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Abstract: A reduced periodic orbit is one which is periodic mod-

ulo a rigid motion. If such an orbit for the planar N-body problem is

collision-free then it represents a conjugacy class in the projective col-

ored braid group. Under a ‘strong force’ assumption which excludes

the original 1/r Newtonian potential we prove that in most conjugacy

classes there is a collision-free reduced periodic solution to Newton’s
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N-body equations. These are the classes that are “tied” in the sense

of Gordon [?]. We give explicit homological conditions which insure

that a class tied. The method of proof is the direct method of the

calculus of variations. For the three-body problem we obtain quali-

tative information regarding the shape of our solutions which leads

to a partial symbolic dynamics.

1 Introduction and Results.

Poincare emphasized the importance of periodic orbits in his famous work (

[?], esp. §36 and §39-48 and p. I 42 of Goroff’s introduction). The orbits he

investigates there are not periodic in the standard sense. Rather, the mutual

distances between bodies are periodic functions of time, but the placement and

orientation of the triangle formed by the bodies is allowed to change in one

period. In center of mass coordinates this means that the entire system may

suffer a rigid rotation after one period.

We will call such orbits ’reduced periodic’. To be precise, a curve or motion

γ(t) will be called “reduced periodic” with period T if there is a rigid motion

R such that γ(t + T ) = Rγ(t). The geometric arena for studying reduced

periodic solutions to the planar N -body problem is the space C of proper

congruence classes of planar N-gons. This is the quotient space Q/G of the

usual configuration space Q for the problem, by the group G of rigid motions
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of the plane. ( Q = IR2 × IR2 × . . . × IR2 is the N-fold product of the plane.)

A curve in Q is reduced periodic if and only if its projection to C is periodic in

the usual sense. We call C the “shape space” since its points represent shapes

(congruence classes) of N -gons.

The standard kinetic energy induces a very simple Riemannian metric on C.

Namely, C = C(CIPN−2) is the cone over complex projective N−2-space with

its standard unitary-invariant (Fubini-Study) metric. The complex projective

space represents similarity classes of oriented N -gons. For this reason we will

sometimes refer to it as S, so that S = CIPN−2. ( We recall the construction of

the cone over S momentarily.) The remarkable simplicity of this metric space

is central to our investigations. It was known to Iwai [?], and almost certainly

before Iwai.

In general, the cone C(X) over a Riemannian manifold X with metric ds2

is a metric space of one higher dimension constructed as follows. Topologically,

C(X) = (X× [0,∞))/ ∼, where the “∼” means that all points of the form (x, 0)

are “squashed”, or identified to a single point called the cone point, and denoted

0. The metric on C(X) is dr2 + r2ds2 where r parameterizes the [0,∞) factor,

and equals the distance from 0. This metric is smooth everywhere except at 0.

The homeomorphisms of C(X) induced by (x, r) �→ (x, λr), λ > 0 are called

the dilations. The dilation by λ multiplies the length of any curve by λ. In

the N -body case this dilation corresponds to the standard Euclidean dilations

of polygons.
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examples: The cone over a sphere of radius 1 is a Euclidean space. The

cone over a circle of radius less than 1 is one of the standard cones constructed

by rolling up a piece of paper.

The case of N = 3 of the three-body problem is especially simple. Then

S = CIP1 = S2(1
2 ) is the two-sphere of radius 1

2 . C(S) is homeomorphic to

IR3, but the metric on it is singular at the origin, which represents the cone

point. This case was known to Lemaitre [?], [?], and Deprit-Delie [?], [?]. It is

implicit in the qualitative picture of Moeckel [?] for three-body dynamics, and

in a paper of Saari [?]. It is also the central ingredient in an number of recent

papers of Hsiang [?], [?], and in the author’s paper [?] in this journal.

We will be searching for collision-free orbits. The binary collisions, in

which two of the N bodies co-incide, define distinguished subvarieties of codi-

mension 2 in C. There are
(
N
2

)
such subvarieties, labelled Σij for the masses

i, j which collide. We will denote their union by Σ. It consists of all possible

collision configurations. A collision free reduced periodic curve is then a closed

curve in

C∗ = C \ Σ.

GOAL : Given a free homotopy class in C∗, find a reduced periodic collision-

free solution to Newton’s equations for the motion of N bodies which realizes this

solution.

The set of free homotopy classes of any path-connected space X is in one-to-

one correspondence with the set of conjugacy classes of its fundamental group,
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π1(X). It is fairly well-known that the fundamental group of C∗ is the projec-

tive colored braid group, by which we mean the quotient of the colored braid

group by its center. (The colored braid group on N strands is the fundamental

group of the N-body configuration space Q minus collisions. It is the normal

subgroup of the usual braid group which corresponds to each braid returning

to its starting point. See Birman [?] for a detailed description of braid groups.)

Hence, our goal is to find a reduced periodic solution realizing any

given conjugacy class in the projective colored braid group.

The situation is again particularly simple when N = 3. The collision set

Σ corresponds to three rays through the origin in IR3. So C∗ is homotopic to

the two-sphere minus three points. The resulting fundamental group is the free

group on two letters.

