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CANONICAL FORMULATIONS OF A CLASSICAL PARTICLE IN A
YANG-MILLS FIELD AND WONG'S EQUATIONS

RICHARD MONTGOMERY
Department of Mathematics, University of Berkeley, Berkeley, CA 94720, U.S.A.

ABSTRACT. Wong [14] introduced equations of motion for a spin 0 particle in a Yang—Mills
field wlﬁch"w';s(,widely accepted among physicists. It is shown that these are equivalent to the
various mathematical formulations for the motion of such particles as given by the Kaluza—Klein
formulation of Kerner (4], and those of Sternberg [11], and Weinstein [12]. In doing this, we
show that Sternberg's space is, in a natural way, a symplectic leaf of a reduced Poisson manifold
and relations to a construction of Kummer's [5] for dynamics on the cotangent bundle of a
principle bundle are clarified.

1. INTRODUCTION

Wong's equations are

. 1 agav '
Py = szsdpu - E axk Dalvs (la)

£, = —c3ALP tq, (1b)

where g is a Lorentz-metric on a space-time X, A4 is a connection on a principal bundle P over X,
F'is its curvature, £, are a basis for the Lie algebra & of the structure group G of P, the ¢’s are the
structure constants of ®, x* are space-time coordinates, and Dy are the resulting momentum
(cotangent) coordinates. Space-time indices are raised and lowered by g. We will assume there is a
bi-invariant metric y on ® with which Lie algebra indices can be raised and lowered. These
equations are amended by :

xH = ph . (lc)

and the interpretation " = m(d/dr), where m is the particle’s rest mass, and  its proper time. For
convenience the coupling constant and Planck’s constant have been set equal to one.

The geometric interpretation of these equations is as follows. Equation (12) is that for the
worldline of a particle under 2 generalized Lorentz force. Equation (1b) says that the isotropic
spin momentum, which is a section of the associated co-adjoint bundle
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E=P é ® * (with fibre coordinates £;)

over the wordline, is parallel translated by the connection induced on £ by A.

There are three other formulations of the dynamics of a particle in a Yang—Mills field. The
Kaluza—Klein picture of electromagnetism was given a straightforward generalization to the
Yang—Mills case by Kerner [4]. Sternberg {11] gave the first formulation in the spirit of the
modern school of symplectic geometers. Lastly, soon after Sternberg, Weinstein [12] gave a
natural formulation using reduction and showed it was equivalent to Sternberg’s. Sniatycki [10]
showed that Kerner's and Weinstein’s, hence Sternberg's, formulations predict the same world-
lines on space-time. A straightforward calculation done in Section 2 shows that this worldline is
also given by Wong’s equation (1a).

It hds been unclear, however, how the various formulations are related in the fibre direction,
that is, to Wong's equation (1b). In this paper we show, that all formulations are equivalent in a
natural way (Theorems 1 and 2).

A guiding principle for this work has been that Wong's equations naturally live on the vector
bundle £¥ =P* x ; ®* and not on the submanifold of E# given by 0* = P¥ x ¢ 0, which is
Sternberg's phase space. Here P* denotes the pullback of P obtained by completing the following
diagram with dotted arrows

P¥—~=p
b
T*X— X

and @ is a co-adjoint orbit in & *. The key to the equivalence of the various formulations was the
realization that 4 induces a Poisson structure on £# whose symplectic leaves are the 0 #5 (see
Theorem 2).

2. KALUZA-KLEIN AND KERNER

In the Kaluzu—Klein picture of the motion of a colored particle in 2 Yang—Mills field, as
generalized by Kerner, the motion of the particle is 2 geodesic on P where the metric K on P is
induced by the connection 4. That is,

T,p=V,eH, pEP )
is an orthogonal decomposition, where ¥, is the vertical space and Hp is the connection’s
horizontal distribution. On V. K is induced by the fixed bi-invariant metric ¥ on & under the
infinitesimal generator isomorphism

0p: & =+ V,CT,P 3)

and on f,, it is the horizontal lift of the metric g, on space-time, via the connection.
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The metric K is G-invariant. Its geodesics are determined by the G-invariant kinetic Hamiltonian
on T*P where the symplectic structure is the standard one.

