The direct method of the calculus of variations. - by P. Mertgorey an application of weak convergence

1. The setting: c is a curve in \mathbb{R}^n (resp. a Riemannian manifold M^n). The action of a path is given by: $A(c) = \int_c L(c,\dot{c})dt$. Thus A is a function of paths. Here the function L is a function on $\mathbb{R}^n \times \mathbb{R}^n$ (resp. on the tangent bundle TM of M) which we will take to be of the form $L = \frac{1}{2} ||\dot{c}||^2 + U(c(t))$ where $||\dot{c}||^2 = \langle \dot{c}, \dot{c} \rangle$ is the usual squared length of the vector $\dot{c} = \frac{dc}{dt}$ in \mathbb{R}^n (resp. the squared inner product of this tangent vector w.r.t. the Riemannian inner product) and $U: \mathbb{R}^n \to \mathbb{R}$ is a function, assumed "sufficiently smooth", and its negative is called the "potential energy". We say that L is the difference of the kinetic energy $(\frac{1}{2}\|\dot{c}\|^2)$ and the potential energy.

REASON FOR INTEREST: Euler-Lagrange Principle. If we restrict A to the set of paths joining two given points in some given time, and if c minimizes A among all such paths, AND if c is "sufficiently smooth" then c satisfies Newton's equations:

$$\frac{d^2c}{dt^2} = \nabla U(c(t))$$

We will return to the proof of this principle later. The point is minimizing A provides us with a means of constructing solutions to Newton's equations.

2. Function spaces. $H^1([a,b],\mathbb{R}^n)$ will be defined as the closure of the space of all absolutely continuous paths in \mathbb{R}^n whose derivative is square integrable, and which are parameterized by the interval [0,T]. The standard H1 norm is : W

Thus, in the particular case that
$$U(c)=\frac{1}{2}\|c\|^2$$
 we have $\|c\|_{H^1}=2A(c)$. In this case L is the lagrangian for

the "harmonic oscillator".

3. Fix a subset $X \subset H^1$ of curves, corresponding to "boundary conditions" or endpoint conditions on X. Two typical choices. Fix points $q_0, q_1 \in \mathbb{R}^n$ (resp. in M^n). Consider the set of all curves $c: [0,T] \to \mathbb{R}^n$ in H^1 which satisfy $c(0) = q_0$ and $c(T) = q_1$. The choice used by Gordon is to take X to be the set of all curves which are periodic of period T i.e. c(0) = c(T) and which wind once around the origin. (on a manifold- take all curves which are periodic of period T and realize a given free homotopy class).

4. Set:

$$a(X) = inf_{c \in X} A(c).$$

By definition of "inf" this means there exists a sequence $c_n \in X$ of curves with the property that $\inf A(c_n) =$ a(X). The direct method of the calculus of variations proceeds by completing the following steps.

STEP 1. Show that the c_n converge to some curve c_* . The sense of convergence will be weak convergence.

STEP 2. Show that this limit c_* is in X.

STEP 3. Show that c_* realizes the infimum: $A(c_*) = a(X) := \lim \inf_{c \in X} A(c)$. (This is "weak lower semicontinuity of A".)

STEP 4. Show that the differential of the action, dA(c), at c, is zero. This would be "obvious" if X were finite-dimensional and open, for if the derivative were not zero, then we could move away from c in a direction which would further decrease the action.

STEP 5. Conclude from step 3 that c satisfies Newton's equations, which are the "Euler-Lagrange" equations for our L.

5. SOBOLEV EMBEDDING.

A key to proceding is the Sobolev embedding theorem. Take $c \in H^1$ which is absolutely continuous. Then it is the integral of its derivative, and this derivative exists a.e. Thus:

$$c(t) - c(s) = \int_{s}^{t} \dot{c}dt$$

18 to 15 < 21015 21215 = 12 men 1 5 < 2 11511 x 21

Now, using Cauchy-Schwarkz, with $f = ||\dot{c}||$ and g = 1, we find that:

 $\|c(t)-c(s)\| \leq \|c - c(s)\| \leq \|c\| dt \leq \sqrt{|t-s|} \sqrt{\int_s^t \|\dot{c}\|^2 dt}.$