Our method of attack is the direct method of the calculus of variations,

applied to curves on C. We will assume throughout that the potential energy

V : Q → IR of the N-body problem is invariant under rigid motions. In this

case it defines a function on C, which we will denote by the same symbol V .

Any curve γ(t) ∈ Q defines a curve c(t) ∈ C of shapes. If γ satisfies Newton’s

equations, then c satisfies a second-order differential equation on C, which we

call the reduced Newton’s equations. These equations are parameterized by

the (constant) value of the curve’s angular momentum J . The equations are

markedly simpler when J = 0, for in this case they are Newton’s equations

on C: ∇ċċ = −∇V where ∇ is the Levi-Civita connection on C. See, for
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example, Reinsch-Littlejohn [?] or Marsden-Ratiu [?]. These are the Euler-

Lagrange equations on C for the functional

c → A(c) =
∫

[
1
2
‖ċ(t)‖2 − V (c(t))]dt.

of paths on C. We will call this the “reduced action functional”. (If J �= 0

then one must add an effective potential term, and a magnetic force to these

equations. The strength of the magnetic force is proportional to J and the

corresponding magnetic two-form is not exact. It follows that when J �= 0 there

is no well-defined global action functional on C.)

refined goal: Given a free homotopy class in C∗, find a reduced, periodic,

zero-angular momentum, collision-free solution in this homotopy class which

minimizes the reduced action among all loops in C∗ in this class.

Theorem 1 below asserts that we can achieve this goal, provided we restrict

the homotopy classes to a large (essentially dense) subset of the set of all classes,

and provided we restrict the potential to be a “strong-force” potential. The-

orem 1, combined with Theorem 2 which provides a precise description of the

allowable classes, forms our main results.

These two restrictions are imposed in Theorem 1 order to contend with the

two difficulties which arise in applying the direct method of the calculus of

variations. These difficulties correspond to the two types of non-compactness of

C∗. The first non-compactness, or “infinity” (or end) is the usual spatial infinity.

This infinity is approached by a curve c(t) in C whenever there is some pair ij

of masses whose Euclidean distance rij(t) tends to infinity. The other type of
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“infinity” in C∗ is the collision locus. It is approached whenever rij(t) → 0 for

some pair ij. We overcome the first difficulty by making an assumption on the

free homotopy class of c. This assumption corresponds precisely to Gordon’s

([?]) notion of being “tied” to a singularity. We overcome the second difficulty

by a kind of a cheat, also found in Gordon, and very popular ever since, which

is the “strong-force” assumption on the potential V . We will describe these two

assumptions in more detail momentarily.

Comparisons with the Literature: Two of the central ideas of our pa-

per, that of being “tied”, and the strong-force assumption, are due to Gordon.

So in a sense our work is an appendix to Gordon. In this regard, our main

contribution is Theorem 2 which gives explicit braid-theoretic criteria which in-

sure that a free homotopy class in C∗ is “tied” in Gordon’s sense. Our criteria

is purely homological, meaning that it is a condition of the image of the free

homotopy class in the first homology group H1(C∗). We make a second addi-

tion to Gordon’s work which is specific to the three-body problem. It occupies

§4. There we re-interpret our Theorem 1 in terms of syzygies (eclipses), thus

setting the stage for a possilbe symbolic dynamics for the three-body problem.

A final contribution, is that we deal with reduced periodic orbits, whereas al-

most all of the existing variational literature on the N -body problem, (see for

example [?], [?], [?] and references therein) including Gordon’s, focuses on the

strictly periodic reduced. One exception is the interesting paper of Sbano [?]

which investigates the relation between collisions and action minimization for
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the Newtonian 1/r potential.

Tied classes: We now describe Gordon’s notions of “tied”. Let Y be a

non-compact complete Riemannian metric space and Σ ⊂ Y a non-compact

subvariety which we wish to avoid. Let α be a free homotopy class of loops in

Y ∗ = Y \ Σ. Let us say that a sequence of loops cn ⊂ X tends to infinity if we

can choose points Pn ∈ cn such that the Pn → ∞. (When we say “Pn → ∞”

we mean, that if we fix any base point 0 ∈ Y then d(0, Pn) → ∞.)

Definition 1 We say that “α is tied to Σ” if whenever cn ∈ α is a sequence of

representative loops tending to infinity, then the lengths, �(cn), tend to ∞.

example: In the planar three-body problem Y = C(S), with S = S2( 1
2 ). Σ

is the union of three rays through the cone point 0. Any loop which encircles just

one of the rays can be pushed out to infinity along that axis without changing

its length. Hence the class represented by such a loop is NOT tied to Σ. On

the other hand, the class of a “figure 8”, a loop which winds around two of

the three rays, one clockwise and the other counterclockwise, forms a tied class.

For its length is always greater than 2Rsin(φ) where R is its maximum distance

from the cone point, and φ is the angular distance on S between the two points

which represent the two rays. Note that 0 < φ ≤ π/4 because of the 1/2 in

S = S2(1/2).) Also note that 2φ is the infimum of the lengths of the loops

representing the given class in S∗ = S \ the three points . Compare with the

estimate in the last paragraph of the proof of lemma 3 of §3.

