Optimal Control of Deformable Bodies
and Its Relation to Gauge Theory

R. MONTGOMERY

Abstract. I investigate the question ”What is the most efficient way for a
deformable body to deform itself so as to achieve a desired reorientation?’ I
call this the Cat’s Problem, since itis the problem faced by the upside-down
zero-angular momentum cat in freefall. In order of increasing generality, I
show that the Cat’s Problem is a special case of problems which occur (1)
in the geometry of principal bundles, (2)in subRiemannian geometry, and
(3) in optimal control. Some model cases are explicitly solved in which the
deformable body consists of a collection of point masses. In one of these
models the principal bundle breaks down due to isotropy for the action
of the rotation group. Nevertheless we are still able to obtain the general
solution.

§1. Introduction.

Consider the

Cat’s Problem. What is the most efficient way for a deformable body
to deform itself so as to achieve a desired rigid re-orientation?

A cat, dropped from upside-down with no angular momentum, changes
her shape in such a way as to land on her feet. In doing so, her initial
and final shape are essentially the same, but she has re-oriented herself by
a rigid rotation of 180 degrees. In addition, by conservation of angular
momentum, her total angular momentum is zero throughout the motion.
For a nice analysis of this phenomenon, see Kane and Scher [1969]. The
cat thus describes a loop in her shape space, with the consequence that
in an inertial frame the beginning and final shapes are related by a rigid
motion g € E(3).

Shapere and Wilczek addressed the cat’s problem in [1987], [1988],
where they translated it into a problem in gauge theory. Their original
paper [1987] concerned the motion of microorganisms in water, so perhaps
it is not fair to call it the cat’s problem. In any case, Shapere and Wilczek
observed the following key features of this problem.

(i) The space of inertial configurations, that is, the space of allowable
deformations of the body, forms a principal bundle over the shape
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space of the body. The fiber of this bundle is the group G of rigid
motions, an element of which is the desired re-orientation.

(i) Dynamical constraints define a connection A on this bundle. For the
cat in free-fall with no initial angular momentum this constraint is
that the angular momentum remains zero. For the micro-organism
the constraint is that the viscosity is infinite.

(iii) With the constraint in force, the holonomy (parallel translation op-
erator with respect to the connection A) of a given sequence of shape
changes is the net re-orientation.

(iv) Efficiency can be measured by a metric on shape space.

Consequently, the zero angular momentum cat problem becomes the

Isoholonomic problem. Find the shortest loop in shape space (based
at a given shape) with a given holonomy.

The cat’s problem is more general because the cat may be spinning. That
is, its angular momentum may be constrained to a non-zero constant pu.
The main result of our paper, Theorem 1 in §3, is a characterization of the
solutions to the cat’s problem and hence to the isoholonomic problem. The
characterization says that all solutions are obtained by solving Hamilton’s
differential equations for a certain Hamiltonian H, on the cotangent bundle
of shape space. Hy is the horizontal kinetic energy.

Our paper is based on the following two observations.

(I) The kinetic energy k, which is a Riemannian metric on the inertial
configuration space @), together with the action of the group G on
Q, contain all the information in observations (i), (ii), and (iii).
(I1) The isoholonomic problem is a special case of the problem of finding
sub-Riemannian geodesics.

We elaborate on (I). (i) Shape space S is the quotient space Q/G. (ii)
The connection A is determined by declaring the A-horizontal directions
HOR to be those directions perpendicular to the group orbits. (iii) The
metric on shape space is determined by declaring that the projection of
the tangent space to @ onto the tangent space to shape space is an isom-
etry when restricted to the horizontal space HOR. Concerning (II): a
sub-Riemannian metric is the restriction of a Riemannian metric k to a
distribution HOR C T@. Sub-Riemannian metrics are also known as
Carnot-Caratheodory metrics, non-holonomic Riemannian metrics, or sin-
gular Riemannian metrics. In sub-Riemannian geometry one only considers
horizontal curves c(t), that is, curves whose derivatives &(t) are in HOR
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(when they exist). The sub-Riemannian distance between points p,q € @
is

d(p,q) = inf{ length (c): ¢ a piecewise smooth

horizontal curve joining p to ¢}

Here length (c) is the length of the curve ¢ with respect to the Riemannian
metric k. (If there are no horizontal paths joining p to g, set d(p, ¢) = co.)
This is independent of how k is defined in the non-horizontal directions,
since c¢ is horizontal. It is now clear that the isoholonomic problem is a
special case of the

Sub-Riemannian geodesic problem. Find the horizontal curve join-
ing p to g whose length is d(p, q).