From this we conclude that if $\|\dot{c}\|_{L^2} \leq M$ then

112/1/2 Ecorrect!

$$||c(t) - c(s)|| \leq \sqrt{|t - s|} ||\dot{c}||_{L^2} \mathcal{M}$$

. Now,

$$||c||_{H^1}^2 = ||c||_{L^2}^2 + ||\dot{c}||_{L^2}^2 \ge ||\dot{c}||_{L^2}^2$$

so, that we also have

$$||c(t)-c(s)|| \leq \sqrt{|t-s|} ||c||_{H^1}$$

This shows that those curves c lying in the H^1 ball form an equicontinous family, and hence the Arzela-Ascoli theorem. This shows that EVERY curve in H1 is absolutely continuous, since this estimate shows that they are in fact in the Holder space $C^{\frac{1}{2}}$. The Arzela -Ascoli theorem implies that if we have a sequence c_n of H^1 -curves which are bounded: $||c_n||_{H^1} \leq M$, and if $c_n(0)$ themselves are bounded, then the c_n admit a C^0 -convergent subsequence. For they are equicontinuous (being Holder) and bounded.

SHOW THAT THE ALTERNATIVE NORM $\|\cdot\|_A$, with $\|c\|_A^2 := \|c(0)\|^2 + \int \|\dot{c}(t)\|^2 dt$ is equivalent to the H^1 -norm which we have defined, namely the one whose square is $\int_0^T \|c(t)\|^2 + \int_0^T \|\dot{c}(t)\|^2 dt$ CONCLUDE: any H^1 -bounded sequence forms a bounded equicts family, and therefore has a convergent

subsequence.

CONCLUDE: every H^1 curve is C^0 .

CONCLUDE: the inclusion: $H^1 \to C^0$ is cts (i.e. bdd). What is the bd?

Returning to our problem: We have this minimizing sequence c_n for the action A. Let us suppose for simplicity that we are interested in the fixed endpoint conditions:

BOUNDARY CONDITIONS: $c(0) = 0, c(T) = q_1$, fixed

with curves starting at 0, so that all of our sequence c_n passes through 0 at time 0. Let us also suppose

POTENTIAL CONDITION: U is non-negative: $U \geq 0$.

STEP 1. Then: $\|c_n(0)\|^2 + \int_0^T \|\dot{c}_n(t)\|^2 dt \le 2A(c_n)$ so that our sequence c_n is H^1 bounded. By the Banach-Alaoglu theorem, we may extract a weakly convergent subsequence c_{n_k} Following standard notational procedure, we rename this subsequence c_n . Thus:

ma tex

$$c_n \rightharpoonup c_*$$
.

This completes STEP 1.

This c_* is our potential future solution to NEWTON. We have produced it out of (hot?) thin air.

STEP 2. Our space X consists of those H^1 curves satisfing BOUNDARY CONDITION above. Our c_* is in X. Why?

Answer: the map $H^1 \to C^0$ is continuous in the weak topology.

STEP 3. c_* minimizes. Since $c_n \stackrel{\checkmark}{\rightharpoonup} c_*$, we have that $||c_*||_{H^1} \leq ||c_n||_{H^1}$. The same is true using the norm $||c(0)||^2 + \int ||\dot{c}||^2 dt$. – recall proof; second pf: lebesque dominated convg.

Thus $\frac{1}{2}\int \|\mathbf{c}\mathbf{d}\mathbf{c}\hat{\mathbf{c}}_*\|^2 \leq \frac{1}{2}\int \|\dot{c}_n\|^2$. Also, $c_n \to c_*$ uniformly, i.e. in the C^0 topology. By potential assumption, this means that $U(c_n(t)) \to U(c_*(t))$ uniformly as well, and hence $\int U(c_n(t)) \to \int U(c_*(t))$. Adding these two observations we see that

Solve
$$A(c_*) \leq lim \ inf A(c_n) := a(X).$$

But $c_* \in X$. Therefore $A(c_*) = a(X)$, which is to say that c_* realizes the infimum.

STEP 5. Differentiating the action.

