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CONVEXITY OF THE FIGURE EIGHT SOLUTION TO THE
THREE-BODY PROBLEM

TOSHIAKI FUJIWARA AND RICHARD MONTGOMERY

The Newtonian three-body problem with equal masses has a remarkable
solution where the bodies chase each other around a planar curve having
the qualitative shape and symmetries of a figure eight. Here we prove that
each lobe of this curve is convex.

1. Introduction

The figure eight is a recently discovered periodic solution to the Newtonian three-
body problem in which three equal masses traverse a single closed planar curve
in the form of an 8 (Figure 1). See [Moore 1993; Chenciner and Montgomery
2000]. The curve has one self-intersection, the origin, which divides it into two
symmetric lobes. In [Chenciner and Montgomery 2000] it was proved that each
lobe is star-shaped. Here we prove the lobes are convex. (A computer proof based
on interval arithmetic appears in [Kapela and Zgliczýnski 2003].)

Theorem 1.Each lobe of the eight solution is a convex curve.

In the final section we describe how the theorem generalizes to prove the con-
vexity of eights for many three-body potentials besides Newton’s.

2. Preliminaries

We present a number of properties of the eight established in [Chenciner and Mont-
gomery 2000] and three assertions relating mechanics and plane geometry. The
convexity proof relies on these properties and assertions.

Center of Mass.Write q1(t),q2(t),q3(t) for the location of the three masses in
the plane at timet . At each timet we haveq1(t)+q2(t)+q3(t)= 0.
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Symmetry.Write Ry(x, y)= (−x, y) for the reflection about they axis. Then the
eight solution enjoys the following symmetries:
(
q1(t),q2(t),q3(t)

)= (Ry
(
q3(t − 1

6T)
)
, Ry

(
q1(t − 1

6T)
)
, Ry

(
q2(t − 1

6T)
))
,

(
q1(t),q2(t),q3(t)

)= (−q1(−t),−q3(−t),−q2(−t)
)
.

The right-hand side of these equations defines transformationss andσ on the space
of all T-periodic loops. These transformations generate an action of the dihedral
group

D6= {s, σ | s6= 1, σ 2= 1, sσ = σs−1},
the symmetry group of a regular hexagon, which is consequently a symmetry group
of the eight.

Invariance unders2 ∈ D6 implies that
(
s2(q1,q2,q2)

)
(t)= (q1(t),q2(t), q3(t)

)
.

Settingq = q1 this last equation reads

(1) q1(t)= q(t), q2(t)= q
(
t + 1

3T
)
, q3(t)= q

(
t + 2

3T
)
.

A choreographyis a three-body solution satisfying(1). The curveq(t) is the curve
of the eight whose lobes are the subject ofTheorem 1.

The D6-invariance of the figure eight implies that it is completely determined
by the three arcsq1

([− 1
12T,0]), q2

([− 1
12T,0]), q3

([− 1
12T,0]) swept out by the

three masses over the time interval[− 1
12T,0]. To proveTheorem 1it is enough

to prove that the curvatures of these three arcs are never zero(with the exception
of the pointq1(0), the self-intersection point of the eight, which is taken to be the
origin).

A configuration(q1,q2,q3) satisfyingq1+ q2+ q3 = 0 is called anEuler con-
figuration if one of theqi vanishes. Then necessarily the other two massesq j ,qk

are of the formζ,−ζ , so that the entire configuration(q1,q2,q3) is collinear with
massi at the origin located at the midpoint of the segment defined by the other two
massesj andk. Upon translating time if necessary, and relabeling the masses, we
can insist that at time 0 the configuration is an Euler configuration with mass 1 at
the origin and 3 in the first quadrant, as indicated inFigure 1. At the initial time
t = − 1

12T the three masses form an isosceles triangle, with mass 2 at the vertex
and lying on the negativex-axis.