Remark: It is amusing to note that exactly this example is the penultimate
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example of Gordon’s article. However, Gordon mistakenly asserted that it is

not related to any physical problem.

This concept of being tied is useful in studying natural mechanical systems

on Y . We suppose that the kinetic energy is the one defined by the metric

on Y , and that the potential energy is a nonpositive function V which has

singularities on Σ: V (yn) → −∞ as yn → Σ. Newton’s equations on Y are

∇ẏ ẏ = −∇V . The action functional for studying Newton’s equation on Y is

A(y(·)) =
∫

1
2‖ẏ‖2 − V (y)dt as usual. We fix a tied class, and try to minimize

A over all loops c : [0, T ] → Y ∗, c(0) = c(T ), which represent this class. We

claim that any minimizing sequence cn ∈ α cannot tend to ∞. For if it did,

then its length �n = �(cn) would go to infinity by the definition of “tied”. And

by Cauchy-Schwartz (
∫
‖ẏ‖2)T ≥ �2n. Since −V ≥ 0 it follows that A(cn) → ∞,

contradicting the assumption that cn was a minimizing sequence.

strong forces: We now describe the “strong force” assumption on V ,

introduced by Gordon to exclude collisions.

Definition 2 A potential V : Y → (−∞, 0] satisfies the strong force law if

there is some positive constant c such that V (y) < −c/ρ2 whenever ρ = d(y, Σ)

is sufficiently small, i.e. whenever the configuration y is sufficiently close to

collision.

examples: Standard N body potentials are the sum of two body potential

Vij : V = ΣVij(rij) where rij is the Euclidean distance between the ith and jth

body, and the sum is over all distinct pairs ij. In this case the strong force
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law is equivalent to Vij(r) < −c/r2 for r small enough. This is because on

the shape space C, we have d(y, Σij) = kijrij for some positive constant kij

depending only on the particle masses. The Maneff potential [?] is perhaps the

most popular of the strong force potentials. (See also Diacu [?] and references

therein.) The standard Newtonian potential is not a strong force law!

Finite action curves in a strong force law must avoid collision. The argument

is simple. Let γ[a, b] be an arc of a curve in Y with γ(b) ∈ Σ, and γ lying

within the range in which the strong force assumption holds. Then A(γ) =

1
2 [

∫
γ

ds2 +
∫

γ
2c
ρ2 dt]. But ds ≥ dρ and so ds2 + 2c

ρ2 ≥ 2
√

2cdρ/ρ. The integral of

the latter quantity diverges logarithmically as ρ → 0 so that A(γ) = +∞.

Remark: Gordon’s original strong force assumption is that −V ≥ |∇U |2

holds in some neighbhorhood of Σ, and for some function U which tends to ∞

at Σ. Variants of this assumption are rampant in the recent literature on the

calculus of variations applied to the N body problem. These typically are found

as the last item in a list of half-a-dozen or so assumptions on the potential.

Although these assumptions are more general, we find them to be more opaque,

with no natural examples to justify this greater generality.

We can now state our first theorem

Theorem 1 Suppose that the N-body potential satisfies the strong force con-

dition: −V ≥ c/r2 whenever the distance r between any two of the masses is

sufficiently close. Suppose that the free homotopy class α on C∗ is tied to the

collision locus. Then for any positive period T there is a reduced periodic colli-
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sion free solution to the N-body problem which represents the homotopy class α,

and which has period T . It is obtained by minimizing the reduced action over

the class α.

Given what we have said regarding our two assumptions, the proof is a

standard exercise in the calculus of variations. It is really embedded within

Gordon’s paper, but for completeness we sketch it here.

sketch of proof: Let cn ∈ α be any sequence of loops cn : [0, T ] → C∗,

cn(0) = cn(T ), such that A(cn) tends to the infimum of A over α. This infimum

is a non-negative number, since we have assumed that −V ≥ 0 and so the

action is always positive. Since the class α is tied, and the actions A(c) are

bounded, the sequence cn must lie in some bounded subset r ≤ k of C. Closed

bounded subsets of C are compact. By the Arzela-Ascoli theorem, the sequence

has a C0-convergent subsequence: cn → c0. By the lower-semicontinuity of A

, c0 has no collisions, for otherwise A(cn) would tend to ∞ according to the

strong force assumption. Since cn → c0 in the C0 topology, the curve c0 also

represents α. By standard arguments in the calculus of variations, c0 satisfies

the Euler-Lagrange equations away from Σ. Since it never touches Σ it satisfies

the equations everywhere.
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2 Tied and Tangled Classes

Theorem 1 would have little content if we did not have some description of the

tied classes. In particular we will want to know that this set of classes is non-

empty! Our second theorem gives a computable sufficient condition for a class

in C∗ to be tied. As a corollary we can show that “almost all” classes are tied.

W recall that there is a canonical map F : π1 = π1(C∗) → H1(C∗), the

Hurewicz map, which identifies H1(C∗) with the Abelianization π1/[π1, π1] of

π1. Since F (gh) = F (hg), F maps each conjugacy class, or free homotopy class,

α ⊂ π1(C∗) to a single element, denoted [α] of H1(C∗).

