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The direct method of the calculus of variations. - 41 r. /"(CV"'L?O"L “”/
an application of weak convergence

1. The setting: cis a curve in IR™ (resp. a Riemannian manifold M™). The action of a path is given by:
A(c) = [, L(c,¢)dt. Thus A is a function of paths. Here the function L is a function on R™ x R™ (resp. on
the tangent bundle TM of M) which we will take to be of the form L = 1|¢/|2 + U(c(t)) where ||¢]|2 = (¢, ¢)

is the usual squared length of the vector ¢ = %f in IR™ (resp. the squared inner product of this tangent vector
w.r.t. the Riemannian inner product) and U : R® — IR is a function, assumed “sufficiently smooth”, and
its negative is called the “potential energy”. We say that L is the difference of the kinetic energy (3/¢[|?)
and the potential energy.

REASON FOR INTEREST: Euler-Lagrange Principle. If we restrict A to the set of paths joining two
given points in some given time, and if ¢ minimizes A among all such paths, AND if ¢ is “sufficiently smooth”
then c satisfies Newton’s equations:
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We will return to the proof of this principle later. The point is minimizing A provides us with a means
of constructing solutions to Newton’s equations.
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2. Function spaces. H! ({g, b], IR™) will be defined as the closure of the space of all absolutely continuous
paths in JR" whose derivative is square integrable; and which are parameterized by the interval [0,7]. The
standard HT norm is : i
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Thus, in the particular case that U(c) = 1|c||> we have ||c[|1 = 2A(c). In this case L is the lagrarréian for
the “harmonic oscillator”.

3. Fix a subset X C H! of curves, corresponding to “boundary conditions” or endpoint conditions on
X. Two typical choices. Fix points qo,q; € IR" (resp. in M™). Consider the set of all curves c: [0,T] — R"
in H! which satisfy c(0) = go and ¢(T) = ¢q;. The choice used by Gordon is to take X to be the set of
all curves which are periodic of period T i.e. ¢(0) = ¢(T') and which wind once around the origin. (on a
manifold— take all curves which are periodic of period T and realize a given free homotopy class).

4. Set:
a(X) =infeex Alc). L.

By definition of “inf” this means there exists a sequence ¢, € X of curves with the property that infA(c,) =
a(X). The direct method of the calculus of variations proceeds by completing the following steps.

STEP 1. Show that the ¢, converge to some curve c,. The sense of convergence will be weak convergence.

STEP 2. Show that this limit ¢, is in X.

STEP 3. Show that c, realizes the infimum: A(c,) = a(X) := lim infeex A(c). (This is “weak lower
semicontinuity of A”.)

STEP 4. Show that the differential of the action , dA(c), at ¢, is zero. This would be “obvious” if X
were finite-dimensional and open, for if the derivative were not zero, then we could move away from c in a
direction which would further decrease the action.

STEP 5. Conclude from step 3 that ¢ satisfies Newton’s equations, which are the “Euler-Lagrange
equations for our L.

5. SOBOLEV EMBEDDING.
A key to proceding is the Sobolev embedding theorem. Take ¢ € H! which is absolutely continuous.
Then it is the integral of its derivative, and this derivative exists a.e. Thus:

e(t) —e(s) = /t cdt
1
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Now, using Cauchy-Schwarfz, with f = ||¢|| and g = 1, we find that:
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¥ From this we conclude that if ||¢|| 12 < M then "(// » & Neallyy,”
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v This shows that those curves ¢ lying in the H! ball form an egulcontmoumn hence the Arzela-
Ascoli theorem. This shows that EVERY curve in H! is absolutely contmuous,ﬁlz@ %his estimate shows
that they are in fact in the Holder space C . The Arzela -Ascoli theorem implies that if we have a sequence
¢n of H-curves whic}MH w1 < M, and if ¢,(0) themselves are bounded, then the ¢, admit
a CP%-convergent subsequence. For they are equicontinuous (being Holder) and bounded.

so, that we also have
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SHOW THAT THE ALTERNATIVE NORM || || 4, with {ic[|% := ||c(0)]|2 + [ ||é(t)]|?d¢ is equivalent to
the H'-norm which we have defined, namely the one whose square is fOT lle(®)))? + fo lle@)2dt

CONCLUDE: any H!-bounded sequence forms a bounded equicts family, and therefore has a convergent
subsequence.

CONCLUDE: every H! curve is C°.
CONCLUDE: the inclusion: H* — C? is cts (i.e. bdd). What is the bd?