The eight minimizes the usual action of mechanics (integral of the kinetic minus
potential energy) among allT-periodic loops enjoyingD6 symmetry. Equivalently
[Chenciner and Montgomery 2000] the path

(
q1(t),q2(t),q3(t)

)
of the eight over

the fundamental time interval
[− 1

12T,0
]

minimizes the action among all paths
starting at time− 1

12T in an isosceles configuration with 2 being the vertex and
ending at time 0 in an Euler configuration with 1 being the origin. An impor-
tant consequence of minimization, proved in [Chenciner and Montgomery 2000,
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Figure 1. The eight. The labels 1s and 1e represent the location
of mass 1 att =− 1

12T andt = 0, and likewise for 2 and 3.

pp. 896–897], is that there are no times in the fundamental domain besides the
endpoints at which the configuration is either collinear or isosceles. It follows that,
for all t ∈ (− 1

12T,0
)
,

(2) r13< r12< r23

and

(3) q1∧q2= q2∧q3= q3∧q1< 0,

wherer i j = |qi −q j | is the distance between massesi and j and we write

(x, y)∧ (u, v)= xv− yu

for planar vectors(x, y) and (u, v). We call equation(2) the distance ordering
inequality.

Initial and final velocities. At the Euler time,t = 0, the velocities of 2 and 3 are
antiparallel to the velocity of 1 and half its size. SeeFigure 1. This follows from
the action minimization of the eight. At the isosceles timet =− 1

12T , the velocity
of 2 is vertical, pointing down, and the velocities of 1 and 3 are such that their
tangent lines pass through 2. This follows from the three-tangents theorem and the
angular momentum property, both of which are described below.

Angular momentum and star-shapedness.Write

` j = q j ∧ q̇ j

for the angular momentum of thej -th particle. Action minimization of the eight
implies that its total angular momentum is zero:

`1+ `2+ `3= 0
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Figure 2. `(t) versust .

of the eight. Newton’s equations imply (see [Chenciner and Montgomery 2000,
p. 896])

˙̀3=
(

1

r 3
13

− 1

r 3
23

)
(q1∧q2)

for all time. Upon taking account the distance inequality(2) and(3) we find that
˙̀3 < 0 on the arc 3. Similarly,

˙̀1 > 0, ˙̀2 > 0, ˙̀3< 0.

We use the notation 1s to indicate body 1 at the starting timet = − 1
12T , etc. By

the symmetry,̀ 1s = `3s = −2`2s < 0. (The inequalities̀ 1s < 0 and`1e = 0 are
consistent witḣ̀ 1> 0.) Also`2s > 0 and ˙̀2> 0 imply `2e=−`3e> 0. (SeeFigure
2.) Therefore over the interior(− 1

12T,0) of our fundamental domain we have

`1 < 0, `2 > 0, `3< 0.

More generally, set

`= q∧ q̇

asq varies over the eight. It follows that on the right lobe (x > 0) we have

` < 0 for x > 0.

(SeeFigure 2.)
A curve in the plane is calledstar-shapedwith respect to the origin if every

ray from the origin intersects the curve at most once. For a smooth curve, this is
equivalent to the assertion that, when written in polar coordinates as(r (t), θ(t)),
the functionθ(t) is strictly monotone and does not vary by more than 2π . Since
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` = r 2θ̇ the star-shapedness of a curve (such as one lobe of the eight) which lies
in the half-planex > 0 is thus equivalent tò 6= 0.

The three-tangents theorem.The following theorem can be found in [Fujiwara
et al. 2003], where it was used to establish the existence of a choreographic three-
body lemniscate for a non-Newtonian potential.

Theorem 2(Three tangents).Let(q1(t),q2(t),q3(t)) be three planar curves whose
total linear and total angular momentum are zero. Then the three instantaneous
tangent lines to these three curves are coincident — they all three intersect in the
same(time-dependent) point or are parallel.