3. THE EQUIVALENCES

Notation: There will be many bundles in the discussions below. To ease the notational burden we
will use the symbol ny; for a bundle projection Z + Y. When no problems arise from it, the
subscript YZ will be dropped. If Z is a product we may use m, and 7, instead for projection onto
the first and second factors. Also 7y will always be used for the cotangent projection 7*Y - V.
We begin by decomposing T*P into a horizontal part which turns out to be P¥, and a vertical
part & *, by using the connection 4. To do this, we use an observation of Guillemin and Stern-
berg’s [3] that P¥ has a natural realization as V'° G T*P, the annihilator of the vertical bundle
V' C TP. Then the projection P# — P s just the restriction of the cotangent projection 7,, and
the other projection P¥ — T*X is defined by

Trex, pil0p) v =ap- V
where Vis any vector in T, P which projects to v, that is such that
Tnyp- V=9 and o, EP: C TP
The connection 4 induces a G-equivariant isomorphism of vector bundles over P:
Ap*x G T
given by
Z(ap, u) = ap +Aju

where 47 is the dual of the connection form Ap:TpP = ®. This is just the splitting of T*P
dual to the splitting (2) of TP.

Using Z we pull back the canonical two-form and the Kaluza—Klein Hamiltonian to get a
G-invariant Hamiltonian system on 2% x @ *. If we quotient this by G we have a Poisson
structure (see Marsden and Weinstein [7, 8] or Weinstein, [13] and Hamiltonian H*# on the
associated vector bundle to P¥: £# = P* x . 5*. This is the phase space for Wong'’s equations.

THEOREM 1. Hamilton’s equations on E* are Wong's equations.

THEOREM 2. The Sternberg phase spaces 0 # = P* x cO CE* where 0 C B*isa coadjoint
orbit, are the symplectic leaves of E¥. § ternberg’s Hamiltonian, considered as a function on £ #
differs from ours by a Casimir function (one constant on symplectic leaves) and hence, generates
the same equations of motion.
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REMARK. Weinstein [12] has constructed an equivalence between his set-up and Sternberg's.
Hence, Theorems 1 and 2 together show all four formalisms are equivalent.

4. PROOF OF THEOREM 1

We have the commutative diagram

Pt x G A - T*P
T
E¥=P*x ®* — T*P/G (CDI)
G \
LT

in which all maps except the bottom two are, by definition of the Poisson structures, Poisson
maps. The idea is to put coordinates on E ¥ corresponding to those in Wong's equations, lift these
up to T*P and compute brackets there.

Let U be an open subset of X with coordinates x*. Let s: U = P be a local section and
¢: Ux G =Py the corresponging local trivialization.

T*¢:T*Py =T*Ux T*G=T*Ux Gx G* (32)

where the second isomorphism is right trivialization of T*G. Under this isomorphism P¥ consists
of those elements whose ® * factor is zero. Thus

PEx G*=(T*UxG)x G* (3b)

Ef~T*Ux ®*. (3c)
The decompositions of Pfand E # are local trivializations in the fibre bundle sense as fibre bundle
over T*X. This is not so for the decomposition of T*Py.

Composing the maps T*P —+ T*P/G - T*X™* in order to climinate the T*P/G vertex of (CD1),
the local version of this diagram becomes

A
(x. a, g u)—— (x. a +A(x)*Adg_1p,2. Adg14)

L0 i :
- I o (CD2)
cio 3, (x. 2, Adgoi) —— @y LA
SR

where @ € T2X, and A(x) = s*A(x). This is seen by noting that in the local trivialization ¢ that 4

* This composition is the map Weinstein uses in {12], namely, the dual of horizontal lift TyX = TpP.
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is given by
A(x.g) (v, §) = Adg 1 A(x) " v + Ad -1}

where (v, £) € T,,U x ® . Here we have used the decomposition
Te: TPy =TUxTG=TUx G x ®

with the second isomorphism right trivialization of TG. This is the decomposition dual to that of
T*Py. Then

A(x. g)* = A(x)"Adx_l ® Adg1: ®*->TXx G*

Now lct x*, p, be standard cotangent coordinates on T*U induced by the coordinates x* on U,
and let £, be a basis for @, hence linear coordinates on & *. Abusing notation, we consider
x*, p,, kg aslocal functions on T*Pof E¥ by composing them with the projections onto T*U or