The contents of this paper is as follows. We begin by describing the
configuration space of a deformable body and its geometry. Then we express
the cat’s problem successively as a problem in:

(A) Riemannian geometry;

(B) gauge theory;

(C) optimal control theory and sub-Riemannian geometry.

Our main result, Theorem 1 in §3, characterizes the solutions ¢(t) to the
problem of the cat with angular momentum g as the cotangent projections
to @ of solutions (g(t), p(t)) to a Hamilton’s differential equations on T™Q.
We give a formula for the corresponding Hamiltonian function H, on T*Q.
Hy is the horizontal kinetic energy.

This extends the author’s previous work Montgomery [1990] in two ways.
First, it allows for non-zero momentum. Second, it gives a formula for the
Hamiltonian in terms of physical data pertinent to the problem, specifically
the “locked inertia tensor”.

Previously the author [1984] showed that this horizontal kinetic energy
generates the motion of a particle under the influence of the Yang-Mills
potential A. This is the content of Theorem 2 of §4, which is essentially a
gauge-theoretic restatement of part of Theorem 1. Theorem 2 is contained
in Montgomery [1990], with one error: its converse is false.

In §5 we restate the problem in the language of optimal control.

In §6 we discuss sub-Riemannian metrics and quote a theorem (Theo-
rem 4) which enables us to prove Theorems 1 and 3 immediately.
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In §7 we present an example: N point particles in space. The case N = 3
can be exactly solved. The differential equations are the same as those
of a single charged particle under the influence of a magnetic monopole.
Interesting singularities occur at the collinear configurations, where the
assumption of freeness breaks down. Here the dimension of the space of
zero-angular momentum vectors jumps.

Recent History. Guichardet [1984] observed that angular momentum
define a connection. He applied his observation to molecular dynamics. See

also Iwai [1987].

The isoholonomic problem was posed to the author by Alex Pines’ in
connection with some problems in nuclear magnetic resonance. The relevant
bundles for Pines are the Stieffel varieties. These are the bundles of unitary
k-frames over the Grassmannians of k-planes in C***. This problem was
dealt with by the author in [1988].

For infinitesimal deformations of shape, Shapere and Wilczek reduced
(a slight variant of) the ischolonomic problem to that of solving a second
order linear o.d.e. defined on the tangent space to shape space (at the given
shape). The author [1988] found the corresponding nonlinear o.d.e. in the
case of finite deformations. This equation is Wong’s equation [1970] for the
motion of a classical spinless particle with color-charge under the influence
of the Yang-Mills potential A. In the case of the planar cat G is U(1) and
these are the Lorentz equations for a charged particle in a magnetic field.

Recently Hamenstédt [1986,1988], Bir [1988], and the author [1991]
made important contributions to the sub-Riemannian geodesic problem.

Future Work. Currently Zexiang Li and the author are working on
applications of the ideas presented here to robot gymnastics, In future work
the author plans to analyze the optimal control of the model cat of Kane
and Scher [1969]. This model comsists of two identical axially symmetric
rigid bodies joined by a ball-and-socket joint at their axes.
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Gershkovich, Richard Cushman for critical readings, and Gorky, Claudine
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§2. Configuration Space and Metric for Deformable Bodies.

Let B denote a reference shape for our deformable body. For example, B
might be the initial shape. The configuration space of a deformable body
is a submanifold @ of the space Emb of embeddings of B into Euclidean
3-space, R}(R? if the body is planar). So,

Q C Map(B,R?),
and a point ¢ of @ is a map
¢:B-R r=¢(X)eR® XeB.

The group of orientation preserving rigid motions of space SE(3) acts on
Q) by rigidly rotating and translating the body. In other words the action
is given by g¢ = g o g, for g € SE(3),qg € Q. The shape space of our
deformable body is S = Q/SE(3).

For example, if B consists of two rigid bodies joined together by a ball-
and-socket joint, then @ is isomorphic to R?* x SO(3) x SO(3). The compo-
nents of an element ¢ = (g1, g2, ¢) of Q) represent the orientations of the first
body, and of the second body with respect to a fixed inertial frame, and the

position of the joint (or, alternatively, of the center of mass). Specifically,

¢(X) =c if X is the joint
c+¢:1 X if X isin body 1
¢ + g2 X if X is in the second body

Shape space for this problem is SO(3). The projection map @ — S is
7(c,g1,92) = g1~ *g2. This matrix represents the orientation of body 2 with
respect to a frame attached to body 1, that is, their relative orientation.