Returning to our problem: We have this minimizing sequence ¢, for the action A. Let us suppose
for simplicity that we are interested in the fixed endpoint conditions:

BOUNDARY CONDITIONS: ¢(0) = 0,¢(T) = q1, fixed
with curves starting at 0, so that all of our sequence ¢, passes through 0 at time 0. Let us also suppose

POTENTIAL CONDITION: U is non-negative: U > 0.
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Then: {jc,(0 ||2+f0 ||cn(t |]2dt < 2A(c,,) so that our sequence ¢, is H! bounded. By the Banach-Alaoglu _
theorem, we may extract a weakly convergent subsequence c,, Following standard notational procedure, we
rename this subsequence ¢,. Thus:
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This completes STEP 1.
This ¢, is our potential future solution to NEWTON. We have produced it out of (hot?) thin air.
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STEP 2. Our space X consists of those H! curves satisfing BOUNDARY CONDITION above. Our c,
isin X. Why?
Answer: the map H! — C° is continuous in the weak topology. o
1)
STEP 3. ¢, minimizes. Since ¢, L c«, we have that ||c.]|g1 < ||en]lm:. The same is true using the norm
lc(0){|2 + [ ||¢]|2d¢. - recall proof; second pf: lebesque dominated convg.

hus L [ |loe€éa]|2 < 2 [|len]|?. Also, ¢, — c, uniformly, i.e. in the C° topology By potential
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,,,,, b assumption, this means tHat U(c,(t)) — U(c.(t)) uniformly as well, and hence [U(ca(t)) — [ U(cu(t
Adding these two observations we see that
R
Serl Alc.) < liminfA(e,) := a(X).
¢
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But ¢, € X. Therefore A(c,) = a(X), which is to say that c. realizes the infimum.

STEP 5. Differentiating the action.

How do we differentiate functions from a Banach space? Just like we do for a regular vector space.
Suppose f : E — IR is a function on the Banach space E. We form the difference quotients f(f(z+he)—f(z)).
If this converges as h — 0, then we define the limit to be the directional derivative of f at z € E, written
df (z)(e), or sometimes Df(z)(e) , or /f(x)(e). If this derivative is linear in the direction e, it defines a linear
functional. IF THIS LINEAR FUNCTIONAL IS BOUNDED then we say that f is differentiable at z, with
derivative df (z).

COMPUTATION: AL & T

aAQ)(e) = [ (o) ele) + (TULelt), ele) o
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assuming that U is differentiable on IR".

Thus dA(c) is the linear functional which is defined by the Lo pairing of é with ¢ plus the Lo-pairing of
e with VU. This dU(c) is a continuous linear functional on H 1

Suppose that ¢ € X, so that ¢(0) = 0, ¢(T) = q1- If we also have ¢ + he € X, then we must have
e(0) = 0 = e(T). We thus set

S ={e€ H':e(0) =0=e(T)}, which is the tangent space T.X to the space X at the curve c.

In the calculus of variations, such an e is said to be a “variation vanishing at the endpoints”. (REMARK:
Our X is an affine subspace of H!, so that S is a linear subspace - the vector space on which this affine
space is modelled.

Lemma: The differential dA(c.), which is a linear function H! — IR, must annihilate this linear
subspace S :={e€ H' : e(0) = 0=e(T)}.

Proof. suppose not. Then there is an e in this subspace with dA(c.)(e) # 0. By replacing e with —e
if neccessary, we may assume that dA(c,)(e) < 0. But dA(cy(e) is the derivative of the real-valued function
f(h) = A(c. + he). If this derivative is negative, then for h sufficiently small, positive, we have f(h) < f(0)
which is to say that A(c. + he) < A(c.). However, ¢, + he € X, and ¢, is the minimum of A over all of X.
CONTRADICTION.

Definition. A curve (function) which satisfies dA(c.)|s = 0, where S is the subspace of variations vanishing
at the endpoints is called a WEAK SOLUTION to Newton’s equations.

This word “weak solution” comes from PDE’EITdRis more used there.

INTEGRATION BY PARTS: If we ASSUME that c. and e are sufficiently differentiable, here C? is
good enough, then we can integrate by parts: Edz(c',,, e) = ((&)%c.(t), e(t)) +(é.(t), é(t)) From which it follows
that _p
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where we used in the last equality the endpoint conditions e(0) = 0 = e(T). Consequently, under this
assumption on ¢, and e, we have
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Now, if a real function g integrates with all functions h to be zero: if [gh = 0 for all functions h with
h(0) = h(T) = 0, then it stands to reason (and is easy to prove) that g = 0. Thus we have that c, satisfies
NEWTON: ﬁg—c(t) + VU (c(t)) = 0, PROVIDED we know, a priori , that ¢, is twice differentiable. The big
theoretical problem is, of course, that there is no reason this need be true!
FUNDAMENTAL LEMMA OF THE CALCULUS OF VARIATIONS. Suppose that [(¢,&)+(f, e)dt =0
for all @&
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