We will need an explicit description of H1(C∗). This is achieved by using the

canonical fibration G → Q∗ → C∗ where Q∗ = Q\{collisions} and Q = (IR2)n.

The fundamental group of Q∗ is the colored braid group, CBN , on N braids.

Its center Z is the infinite cyclic subgroup generated by the single element

σ which corresponds to rigidly rotating all N masses once around. (Again,

see Birman, [?].) It follows from this and the homotopy exact sequence that

π1(C∗) = CBN/Z. (We are indebted to A. Knutson for this observation.)

The homology, H1(Q∗) of CBN is very well-understood. (See Arnol’d [?].)

It has a canonical basis which is generated by the “tight binary stars”. By the

ij binary we mean the loop in Q∗ obtained by having mass i and mass j move

around each other in a circle, while all other masses are fixed, and far away. The

corresponding homology classes, aij , form a ZZ basis for H1(Q∗). The image of

the generator σ of the center Z under the Hurewicz map is the sum [σ] = Σaij
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of all of these basis elements. It follows from all this and elementary algebraic

topology that H1(C∗) is the group generated by the aij with the single relation

Σaij = 0.

A basis for H1(C∗) is formed by singling out any pair i0j0 of masses, and

deleting it from the list of aij . Now let α be a free homotopy class in C∗ and

[α] ∈ H1(C∗) its image in homology. Expand [α] in terms of the basis:

[α] = Σij �=i0j0cijaij , (1)

thus obtaining a collection of integers, cij . We associate to this expansion a

graph Γi0j0 on N vertices. The vertices are labelled by the integers 1, . . . , N

which label the N masses. There is an edge connecting i to j if and only if

cij �= 0.

Theorem 2 If each of the
(
N
2

)
graphs Γi0j0 associated to α is connected, then

α is a tied class in the sense of Gordon.

Theorem 2 is proved in the final section of the paper.

Definition 3 The classes [α] which satisfy the hypothesis of Theorem 2 will be

called homologically tangled. The complementary set of classes in H1(C∗)

will be called homologically seperable.

Lemma 1 (ubiquity of tangled classes) Suppose that, for some choice {aij :

ij �= i0j0} of canonical basis, no more than N − 3 of the
(
N
2

)
− 1 coefficients cij

in the expansion (??) of [α] vanish, and that no more than N − 3 of them are

equal. Then [α] is a homologically tangled class.
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example 1: The class with coefficients {cij} = {1, 2, 3, . . .
(
N
2

)
− 1} is inter-

twined.

example 2: In the case of the three body problem, there are three aijs

corresponding to the three points on the two-sphere. A class is tied if when it

is expanded as [α] = c12a12 + c23a23 then c12 �= 0, c23 �= 0, and c12 �= c23. One

can check that these are necessary and sufficient conditions for a class to be

tied. In other words, the untied classes for N = 3 are precisely those classes

represented by the powers of any one of the three tight binaries aij .

density of the tangled classes: Fix a canonical basis. The number of

classes for which all of the |cij | are less than or equal to a number R grows like

RM where M =
(
N
2

)
−1 is the rank of H1(C∗). The number of these same classes

which do not satisfy the hypotheses of the above lemma grows like RM−(N+3).

Consequently, the density of “tied” homology classes is 1. Here “density” is

defined, as in number theory, to be the asymptotic ratio of the number of tied

classes with |cij | < R to the set of all classes with |cij | < R, as R → ∞.

proof of lemma 2: Let λ stand for any of the indices {ij} which indexes

our generators aij of H1(C∗). Thus, the single relation among the generators is

written Σaλ, and a typical basis is {aλ : λ �= λ0}. When we change bases from

{aλ : λ �= λ0} to {aλ : λ �= λ1} then the coefficents cλ in the expansion of [α]

change from cλ, λ �= λ0 to c̄λ, λ �= λ1 where

c̄λ = cλ − cλ0 , forλ �= λ0

c̄λ0 = −cλ1 .
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Set I∆ = {λ �= λ0 : cλ = cλ1}, I0 = {λ �= λ0 : cλ = 0}, and Ī0 = {λ �= λ1 : c̄λ =

0}. By a simple combinatorial argument, if |I∆| ≤ |I0| then |Ī0| ≤ |I0|. Our

assumption is that |I0|, |I∆| ≤ N − 3. It follows that in any basis at most N − 3

of the coefficients cij vanish.

So any of the corresponding graphs Γ = Γi1j1 are obtained from the complete

graph on N vertices by deleting at most N − 2 edges. The extra 1 in N − 2 =

N − 3 + 1 occurs because Γi1j1 has no edge i1j1. The lemma now follows

immediately from the following elementary graph theory lemma, whose proof

we leave to the reader.

Lemma 2 If a certain graph is obtained by removing k edges from the complete

graph on N vertices, and if that graph is disconnected, the we must have removed

k ≥ N − 1 edges.