B will be endowed with a mass density dm(X),X € B. This allows us
to define B’s total mass, the center of mass of ¢(B), the kinetic energy of
an infinitesimal deformation of ¢ € @, etc. in the usual way. For example,
the kinetic energy of an infinitesimal deformation

6¢g: B - R®
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of q is ke(6g,6q) = 3 [ < 6a(X),8q(X) >gs dm(X).

Here (-, -)ge is the standard inner product on R®. The integral defines
a Riemannian metric ¥ on . The group E(3) of rigid motions acts by
isometries with respect to this metric.

We may want to ignore the translational part of our motion, since we
cannot affect it by altering our shape as we fall. (Shapere and Wilczek’s
parmecium can affect their translation since strong friction is present.) This
act of ignorance is performed by going to center of mass coordinates, that
is, by setting [¢(X)dm(X) = 0. This defines a codimension 3,S50(3)
invariant, totally geodesic submanifold Qo C @. In symbols

Qo =Q/R’; Q=R®xQo; Shapespace=S=Q,/SO(3).

The main property of Qg (or @) which we will use is that it is a Rieman-
nian manifold on which the Lie group G acts by isometries.

§3. The Geometrical Cat.

§3.1.

We now work in the more abstract context just alluded to. We are given
a Riemannian manifold @ (previously Qy), metric &, and a Lie group G
(previously SO(3)) which acts on @ on the left by isometries. '

A vector v in T, which is tangent to the group orbit G-¢ through ¢ € @
will be called vertical (at ¢). Vertical vectors represent infinitesimally rigid
rotations of our deformable body ¢(B). A vector v in T,Q will be called
horizontal if it is orthogonal to the group orbit through ¢. As we will soon
see, (fact 1 below) v is horizontal if and only if its engular momentum
M(q,v) is zero. The set of vertical vectors will be denoted V, and of
horizontal vectors HOR. Thus

TQ=V®HOR

the direct sum of two vector sub-bundles, assuming the rank of V is con-
stant.

If “maximum efficiency” means minimum length, then the problem of
the zero angular momentum cat is the same as the
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Geometrical Cat’s Problem. Find the shortest horizontal path in @
which join ¢g to ggo. Here ¢y € @ and g € G are fixed.

This is a constrained variational problem. The function to be extremized
is the length of the path. In control theory this function is called the
objective function. It is well-known in Riemannian geometry that the same
extremals are obtained if one uses the integrated kinetic energy

(30) Bld = [ ko (G200, 20 a

as the objective function, instead of the length. This is also true here.
Consequently, we will use the objective function E of [3.0].

Why choose this objective function? This is an important question,
to which we do not have a very satisfactory physical answer. In some cir-
cumstances it might not be the correct objective function. One justification
for this choice is to suppose that frictional torques are present at the joints
which are proportional to the moments of inertia of the pieces of the body.
Then the integrated kinetic energy represents (energy loss) x (time), which
is a desirable quantity to minimize.

More generally, we might suppose that there is some metric on shape
space, perhaps empirically determined, whose integrated kinetic energy rep-
resents power expenditure. This defines a metric on HOR, so the problem
still makes sense. See §6.

The Lie algebra of G will be written g. For ¢ in @, let

d
gq: g — T,4Q defined by 0,(¢) = Zile=0 &P gkq, for £in g.

denote the infinitesimal action. For example, in the case of our deformable

body, g = s0(3) = skew symmetric 3 x 3 matrices = R?, and
(ow)(X)=wxq(X), XeB,qeQ weR’=s0(3).

The 3-vector w is the angular velocity of rigid rotation.
The momentum map J for the G-action is the dual, o7: T;Q — g%, of
the infinitesimal generator o4, namely,

(38.1a) J: T*Q — g* is given by J(gq,p) = o;p, where p € T/Q

For information and definitions regarding momentum maps, see the ap-
pendix of our paper, or Abraham and Marsden [1978], ch. 4.
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We will use the term engular momentum, denoted M, for the momentum
map viewed as a map from the tangent bundle TQ. We use the Rieman-
nian metric ¥ to identify T,Q with T, Q. Set

ol =0, 0k, T,Q — g*.
(The “*” denotes transpose.) Then
(3.1b) M(q,v) = a; - v where v € T,Q.