®* defined by the local product structures @:a) and @:). Note that x¥, p,, £, are coordinates for
E* with £, the fibre coordinates and the projection E¥# = T*X given by (x*. p,, &)~ (x*. p,)-

If fis a function on E# we will let f denote the pullback of f to T*P via the dotted diagonal
in (CD1). One then reads off of (CD2)

;ﬂ:xﬂ’ ;:=pv_‘4‘:l£ur g-:Ea-
Here A(x) = A5, d&x* ® £, s0 A(x)* = A%k, © dx*. One finds

H=%[§w'5pﬁu+fb2afb] (43)
is the Kaluza—Klein Hamiltonian on T*P. It induces

H#=%[wpupv+fbsasb] (4b)
on E*. Hamilton's equations f = (f, H*} 4 on E* are, by definition of the bracket {,}son E¥,
f={F HY¥, where {, } is the bracket on T*P and the superscript # means push the resulting
G-invariant function back down to E*.

To get Wong's equations of motion we substitute the coordinate functions x*, p,, &, for fin

(4). We first calculate their brackets with each other. Since x* and p,, are canonically conjugate on
T*P we have

{x*. p,} =8} = (X* .} (52)
where in the second equality we have used the fact that

{x“1£4}=0= {}#7?}~ N (Sb)
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Also,

(pu- Ea}= 0 (SC)
and

{ta Ep) =cOpty (5d)
as is seen by noting that the , are the components of the momentum map for the left action of
G on the T*G factor of T*P, as decomposed in (4a), which is projection onto the ®* factor of
(4a). This is a Poisson map into B 2, that is, ® * with its right Lie—Poisson structure. (For a good

discussion of the right and left Poisson structures on the dual of a Lie algebra, see Marsden ef al.
[9]. Thus ‘

(P Po) = —{Py AVEQ} = {AEs. PV} + ARAL (£a, £0)
=A% ko — AR kb + b A°ATE, (5¢)
= Fuka, |
where F is the curvature of the connection A. Finally
{§0 Bu) =~k AR} = —c0pA ka (50
Thus the equations of motion on £# are
= (34 HY¥ =1 (x¥, g70B,0p) " = 54 ¥ = ph,

p* = {p* H}* = L (8 ({P\. Ba )Py * (By. B )Pa) + (B 8 WPaPu) *

{4

1
=Fot.0" — 3 ok PP
£ = (B HY =L g™ ({£° B} B+ . BuIBu) + Y ({far §c Yoa * (ko Ea e ¥
= nbAzEdp” + Cadczd S‘
= —chp A"

(The term cs£4£° = 0 because it equals Ta([£a, £cl, £) = ~Zer(ka [£e, £c]) = 0.) These are
Wong’s equations.
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PROOF OF THEOREM 2

* have the following momentum maps ¢ and 7, for the right G actions:

-~

Pox O+ A

Tep
Ty /q)
*

U]

‘e P =0* where 0,:® ~ TpPis the infinitesimal generator, since the action of T*P is lifted

m P Let @ be a co-adjoint orbit in & *. Then 4" o~ o)=P*
, for example, Marsden [6]), we know the reduced spaces &

"*P/G, and since A4 of (CD1) is a Poisson isomorphism, the s
‘nberg spaces.

x @. From general theory
~1(0)/G are the symplectic leaves
ame is true of P* x ; 0 = 0%, the

‘o sce that the symplectic structure on @ *#
reduced symplectic structure, w® on @ %
is given by (Marsden [6], p. 31):

is the same as the one Sternberg gives it, recall that
, which is the one it inherits as a symplectic leaf of

. %
J*w = nrw* + TTwe.

(6)

rew=A4 *w,, is the symplectic structure on P¥ x G* PP x 0 PF i ® * is the inclusion,

“x0->0* the projection and Wg + is the right (+) symplectic structure on the orbit. Stern-
's structure o, is defined by

-~

W = mrw;

Q)

"

(5
=Wy +dU. 7} ped) + niw, .