How do we differentiate functions from a Banach space? Just like we do for a regular vector space. Suppose $f: E \to \mathbb{R}$ is a function on the Banach space E. We form the difference quotients $\frac{1}{h}(f(x+he)-f(x))$. If this converges as $h \to 0$, then we define the limit to be the directional derivative of f at $x \in E$, written df(x)(e), or sometimes Df(x)(e), or f(x)(e). If this derivative is linear in the direction e, it defines a linear functional. IF THIS LINEAR FUNCTIONAL IS BOUNDED then we say that f is differentiable at x, with derivative df(x).

COMPUTATION:

df(r): E -71

$$dA(c)(e) = \int \langle \dot{c}(t), \dot{\langle} \dot{e}(t) \rangle + \langle \nabla U(c(t)), e(t) \rangle dt$$

assuming that U is differentiable on \mathbb{R}^n .

Thus dA(c) is the linear functional which is defined by the L_2 pairing of \dot{e} with \dot{c} plus the L_2 -pairing of e with ∇U . This $dU(\dot{c})$ is a continuous linear functional on H^1 .

Suppose that $c \in X$, so that c(0) = 0, $c(T) = q_1$. If we also have $c + he \in X$, then we must have e(0) = 0 = e(T). We thus set

 $S = \{e \in H^1 : e(0) = 0 = e(T)\}$, which is the tangent space T_cX to the space X at the curve c.

In the calculus of variations, such an e is said to be a "variation vanishing at the endpoints". (REMARK: Our X is an affine subspace of H^1 , so that S is a linear subspace – the vector space on which this affine space is modelled.

Lemma: The differential $dA(c_*)$, which is a linear function $H^1 \to \mathbb{R}$, must annihilate this linear subspace $S := \{e \in H^1 : e(0) = 0 = e(T)\}$.

Proof. suppose not. Then there is an e in this subspace with $dA(c_*)(e) \neq 0$. By replacing e with -e if neccessary, we may assume that $dA(c_*)(e) < 0$. But $dA(c_*)(e)$ is the derivative of the real-valued function $f(h) = A(c_* + he)$. If this derivative is negative, then for h sufficiently small, positive, we have f(h) < f(0) which is to say that $A(c_* + he) < A(c_*)$. However, $c_* + he \in X$, and c_* is the minimum of A over all of X. CONTRADICTION.

Definition. A curve (function) which satisfies $dA(c_*)|_S = 0$, where S is the subspace of variations vanishing at the endpoints is called a WEAK SOLUTION to Newton's equations.

This word "weak solution" comes from PDE and is more used there.

INTEGRATION BY PARTS: If we ASSUME that c_* and e are sufficiently differentiable, here C^2 is good enough, then we can integrate by parts: $\frac{d}{dt}\langle\dot{c}_*,e\rangle=\langle(\frac{d}{dt})^2c_*(t),e(t)\rangle+\langle\dot{c}_*(t),\dot{e}(t)\rangle$ From which it follows that

 $\int \langle \dot{c}_*(t), \dot{e}(t)
angle = \int \langle rac{-d^2}{dt^2} c_*(t), e(t)
angle dt + \langle \dot{c}_*, e
angle |_0^T = \int \langle rac{-d^2}{dt^2} c_*(t), e(t)
angle dt,$

where we used in the last equality the endpoint conditions e(0) = 0 = e(T). Consequently, under this assumption on c_* and e, we have

$$dA(c_*)(e) = \int \langle (\frac{-d^2}{dt^2}c_*(t)) + \nabla U(c_*(t)), e(t) \rangle dt$$

Now, if a real function g integrates with all functions h to be zero: if $\int gh = 0$ for all functions h with h(0) = h(T) = 0, then it stands to reason (and is easy to prove) that g = 0. Thus we have that c_* satisfies NEWTON: $\frac{-d^2}{dt^2}c(t) + \nabla U(c(t)) = 0$, PROVIDED we know, a priori, that c_* is twice differentiable. The big theoretical problem is, of course, that there is no reason this need be true!

FUNDAMENTAL LEMMA OF THE CALCULUS OF VARIATIONS. Suppose that $\int \langle \dot{c}, \dot{e} \rangle + \langle f, e \rangle dt = 0$

3

Then f=i (so 2 is 122)

Alone, take 600 and 6 1700cm

V.