3 Minimizing over untied classes

What happens when we try to minimize over an untied class α? Let us suppose

that the potential is of the standard type, meaning that V = ΣVij(rij is a

sum over two-body potentials Vij , with each Vij < 0, and satisfying Vij → 0 as

rij → 0. The Newtonian potential Vij = −mimj/rij satisfies this requirement,

as does any inverse power law, and the Maneff potential.

Proposition 1 If the potential is of the above standard type, and if the class α

is untied then it is impossible to realize the infimum of the action over loops in
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this class.

Proving this proposition requires a better understanding of precisely what

the untied classes are. We begin by working on Q∗, where the elements of

π1(Q∗) correspond to pure braids. We first think of a colored braid in terms

of the usual model, where it is a tangle of N colored strings, each joining a

colored bead of its color on a ‘bottom plane’ to a similarly colored bead lying

directly above this bead on a ‘top’ plane. Try to grab a subset of k < N of these

strings and pull them away from all the rest. If this is possible, then we will say

that the braid is “not fully tangled”, or that it can be “partially untangled”.

Otherwise we will say that it is “fully tangled”. These properties are invariant

under conjugation, so make sense on conjugacy classes of braids. An element or

conjugacy class in π1(C∗) is said to “fully tangled” if every one of its inverse

images in π1(Q∗) is fully tangled.

We want an N-body description of these notions. Recall the relation between

the ‘tangle-of-strings’ and N-body motion model of the braid group. Let q(t) =

(q1(t), . . . , qN (t)), 0 ≤ t ≤ T be a collision-free periodic motion of the N bodies,

with qj(t) = (xj(t), yj(t)) ∈ IR2. Replace the motion of the jth body by its

graph (xj(t), yj(t), t) in space-time, and think of t as the height variable. In

this way we have described the jth string in the braid represented by the loop

q(t). (Since the qj do not collide, the corresponding strings never touch.) The

process of untangling the braid into two sub-braids corresponds to finding a

moving curve, asymptotic to a fixed line, which splits the plane into two halves,
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such that some of the bodies always lie in one half, and the others lie in another

half. After a homotopy, we may suppose that this moving curve is the fixed line

�.

Definition 4 A loop q(t) = (q1(t), . . . , qN (t)) in Q∗ can be geometrically

separated into two strands if we can find a fixed line � ⊂ IR2 and a

partition of the the mass labels {1, 2, 3, ...N} into two nonempty subsets I, J ,

I ∪ J = {1, 2, . . . , N} such that the bodies qi(t), i ∈ I lie strictly on one side of

the line, and the qj(t), j ∈ J lies strictly on the other side, for all time t. A free

homotopy class in Q∗ is said to be geometrically seperated into two strands if it

has a representative curve which is geometrically seperated into two strands. A

free homotopy class in C∗ is geometrically separated into two strands if one of

its lifts to Q∗ is geometrically separated into two strands.

Lemma 3 The following properties are equivalent for a conjugacy class α in

either π1(C∗) or π1(Q∗)

• (1) α is represented by a fully tangled braid

• (2) α cannot be geometrically seperated

• (3) α is tied to the collisions

proof of the lemma: The equivalence between (1) and (2) follows from

the preceding discussion. Details are left to the reader.

We prove the equivalence between (2) and (3) for classes in Q∗. Let α

be a geometrically seperable class. Let q(t) = (q1(t), . . . , qN (t)) be a loop in
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Q∗ which represents α and which is seperated by the line � into two clusters

{qi : i ∈ I} and {qj : j ∈ J}, as in definition 4. Let n be the normal to the

line, with n pointing into the half plane containing the I masses. Translate all

of the I masses s units in the n direction and all of the J masses s units in

the −n direction. This defines a homotopy corresponding to pulling the two

groups of strings apart from each other. It does not change the length of the

path q(t)) but it has the property that rij → ∞ as s → ∞, whenever i ∈ I and

j ∈ J . Thus the class we started with is untied in Gordon’s sense. The reverse

implication can be proved by reversing our arguments.

Finally, the argument on C∗ follows directly from the fact that π1(C∗) is the

colored braid group modulo its center, that the center is generated by rotations,

and that rotations are unseen, and hence do not affect length, on C∗. Details

are left to the reader.

QED

proof of proposition 1: Given an untied class α, we follow the above

‘untangling’ procedure. That is, we seperate the bodies into two subsets I and

J and translate them out to infinity. Let AI denote the action

AI(q) =
∫

1
2
Σa∈Ima‖q̇a‖2 − Σi1,i2∈IVi1i2(ri1i2)

and similarly for AJ . Since −Vij > 0 we have A(q) > AI(q) + AJ(q) for any

path q(t) in Q. We will show that if the infimum were realized it would have

to satisfy A(q) = AI(q) + AJ(q) thus obtaining a contradiction.
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Since α is untangled, we can write a group element a which represents it as

a = aIaJ . These two elements commute. Here aI is the sub-braid representing

the tangling of the braids of the subset I. It can be realized as a loop qI

in QI = IR2
i1

× . . . × IR2
il
\ {collisions} where the subscripts ij parameterize

I and also label the masses involved. Let AI∗ denote the infimum of AI(qI)