Since M is fiberwise linear, we can view it as a one-form on @ with values
in g*.

We have the following basic facts concerning M.

Fact 1. M(q,v) = [ q(X) x v(X)dm(X), in case Q is the configuration
space of a deformable body. This is the usual expression for the total
angular momentum of the system. (In writing M with its values in R® we
identified s0(3)* with R® via a choice of orthonormal basis for so(3).)

Fact 2. HOR, = (imo,)* = ker(a,t) = ker(M(q, ).

The first equality is by definition.

Fact 3. Noether theorem: M is a constant along solutions to the Euler-
Lagrange equantions for any Lagrangian L = K — Von TQ with V a
G-invariant function on Q.

3.2 The Spinning Cat.

We can now formulate the

Generalized, or Spinning Cat’s Problem: Find the shortest path ¢
in @ which joins ¢g to ¢; and has constant angular momentum .

Our goal is to give a simple characterization of the solutions to this
problem. As in Riemannian geometry, it is easier to characterize those
curves which minimize length locally in the arc parameter.

Definition. A curvec:[0,7] — Q is a local solution to the spinning cat’s
problem if there exists a positive number € such that for all subintervals
[a,B] of [0,T] of length less than e the restriction of ¢ to [a, ] is a solution
to the spinning cat’s problem with endpoints c(a), ¢(b).

Theorem 1 is a partial characterization of these local solutions. In order
to to state it we must first define several functions.
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The first of these functions is the “locked inertia tensor”I:

I,(&1,62) = ky(0ga,0462) for £ € g.

for each ¢ € Q. In other words, I is the pull-back of the metric on Q to g.
We call I the locked inertia tensor because I, is the inertia tensor of the

rigid body formed by locking all of the joints of the configuration q.

For each ¢, I; is a symmetric nonnegative bilinear form on g which is
positive definite if and only if the action is locally free at q. (Locally free
means that the isotropy group at ¢ is discrete; equivalently ker(s) = 0.)
This is true if and only if the body ¢(B) is not contained within any single
line. We have the well-known formula

I, = (tr¥ )1 — ¥,

where
(B,) = / a(X)'q(X ) dm(X)

Here we have identified I; as a symmetric 3 x 3 matrix by using the isomor-
phism between the Lie algebra g and R®. We can also write I, as a map
from g to g*:

(3.2) I, = aqta'q

So that, by abuse of notation, I,(£1,&2) = I(€1)(€2).
The other function we must define is the “optimal control Hamiltonian”

for the spinning cat problem. This is the real-valued function
A
@3 Hygp)=K-5I7(J —p,J — 1)

on T*@Q. In this formula K denotes the usual kinetic energy

1. _
K(q,p) = 5k, (¢:p).

ky ! and Iy 1 denote the inner products on T;Q and g* which are induced
by the inner products kq and I,. I=Y(J — g, J — p) is the function (¢,p) —
I7(J(a,p) — 1, J(a,p) — 1)
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THEOREM 1. Let g : [0,T] — @ be the cotangent projection of a solution
(¢,p) : [0,T] —» Q to Hamilton’s equations for the above Hamiltonian H,.
And suppose that the image ¢(t)(B),0 < t < T of each configuration
is never contained inside a single line. Then q is a local solution to the
spinning cat’s problem with angular momentum .

REMARKS CONCERNING THE ZERO-ANGULAR MOMENTUM CASE.: (1) J
is a conserved quantity for the g = 0 Hamiltonian: {Hy, J} = 0. The value
of this constant J(g(t),p(t)) can be any element of g* even though every
solution {g(t), p(t)) of the corresponding y+ = 0 Hamiltonian system satisfies
M(g(#),d(2)) = 0.

(2) Fix the value of this constant: J = o = const. Then we can view
the optimal control flow as the motion of a particle in the field of the
“effective potential” defined by the second term of the Hamiltonian,
-3 (a,0).

(3) Hy is the horizontal kinetic energy as defined by orthogonal direct
sum decomposition T*@Q = V* § HOR*. In other words, if Pyor :
T;Q — HORy denotes the corresponding projection then

(34) Hy(q,p) = %kq_l (Paor+(9) - p,Pror+(q) - p)

This can be seen by noting that the effective potential of the previous
remark is the vertical kinetic energy.