Proof. Fix the timet . Becausėq1+ q̇2+ q̇3 = 0, translating all theqi in the same
fixed direction does not change the condition of having zero angular momentum.
So, without loss of generality, we can choose the origin to be the point of inter-
section of the tangent lines toq1 andq2 at time t . Because the pointq1(t) lies
along the line through the origin in the directionq̇1 we haveq1(t) ∧ q̇1(t) = 0.
Similarly q2(t)∧ q̇2(t) = 0. But the total angular momentum is zero so we must
haveq3(t)∧ q̇3(t)= 0 which asserts that the line tangent to the curve ofq3 at t also
passes through the origin. ¤

The proof also works for unequal massesm1,m2,m3. Simply use the correct
mass-weighted formulae for linear and angular momentum.

The splitting lemma.We will use the following splitting lemma in several places
in the proof. A line in the plane divides the plane into three pieces: two open
half-planes and the line itself. We say that a point liesstrictly on one sideof the
line if it lies in one of the open half-planes. We say that this linesplits the points
A andB of the plane if the two points lie in opposite open half-planes.

Lemma 1. Let (q1(t),q2(t),q3(t)) be a planar solution to Newton’s three-body
equation with attractive1/r potential. Suppose that at timet∗ the arcqi (t) of mass
i has an inflection point and nonzero speed. Then the tangent linè to this arc at
timet∗ must either(A) split the other two massesq j (t∗) andqk(t∗) or (B) all three
masses must lie on this tangent line.

Proof. Suppose, to the contrary, that either bothq j (t∗) andqk(t∗) lie strictly on one
side of`, or that one lies oǹ while the other lies strictly on one side. According to
Newton’s equations the accelerationq̈i (t∗) is a linear combination ofq j (t∗)−qi (t∗)
andqk(t∗)−qi (t∗) and the coefficients of this linear combination are positive. Thus,
translating` and the configuration of masses back to the origin by subtracting
qi (t∗), we see that this acceleration lies strictly on one side of the line through
0 spanned by the velocitẏqi (t∗). Consequently, the acceleration and velocity of
qi (t) arelinearly independentat t∗. But the condition of being an inflection point
is precisely that the acceleration and velocity be linearly dependent. ¤
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The same proof works if the Newtonian potential−∑i< j mi m j /r i j is replaced
by any potentialV =∑i< j f (r i j ), whered f/dr > 0.

A Convexity Proposition.A parametrizationt of a curveC is nondengenerateif
the derivativedC(t)/dt is never zero. A smooth, possibly self-intersecting curve
is calledlocally convexif its curvature never vanishes.

Proposition. Let C be a smooth locally convex planar curve parametrized by a
nondegenerate parametert . Let `(t) be the tangent toC at C(t). Let m be a line
not intersectingC. Let P(t) be the point of intersection of̀(t) andm. ThenP(t)
moves on the linem always in the same direction, for all t such thatP(t) is finite.

Proof. We can takem to be they-axis. If C is parametrized by(x(t), y(t)), the
line `(t) is given by

{
(x(t), y(t))+ λ(ẋ(t), ẏ(t)) : λ ∈ R

}
, and it intersectsm at

P(t)= (0, p(t)), where

p=−x(t) ẏ(t)− y(t) ẋ(t)

ẋ(t)
.

Differentiation and the definition of the curvatureκ yield

dp

dt
=−v

3x

ẋ2
κ,

wherev =
√

ẋ2+ ẏ2 is the curve’s speed. The factorsv, x, κ are never zero by
assumption (in the case ofx becauseC avoidsm); therefore they have constant
sign. Thusdp/dt has constant sign wherever defined. ¤

3. To each mass its own quadrant

A crucial ingredient in the proof ofTheorem 1is that each mass “stays in its own
quadrant” during the time interval(− 1

12T,0). Initially 3 is in the first quadrant,
1 is in the fourth, and 2 is on thex-axis between the second and third quadrants,
moving into the third. Hence, for a short time interval(− 1

12T,− 1
12T + ε), mass 3

lies in the first quadrant, 1 in the fourth, and 2 in the third.

Lemma 2. Over the time interval(− 1
12T,0) body1 lies in the fourth quadrant,

body2 lies in the third, and body3 lies in the first.