over all loops representing the conjugacy class aI . Let ε > 0 be a given small

number. We may choose the loop qI so that AI(qI) = AI∗ + ε. Similarly, we

can define AJ∗ and find a loop qJ . Now, after possibly translating qI rigidly by

some amount we can put these seperate loops together into a single loop in Q∗

which represents α and which has the property that the masses qi(t), i ∈ I are

separated from the masses qj(t), j ∈ J by a fixed line, as in definition 2. We

now follow the previous procedure of translating the I-cluster away from the J

cluster, along the normal direction. The resulting homotopy leaves the action

unchanged, except for the cross terms , −Vij(rij), i ∈ I, j ∈ J . As we let the

two clusters tend to infinity these cross terms drop out and the total action

converges to AI(qI) + AJ(qJ) = AI∗ + AJ∗ + 2ε. Since ε was arbitrary, we see

that A∗ = AI∗ +AJ∗, and consequently the infimum of A cannot be realized by

any actual loop.

The idea for the problem in C∗ is essentially the same, but rotations have

to be kept track of. QED

example: Consider the case where α is represented by a single generator,

say a12, for the three-body problem. Recall this corresponds to a tight binary.
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Gordon [?] has shown that any Kepler orbit realizes the infimum A12∗ of the

action for the two-body problem over the single generator of the homotopy group

for that problem. (The configuration of the two-body problem minus collisions

retracts onto the circle.) It follows that the infimum of A(γ) over the γ ∈ a12

tends to the Kepler action A12∗ and is not realized by any actual loop. Rather

it is approached by a sequence γi of actual orbits in which masses 1 and 2 move

in a Kepler orbit, and 3 stays fixed. The distance di between the 12-center of

mass system and 3 tends to infinity as i → ∞.

4 The Case of Three Bodies

When N = 3 we can give a more detailed description of the qualitative nature

of our minimizers. This is possible because of the greater simpicity of the

fundamental group and of the geometry of the shape space C∗ in this case.

The N = 3 shape space is the cone over the sphere S of radius 1/2. This

points of this sphere represent similarity classes of oriented triangles. The equa-

tor E ⊂ S represents the set of similarity classes of collinear triangles. E has

three marked points, the three binary collisions. These divide E into three arcs.

A point of E, or a point of the plane C(E) ⊂ C = C(S) will be called a syzygy,

eclipse, or collinear configuration.

We can introduce standard spherical coordinates (r, θ, φ) on C such that the

metric is dr2 + 1
4r2(dφ2 + sin2φdθ2). The cone point is defined by r = 0 and
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represents triple collision. The sphere S is identified with the locus {r = 1}.

C(E) is defined by φ = π/2. The height coordinate h = rcos(φ) is proportional

to the signed area of the corresponding triangle. (The proportionality constant

depends only on the ratios three masses.) Any improper isometry of the plane,

such as (x, y) �→ (x,−y), reverses the orientation of triangles and induces an

isometric involution

τ : C → C

of C. In coordinates τ((r, θ, h)) = (r, θ,−h). The fixed point set of this isometric

involution is C(E). Therefore C(E) is a totally geodesic submanifold. This

involution τ also leaves any standard potential V = ΣVij(rij) invariant, since

the rij are invariant under the full group of isometries of the plane, including the

improper ones. Hence τ preserves the action of paths in C, and maps solutions

of the reduced Newton’s equations to solutions.

Any curve in C without triple collisions can be projected radially onto the

sphere S of similarity classes. We call this projected curve its “spherical image”.

Theorem 3 Suppose that a closed curve in C∗ = C \ collisions realizes our

refined goal, namely it minimizes the reduced action over all loops in C∗ lying

in its homotopy class and having its period. Then the spherical image of this

curve intersects the equator a finite number of times. The consecutive points of

intersection must lie on different arcs of the equator.

sketch of proof : The curve must satisfy a differential equation, so cannot
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have an infinite number of intersection points with C(E) unless it lies on C(E).

But this is impossible since it represents a nontrivial homotopy class.

If the curve had an subarc whose endpoints lay on the same arc of E, then

we could obtain a new curve by applying the isometric involution τ to this arc,

while leaving the rest of the curve the same. The result would be a closed curve

in the same homotopy class, with the same action. But this new curve dips

down to touch the plane C(E), and then “bounces” back up without crossing

C(E). This contradicts its minimality. (It also contradicts the fact that the new

curve is also a minimizer and so must satisfy the reduced Newton’s equations.)

QED

We can re-interpret theorems 1 and 3 in terms of a symbolic dynamics in

which each free homotopy class is encoded by its sequence of syzygies, or equa-

torial crossings. This encoding is essentially the same as that of Morse [?].

Label the three arcs of the equator E between the three collision points with

the letters A, B, and C. Recall that E divides the sphere into two hemispheres,

according to whether the triangles are positively or negatively oriented with

respect to a fixed orientation of the plane (i.e. according to the sign of h).

Let A+ stand for any oriented arc s(t) lying wholly in the upper hemisphere

and approaching the ecliptic arc A ⊂ E. Said more carefully, A+ stands for

any arc s(a, b] for which s(b) ∈ A and s(a, b) lies in the upper hemisphere.