@, is the puliback of the canonical two-form wy =~dly on T*X by P¥ x @ —» P#¥ > T*x.
7y is the momentum map for the lefr action on 0, and wy— = —w+ is the loft symplectic
wure on @. Comparing (6), (7) and (8), we see that it suffices to show that

FRA*0, = (Trey piy )"0y — (. 18 pudl). @&

+ -
.

d, this may be verified by a straightforward calculation.
prove the final remark, recall that Sternberg’s Hamiltonian H, is the pullback of the kinetic

tonian on 7*X. In coordinates: H, = %g‘“’p#py. This differs from the Kaluza—Klein
tonian /¥ (see (4b)) by the Casimir function %Y’"E,Eb.

RK. As a curiosity, we note that the momtentum lemma of Abraham and Marsden {1}, p.

- closely connected to Sternberg’s construction. Indeed, in the case that the bundles are trivial,

ymentum lemma follows from Weinstein’s isomorphism between his and Sternberg’s construction.
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6. RELATIONS WITH KUMMER'S CONSTRUCTION

In the introduction we interpreted solutions to Wong's equations as paths in the coadjoint bundle
E =P x g ®*. We have seen that they are in fact constrainzd to P x g 0 C £. This leads one to
believe that the spaces on which we have formulated the equations, E® or ®%, can be haturally
embedded in the ‘standard’ phase spaces, T*E or T*(P x ¢ @). For @ #.such an embedding is
given by Kummer's construction [S].

Let ¢ € @. Kummer has shown that a connection /f on P =+ P/G.induces an embedding of the
reduced space (T*P),, (of Marsden and Weinstein) as a symplectic subbundle of T*(P/G ). Here
G, is the isotropy group of 4 € §*, and the symplectic structure on T‘(P/G,,) is noncanonical:
it is the standard one wp/G . minus the magnetic term r,,lc (no F) where F is the curvature of A.
(Note that o Fisa standard two-form on P/G, precisely because G, is s isotropy group.) But
from general theory (T*P), =&~ '(9)/G. and we have shown that our connection A makes the
latter space look like @ # We connect these ideas here.

PROPOSITION. Sternberg's phase space O # is embedded via Kummer's construction as the
‘horizontal’ subbundle of T*(P x ¢ 0).

By ‘horizontal’ we mean the annihilator of the vertical-with-respect-to-the-projection P x g @ =
subbundle of T(P x ¢ 0). :

To begin with, P/G,, =P x ¢ G/G,, =P x¢ 0. The first xsomorplusm is [p] Gy ™ [p. 0] ¢ wher
0is the identity coset in G/G,. Thus, Kummer’s result along with the remarks precedmg the
proposition, gives us a symplectic embeddmg 0% “— T*(P x g M) (the latter with the nonstandarc
symplectic structure) where we choose A = proA with pr= prolecuon G- 6 u relative to the me

To see how @* is embedded, we follow the various maps: Let p* denote an element in P*C 7
Then

¥, ulg = [P#+A*#]G“ b*lc, = (% (1 0)lc

0% =P* x 0 > (T*P), » T*P/G,)~ TP x 0)
G .

where we have written elements over the spaces to which they belong. The first map is the map
A: 0% 3 &~ '(0)/G of diagram (CD1) composed with the natural identification Y (0)/GF N
= (T*P),,. The second map is Kummer's embedding. The third is the isomorphism induced by the
isomorphism P/G, SPxgo.

Elements in the two cotangent bundles can be represented in the given form, because wheneve
Pis a principal K bundle, T%P/K) = Ker J x/K where Jx is the dual of the infinitesimal generato
that is, the momentum map for the lifted K action on T*P. This isomorphism f is given by
(f([a) k), v) = (. V) where « € KerpJk. v € T(p| P/K and V € T,P projects to v. This formula
shows that the image of @ ¥ is the horizontal bundle. Indeed, a vertical vector v in Tp(P x ¢ 0)is
the projection of a vector ¥=0@ v ET,P @ T, 0 and the final element in the sequence of maps,
[(®¥, (i, 0))], is the equivalence class containing the co-vector p*e0 € TpPeT; .Hence
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UlpF (1, 0)], ) =(p*e®0,08)=0

as claimed.
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