Proof. Suppose one of the masses leaves its initial quadrant before time 0. It must
exit along the boundary of this quadrant. It cannot exit through the origin, as this
would imply an Euler configuration and the only Euler configuration occurs at the
endpoint of the interval.

We argue individually that each mass cannot be the first to exit. Suppose that
2 exits first (perhaps simultaneously with another). It cannot leave crossing the
x-axis, as this would contradict star-shapedness of the lobe it lies on. Neither can
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it exit through they-axis, for then itsx-coordinate would be zero, and, because
collinearity of the three masses is excluded, at least one of 1 and 3 would not be
exiting at the same time and so would have a positivex-coordinate. Thus the sum
of thex-coordinates of the masses would be positive, contradicting that the center
of mass is at the origin.

Mass 1 cannot leave first. For it cannot leave through thex-axis, as this would
again contradict star-shapedness. It cannot leave through they-axis as this would
violate the distance orderingr13< r12< r23 guaranteed by(2). To see this violation,
write the exit point for mass 1 as(0, y1), with y1< 0. Then the other masses must
be at(−x, y2) and(x, y3) with x > 0 (since the configuration cannot be collinear)
andy2< 0, y3> 0. We haver 2

13= x2+ (y3− y1)
2 andr 2

12= x2+ (y2− y1)
2. But

y3 > 0, 0> y1, y2, andy1+ y2+ y3= 0, so

y3− y1=−2y1− y2= 2|y1| + |y2|,
while |y2− y1|< |y2|+ |y1|, so that(y3− y1)

2> (y2− y1)
2 andr13> r12, contra-

dicting the distance ordering.
Mass 3 cannot leave first. It cannot exit across thex-axis, for if it did the center

of mass of the system would have a negativey-coordinate. It cannot leave across
the y-axis, for this would contradict star-shapedness. ¤

4. Proof of Theorem 1

We refer to the arc swept out by massj during the the time interval
[− 1

12T,0
]

as
arc j , and writeκ j for its curvature. We must show thatκ1 ≤ 0 with κ1 < 0 for
t 6= 0, thatκ2 > 0 and thatκ3< 0.

Convexity of arc 1.We begin by showing thaẗy1>0 along arc 1. Since each mass
stays in its own quadrant, we havey3− y1> 0; moreoverr13< r12 by (2). Thus

ÿ1= (y3− y1)/r
3
13+ (y2− y1)/r

3
12

> (y3− y1)/r
3
12+ (y2− y1)/r

3
12

=−3y1/r
3
12> 0.

Next we show thaṫy1 > 0 along the arc. From the fact thatÿ1 > 0, it suffices
to show thatẏ1 > 0 at the initial point of arc 1, the isosceles point. By the three-
tangents theorem and the fact that`1 < 0 it follows that at the isosceles pointq̇1

points fromq1 to the vertexq2, so thatẏ1> 0.
We have seen that`1< 0 while ˙̀1> 0 along the arc. Combining these inequali-

ties, we see that̀̇1ẏ1−`1ÿ1> 0 holds along the arc. On the other hand, expanding
the angular momentum, we get˙̀1ẏ1−`1ÿ1= (x1ÿ1− y1ẍ1)ẏ1−(x1ẏ1− y1ẋ1)ÿ1=
y1(ẋ1ÿ1− ẏ1ẍ1)= y1v

3
1κ. Thusy1v

3
1κ1> 0. Sincey1< 0, v1> 0 we haveκ1< 0.
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Figure 3. Region for bodies 1 and 3.

Convexity of arc 2.Assume, by way of contradiction, that there exists an inflection
point κ2 = 0 on arc 2. Leta be the last inflection point on arc 2 — the one whose
time t is closest to 0. From the initial conditions att = − 1

12T,0 described above
we also know thatκ2 > 0 at the points 2s and 2e. By continuity,κ2 > 0 near both
of these points. Thenκ2> 0 on the arc froma to 2e.