(4) §7.2.3 discusses an example where the deformable body is allowed to
become collinear so that the hypothesis of Theorem 1 fails. The opti-
mal curves are then concatenations of solutions to these Hamilton’s
equations with the concatenation points occuring at the collinear-
ities. The corresponding curves have derivative discontinuities at
these points.
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§4. The Gauge-theoretic Cat.

As long as our deformable body is never contained within a single line
in 3-space the G action is free. This, together with the compactness of G,
implies that @ — S = Q/G forms a principal G-bundle and that HOR
defines a connection on this principal bundle.

Guichardet [1984], and later Shapere and Wilczek [1987,1989] give a
formula for the corresponding connection one-form (gauge field) A on Q:

(4.1a) Ay = Iq_lM(q, ) T,Q — 9.

Equivalently (see equations 3.1 and 3.2)

(4.1b) A = (cto) 1ot

It is immediate from fact 2 of §3 that A satisfies the desired property:
ker A = HOR = set of deformations with zero angular momentum

It also satisfies
u-Ag € I w) CTQ

for every u € g* (Any connection satisfies this last property.) The connec-
tion A is called nowadays the “natural mechanical connection” or “master
gauge”. In words, “the natural mechanical connection on shape space is
the inverse inertia tensor times the angular momentum”.

The physical meaning of this connection is elucidated by considering the
following procedure. Let s(t) be a path in shape space and ¢(0) € @ be an
initial configuration of the body. What is the full motion ¢(¢) of the body
as it deforms through space? Suppose we also know that the initial total
angular momentum M of the body is zero. It remains zero by conservation
of angular momentum. Thus ¢(#) is a horizontal path which projects onto
s(t). It follows that g(t) is recovered from s(t) by parallel translating q(0)
along s(t) with respect to the connection A.

The curve q described above is called the horizontal lift of s. If s = 7ogqis
a closed curve then there is a unique group element g such that ¢(1) = g¢(0).
This element is called the kolonomy of s (based at ¢(0)).

The metric k on @ induces a metric ks on shape space by declaring the
restriction of drg: T,Q — T.S to HOR, to be an isometry. This makes

Q — S into a Riemannian submersion.
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We can now rephrase the geometric (= zero angular momentum) cat’s
problem as the isoholonomic problem: Among all loops in shape
space based at an initial shape sy find the shortest one whose
holonomy is g. More generally we have the isoparallel problem: Fix
an initial and final shape s, and s; and also a G-equivariant map
g : 7 (sg) = 771(ss). Among all curves in shape space which
Jjoin the given shapes s, s; find the shortest one whose parallel
transport operator is g.

In [1990} I computed the formal Euler-Lagrange equations for this prob-
lem and showed that it reduces to the differential equation which governs
the motion of a particle traveling through the Riemannian manifold S while
under the influence of the gauge field A. These are the so-called “Wong
equations” {[Wong] or “Kerner equations” [Kerner|. They are equations
for a curve e(t) in the co-adjoint bundle g*(()) which is a vector bundle
over S with typical fiber g*, the dual of the Lie algebra of our group G.
This bundle is an associated bundle to Q and can be defined by the formula
9"(Q) = Q x 44~ g*. It is naturally isomorphic to V*/G where V* denotes
the dual of the vertical bundle V' = ker d= over Q.

To describe the equations, write s(t) = w(e(t)) € S and s = % e TS.
(We occasionally abuse notation and denote any projection by “z”.) Let
D denote the connection on g*(Q) induced by the connection A on Q. In
coordinates, De = de + ad*(A)e. Let V be the Riemannian (Levi-Civita)
connection on S induced by the metric ks. Let F denotes the curvature
of A which we can think of as a two-form on § with values in the adjoint
bundle ¢(Q) = Q@ X449 = V/G. Then e- F(%,-) is a one-form along s ( a
force) and ks - e- F(¥,) is a vector field along s. Wong’s equations are

(4.3a) Vis=kg-e-F(3,-)
De

4.3b Z€ _o.

(4:35) a =0

Wong’s equations are second order in s and first order in the fiber. They
. can be written in first order form by adding the equation

(4.3¢) 5 =ks(s)™'y,

where y € TrS, the cotangent bundle to shape space. Now use this to
rewrite the previous differential equations in terms of ¥ and y. The result
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is a system of first order differential equations for a curve (s,y,e) in the
vector bundle ¢*(Q) ® TS over S. We call this vector bundle the “phase
space of a (co-adjoint) particle in a Yang-Mills field”.