Similary, A− denotes an arc approaching A from below. We use analogous

symbols B+, B−, C+, C− for B and C and in this way obtain an alphabet with
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six symbols. We can use these symbols to generate unique representatives of

all the free homotopy classes. For example, A+B− represents the generator a12

encircling the 12 collision. And the word B+C−B+A− corresponds to a figure

8.

Now A+A− represents a contractible arc, and so does A+B+. These suggest

that we impose certain rules of grammar.

Rule 1: We do not allow words for which two of the same letters XX appear

in a row (whatever their ± subscripts).

Rule 2: Whenever the pair XεYδ occurs in a word the subscripts ε, δ = ± have

opposite parity: δ = −ε.

Note that theorem 3 is a variational counterpart of these rules.

Since the words are meant to represent the free homotopy class of a loop,

they must have an even number of elements. And they should be viewed as cyclic

words, meaning that the same class is represented by any cyclic permutation of

this word. For example:

A+B−A+B−C+B− = B−A+B−A+B−C+.

Both rules of grammar must hold for each cyclic permutation of the word. This
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is equivalent to insisting on

Rule 3: The beginning and ending letters of the word are different.

In this manner we can encode each free homotopy class as a cyclic word in

our six letter alphabet, subject to the above rules of grammar. We leave it as

an exercise to the reader to show that this representation is unique.

Recall from above that the “untied” classes are simply those classes which

are represented by a powers of a single generator. If we want to insure that

a word does not represent a power of a generator, we merely need to add the

condition that all three letters A, B and C appear in our word. We can now

restate theorem 1 and 3 as follows:

Corollary 1 (Symbolic Dynamics) Let a finite word be given in our alpha-

bet, subject to the above Rules 1 , 2 and 3 of grammar, and such that all three

letters A, B and C occur in this word. Let a period of time be given. Suppose

that the potential satisfies the strong force hypothesis of Theorem 1. Then there

is a reduced periodic three-body solution following the sequence of syzygies speci-

fied by this word. This solution has zero angular momentum and minimizes the

action among all collision-free reduced periodic loops following this sequence of

syzygies in this time.
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5 Proof of theorem 2: tied and tangled classes

The purpose of this section is to prove theorem 2, and to better understand the

tied and the tangled classes.

We begin with some general facts regarding tied classes on cones. Suppose

C(X) is the cone over a compact Riemannian manifold X. Let Σ = C(D)

play the role of the collision locus, where D ⊂ X is a closed subset. Radial

dilation defines a retraction of C(X)∗ := C(X) \ C(D) onto X∗ = X \ D. In

particular, free homotopy classes in C(X)∗ are in one-to-one correspondence

with free homotopy classes in X∗. We will say that such a class in X∗ is a

vanishing class if it has a representative loop c for which there is a homotopy

cs ⊂ X∗, 0 ≤ s < b for which the lengths of the cs tend to zero as s → b. A

vanishing class is one which can be represented by a loop which can be shrunken

to an arbitrarily small size without hitting the singular locus D. If D is a finite

union of smooth submanifolds then this is equivalent to saying that the infimum

of the lengths �(c) of the loops c in X∗ which represent α is zero.

example: Suppose that X is the two-sphere and D = {x1, . . . , xM} is a

finite collection of points in X. The homotopy group of X∗ is generated by M

letters, with each letter ai being represented by counterclockwise loop ci which

encircles xi and no other point. ( There is a single relation a1a2 . . . aM = 1,

which means the group is freely generated by any choice of M − 1 of these M

letters.) A class is a vanishing class if and only if it can be represented as a

power (ai)k of a single generator.
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Lemma 4 A free homotopy class in C(X)∗ is tied to Σ if and only if its cor-

responding class in X∗ is not a vanishing class.

proof: Suppose α is a vanishing class, represented by a “vanishing homo-

topy”, cR. We may suppose that 0 ≤ R < ∞ and that �(cR) = 1/R. X is

isometrically embedded in C(X) = X × IR/ ∼ by setting the r ∈ IR factor

equal to 1, so that c can be identified with the curve (c(t), 1). The dilated

curves RcR(t) := (cR(t), R) have length 1 and lie a distance R from the origin.

As R → ∞ the curves cR are pushed off to infinity while staying in the same

homotopy class. Hence α is not a tied class.

Conversely, suppose that α is not a tied class. Then the infimum of the

lengths of all curves c ⊂ X∗ representing α is some positive number δ. Let γ ⊂

C(X)∗ denote an arbitrary representative of α and let R denote the maximum

distance of a point on γ from the cone point 0. We claim that

�(γ) ≥ 2Rm

where

m = sin(δ/2), if δ ≤ π, m = 1 if δ ≥ π/2.

It follows from this that if R → ∞ then �(γ) → ∞, and so α is indeed tied to

Σ. To prove the inequality, consider the “radial” projection c ⊂ X of γ. (Thus

γ(t) = (c(t), r(t)) and c is identified with (c, 1).) The curve c represents α in

X∗, and the original curve γ lies in the cone C(c) ⊂ C(X) over the curve c.