We already know that arc 1 is convex (κ1 < 0) and we also know that body
3 moves in the first quadrant. It follows that bodies 1 and 3 must lie within the
shaded region in theFigure 3.

Consider the Gauss map (hodograph) of arc 2. This is the map that assigns to a
point of arc 2 the unit tangent to arc 2,q̇2/|q̇2|, at that point.

2s

2e

a

Figure 4. Gauss map of the unit tangent vectorq̇2/|q̇2|.

By Newton’s equation and the fact thatx1−x2 andx3−x2 are positive we have
ẍ2 > 0 on the entire arc 2. Sincėx2 = 0 at 2s, this implies thatẋ2 > 0 on the
open arc of 2, from 2s to 2e, and so in particulaṙx2 > 0 ata. Sinceκ2 > 0 on the
arca→ 2e, the vectorq̇2/|q̇2| must approach 2e from the pointa monotonically
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counterclockwise. Therefore the pointa lies on the arc between the points 2s and
2e on the right half of the circle as shown in the Gauss map (Figure 4).

But then the tangent line to arc 2 ata cannot split the points 1 and 3, which,
according to the splitting lemma (Lemma 1), contradicts the assumption thata is
an inflection point.

Thus we have proved that arc 2 has no inflection points, that is,κ2 > 0.

Convexity of arc 3.Assume, by way of contradiction, that there are inflection
points on arc 3. Letb be the first such point, the one for which the timet is closest
to − 1

12T . Then, by the splitting lemma (Lemma 1), the tangent line to arc 3 atb
must split bodies 1 and 2. In order to do that, the line must have passed earlier
through either body 1 or body 2. We argue that both passings are impossible.

The tangent line to arc 3 cannot pass through body 1. For, by the three-tangent
theorem, at the instant this happened, the tangent line from the body 2 would also
pass through the body 1. We have already proved thatκ2>0 on the arc 2. Thus the
tangent line from the body 2 never pass through the body 1 in this interval. (See
Figures3 and4.) This is a contradiction.

The tangent line to arc 3 cannot pass through body 2. For if it did, by the three-
tangents theorem, the tangent line to 1’s curve would also pass through body 2 at
the same instant. To see that this latter passing is impossible, join the endpoints 2s

and 2e of arc 2 by a straight linem. Arc 2 lies completely on one side of this line,
by convexity.

We now applyPropositionon page192 to our situation. At the final points
1e and 2e, the tangents to 1 and 2 are parallel, so that the intersection ofm with
1’s tangent lies in the massless quadrantx < 0, y > 0. At the initial points the
intersection point ofm and arc 1’s tangent is 2s. Consequently, in betweens and
e the intersection always lies in that part ofm lying in the massless quadrant. But
in order for 1’s tangent to pass through 2, 1’s tangent would have to cross linem
between 2s and 2e, which is in the quadrant of arc 2, and hence it is impossible
that this tangent passes through 2.

Therefore, we have proved that there is no inflection point on the arc 3. In other
word,κ3 < 0 on the arc 3.

Putting together the convexity of all three arcs we obtain Theorem 1.

5. Convexity for other potentials

Theorem 1holds for the figure eight solution of other potentials. Indeed, our proof
only depended on the properties of the eight listed in Section 2 and a monotonicity
property of the Newtonian potential discussed below.
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m

Figure 5. Line m and tangent lines to arc 1 att =− 1
12T andt = 0.

To be precise, we need to define what we mean by an eight. Let

V = V(r12, r23, r31)

be a three-body potential depending only on the interparticle distancesr i j and
invariant under interchange of the masses. Then the symmetry groupD6 of the
eight acts on solutions to the corresponding Newton equation, taking solutions to
solutions, and so we can speak ofD6-invariant solutions.

A planar solution to the Newton’s equation forV is called aneight solutionif

(i) it is invariant under theD6 symmetries,

(ii) on the interior of each fundamental domain
(
m 1

12T, (m+ 1) 1
12T

)
, for m =

0,±1,±2, . . . , the configuration is never collinear and never isosceles, and

(iii) the solution has no collisions.

