , with its canonical distribution. The generic maximal-dimensional
horizontal submanifolds of this jet bundle are thek-jets of maps fromM to N . Thom began a
theory of horizontal chains and homology, which Gromov’s begins to extend here. At the beginning
of §4.1 we find the basic question: “Can the rank ofH be recaptured by ‘robust’ (e.g.C1−ε-Hölder)
metric invariants?” referred to above. In the caseH2 = TV this is simple: the Hausdorff dimension
of V is rank(H) + 2k2 whereas its topological dimension isrank(H) + k2, so the rank is twice
the topological dimension minus the Hausdorff dimension. In the case of depth 3 (r = 3) this is an
open problem.

Chapter 5 concerns bundles and gauge theory over CC manifolds. It has a preliminary character.
Gromov told me it was written in part with the idea of extending some of the miracles of 4-
dimensional gauge theory to 5-dimensional contact manifolds.

As is usual with Gromov, the book is unevenly written. Some things are explained with startling
clarity, while others I could not begin to penetrate. Various arguments termed “trivial” I could not
follow. Sometimes it is hard to see where Gromov is going. These expository shortcomings are far
outweighed by sparkling new ideas and points of view, coming at a fast and furious rhythm. One
expects that some of the many lines of exploration initiated here will be followed, and may lead
to unexpected new results as well as connections between Carnot-Carathéodory geometry and the
rest of mathematics.
{For the entire collection see97f:53002}

ReviewedbyRichard Montgomery
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