This is a two-dimensional cone, so its geometry is Euclidean and we can use
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trigonometry. Within this cone, γ is a curve whose farthest point is a distance

R from the origin, and which subtends an angle of measure φ = �(c), the length

of c. By basic trigonometry, we have �(γ) ≥ 2Rsin(φ/2) if φ < π/2, and

�(γ) ≥ 2R otherwise. Since �(c) ≥ δ we have the desired inequality and the

proof is complete. QED

To approach the proof of Theorem 2, we ask the reader to first take a mo-

ment to reflect on the definitions of “homologically tangled” and “homologically

seperated” back in §2. To proceed, we will need a more geometric characteri-

zation of these concepts. Let Q0 ⊂ Q denote the subspace consisting of those

configurations whose center of mass is at the origin. Thus q = (q1, . . . , qN ) ∈ Q0

if and only if Σmaqa = 0 ∈ IR2. Here the ma, a = 1, . . . , N are the masses of

the bodies, and the qa ∈ IR2 represent the positions of the bodies. It is clear

that Q/G = Q0/SO(2), where SO(2) denotes the group of rotations about the

center of mass. And so C∗ ∼= Q∗
0/G where

Q∗
0 = {q ∈ Q0 : qi �= qj for all pairs i, j}.

Set

∆ij = {q ∈ Q0 : qi = qj} ⊂ Q0 (2)

so that Q∗
0 = Q0 \∆ij. (Note the varieties Σij which we delete from C to form

C∗ are ∆ij/G.)

Lemma 5 Let E denote the edge set of the graph Γ = Γi0j0(α). The graph is
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disconnected if and only if

∩ij∈E∆ij = {0} ⊂ Q0. (3)

proof of lemma:. Suppose the graph is connected. Then there is a circuit

of edges passing through all N vertices, and this circuit is a subset of the edges

set E. We will show that the intersection of the ∆ij over only the edges in this

circuit is {0}. For if a point q is in this intersection, then q1 = q2 = . . . qN . But

Σmiqi = 0 and Σmiqi = Mq1 where M = Σmi so that all the qi = 0. The point

q of intersection must be the N-tuple collision point 0.

Conversely, if the graph is disconnected, then the vertices fall into at least

two components, so we can partition them into two nonempty subsets I, J ⊂

{1, 2, . . . , N}, I ∪ J = {1, 2, . . . , N} with no vertex in I connected to one in J

by an edge. Set MI = Σi∈Imi, MJ = Σj∈Jmi. Pick r, s ∈ IR2, r, s �= 0 such

that MIr + MJs = 0 Then the element q = (q1, . . . , qN ) with qi = r, i ∈ I,

qj = s, j ∈ J is a nonzero vector lying in the intersection.

Lemma 6 If the free homotopy class α represents a vanishing class in S∗ then

its image [α] in the first homology of C∗ is homologically separable into two

strands.

proof of theorem 2: Theorem 2 is the contrapositive of the implication

just asserted, according to lemma 4.

Proof of the lemma:

Let Σij ⊂ S = CIPN−2 denote the binary collision loci in S. These can be
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obtained by taking the images of the collision loci ∆ij ⊂ Q0 ⊂ Q in C under

the quotient map Q0 → Q0/(SO(2) = C and then intersecting these images

with S ⊂ C. They are hyperplanes in the complex projective space S. Lemma

5 translates to assert that the class α is homologically separated if and only if

for some i0j0 we have

∩ij∈EΣij �= ∅ (4)

Suppose that α is a vanishing class, so that the infimum of the lengths of the

curves representing it is zero. Then there is a sequence of loops γn in S∗ which

represent the class α and whose diameters tend to zero. By compactness of S

we can find a subsequence of paths which tend to a fixed point P ∈ S. P cannot

lie in all of the Σij since the intersection of all of them is empty. Hence there

is at least one, say Σi0j0 which it does not lie in. Consider the corresponding

basis {aij : ij �= i0j0} for H1(C∗) and the associated graph Γ = Γi0j0(α),

with its edge set E We will show that P ∈ ∩ij∈EΣij . This will prove that the

intersection is non-empty and the class [α] is homologically separated, according

to the inequality (4).

Let ωij , ij �= i0j0, be the basis for the 1st cohomology group which is dual

to the basis we have just chosen for the 1st homology. The classes ωij can be

represented as differential one-forms, in which case the integers cij are given by

cij =
∫

γn

ωij .

Let w1, . . . , wN−2 be complex affine coordinates for S \ Σi0j0 so that Σij is
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defined by the equation w1 = 0. Then ωij = 1
2πi

dw1
w1

. We will show that if

cij �= 0 (for some {ij} �= {i0j0}) then P ∈ Σij . Our proof is by contraposition.

Suppose P /∈ Σij . Let B be a small ball centered at P disjoint from Σij . With

respect to the coordinates wi above we have, for n sufficiently large, γn(t) =

(w1(t), w2(t), . . . , wN−2(t)) with w1(t) lying in a small disc disjoint from the

origin. It follows from the above representations for cij and ωij and the Cauchy

integral formula that cij = 0.
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