Such a solution will necessarily be a planar choreography (see(1) on page188),
and so the three masses travel a single planar curve. Condition(i) implies that the
center of mass is 0 and that the angular momentum is zero. If, in addition, our
potentialV has the form

V =
∑

i< j

f (r i j ),
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where

(iv) d f/dr > 0 (attractive two-body potential) and

(v) g(r ) := r−1d f/dr is a strictly monotone decreasing function ofr ,

then all properties and inequalities used in this paper hold.
Indeed, return to the starting point, the distance ordering inequality(2). At

t = − 1
12T we haver23 = r12, and att = 0 we haver12 = r31 < r23 = 2r12. By

property(ii) , the possible distance orderings on the time interval
(− 1

12T,0
)

are
r31< r12< r23 or r12< r31< r23. Consider the equation for̀̇1,

˙̀1=
(
g(r21)− g(r31)

)
(q2∧q3),

for a monotone decreasing functiong(r ). We have ˙̀1 > 0 for the first ordering
and ˙̀1 < 0 for the second ordering. But, since`1 < 0 at t = − 1

12T and`1 = 0 at
t = 0, the value oḟ̀ 1 must be positive. So we must have the first ordering, namely,
equation(2). Then all equalities and inequalities in this paper hold. Thus:

Theorem 3.Let V be a three-body potential of the formV =∑i< j f (r i j ) where f
satisfies(iv) and (v) above, and admitting an eight solution as defined by(i)–(iii)
above. Then each lobe of this eight forV is convex.

The theorem begs the question, do eight solutions exist for any potentials besides
Newton’s? Recall from [Chenciner and Montgomery 2000, pp. 896–897] that if a
solution that satisfies(i) and(ii) is known to minimize the action associated toV
among all paths satisfying(i), and if that solution is not identically collinear, then
automatically the solution satisfies(ii) . The power law potentials

Va = (a)−1(r a
12+ r a

23+ r a
31),

for a≤−2 admit such collision-free action minimizing solutions, and consequently
they admit eight solutions. Moreover, the proof of [Chenciner and Montgomery
2000], specific toa = −1, is based on strict inequalities, and hence is valid for a
range of exponents−1− ε1< a<−1+ ε2 for ε1, ε2 positive numbers. Numerical
evidence presented in [Chenciner et al. 2002] suggests that eights exist for all power
lawsVa, wherea<0. (These eights are dynamically stable only in a neighborhood
of the Newtonian potentiala=−1.)

Corollary. For the power law potentialsVa with a ≤ −2 or with a in some open
interval about−1, there exist eight solutions and each lobe of these eight solutions
is convex.

6. Unicity

Showing the unicity of the Newtonian eight remains an open problem [Chenciner
2003]. Our work here drastically reduces the candidate eights, and hence the scope



198 TOSHIAKI FUJIWARA AND RICHARD MONTGOMERY

of nonunicity, to those eights with convex lobes. It might allow a handhold towards
surmounting the unicity problem. If our reader will allow us to fantasize in this
direction, imagine two distinct Newtonian eights, both enjoying (i)D6 symmetry,
(ii) the same period, and (iii) having the same minimum value for the action. Con-
nect these two eights by a family of eights having (i) and (ii), and having convex
lobes. Apply the min-max procedure to extract out of such a family a third eight
that is variationally unstable, meaning that the Hessian of the action there has a
negative direction. Now establish a contradiction between the existence of the
negative mode and the convexity of the lobe of this third eight. Such a program,
or a similar one, could conceivably lead to a proof of unicity of the eight.
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Note added in proof

For the power law potentialsVa, Barutello, Ferrario and Terracini [Barutello et al.
2004] have proved existence of eights for alla< 0; see the proof following Propo-
sition (4.15) on p. 19. Montgomery [2004] has proved the uniqueness of the eight
for a=−2.
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