Definition: A curve ¢ in S is a motion of a Yang-Mills particle if it is
the projection to S of some solution of the above system of differential
equations in ¢*(Q) & T*S.

The above equations for a particle in a Yang-Mills field can be written in
Hamiltonian form. See Montgomery [1984] and references to Sternberg and
Weinstein therein. In fact, these equations are obtained by reducing the
equations on T*() defined by the optimal control Hamiltonian (see Theorem
1) by the action of the group G. To see this, use the connection A to define
a G equivariant isomorphism:

T*Q =V*® HOR* 2 g* x n*T*S

This is the dual of the usual vertical-horizontal splitting of T¢}. Upon
dividing by G we obtain an isomorphism

(44) (T*Q)/G=g" (@) dT*S.

Since Hp is a G-invariant function on T*Q its Hamiltonian vector field
pushes down to define a Hamiltonian vector field on the reduced (Poisson)
manifold g*(Q)®T*S, which is the phase space for a particle in a Yang-Mills
field.

There is an alternative, older, viewpoint on the motion of a Yang-Mills

particle which is due to Kaluza-Klein. Let 3 be a fixed adjoint-invariant

positive-definite inner product on g. So, if G is semi-simple  is a multiple
of the Killing form and in particular for the case of most interest to us,
G = SO(3), B is the standard inner product on R?. Define a new metric
kpiv on @, the “bi-invariant Kaluza-Klein metric”, by
kpiv(v1,v2) = k(v1,v2) if v1 and vz are horizontal
(4.5) ' = B(&1,€2) if vy and v, are vertical with v; = o§;
= 0 if v; is vertical and v, is horizontal

Definition. A Kaluza-Klein geodesic is a geodesic on € with respect to

this metric.

Let Hpiv = 3ksiv " *(¢)(p,p) denote the corresponding kinetic energy , a
function on T*Q. One calculates (see Montgomery [1984] ) that

1
Hy;y = Ho + §ﬂ_1(J,J)
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Also the Poisson bracket of the second term, 371(J, J) with any G-invariant
function is zero. Consequently the push-down (to the Yang-Mills phase
space) of the Hamiltonian vector field of this second term is zero. It follows
that the push-downs for Hy and H};, are equal. This proves

THEOREM 2. The following statements regarding a curve c in S are equiv-
alent (1) ¢ is the motion of a particle in a Yang-Mills field. (2) c is the
project ta S of a solution to Hamilton’s equations for the optimal control
Hamiltionian Hy (3) ¢ is the projection to S of a Kaluza-Klein geodesic on

Q.

Theorem 2 was proved in Montgomery [1984]. As an immediate corollary
to Theorems 1 and 2 we have

THEOREM 3. (1) If ¢ is a motion of a particle in a Yang-Mills field then it
is a local solution to the zero-angular momentum cat’s problem. (2) If q is
a Kaluza-Klein geodesic then its projection ¢ = wogq to S is a local solution
to the zero angular momentum cat’s problem. The corresponding zero-
angular momentum curve §(t) in Q) is obtained by taking the horizontal lift
of the projection c.

Theorem 3 can be found in Montgomery [1990]. There you can also find
the following formula for the passage from ¢ to §:

§(t) = exp(—t&)q(t)

where { = A, - ¢, a time-independent Lie algebra element.
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§5. Optimal Control.

We can view tangent vectors u to shape space as conirol variables. Let
hg: TS — HOR,; C T,Q, where s = 7(g),

denote the operation of horizontal lift. It can be defined as the unique
linear operator from T, to T,Q whose image is HOR, and which is a
right inverse to the differential of the projection: dwy o b, = identity on

T,S. Set
Xu(a) = kg™ (p- Ay)
= ag(I7 (1),
a vector field on Q. According to equation [4.2], M(q, X, (g)) = p. In fact,
X,(q) is the shortest vector in the affine subspace {v : M(g,v) = p} of
T,Q.
Any tangent vector ¢ to @ at ¢ which satisfies M(q, ¢) = p can be ex-
pressed uniquely in the form ¢ = hqu + X,(g). And in this case k(¢,§) =

ks(u,u) 4+ I (p, p)- It follows that the spinning cat problem is equivalent
to the following problem in optimal control :

(5.1) given § = hqu + X,(q)
with

(5.2) q(0) = g0,9(1) = @1
(5.3) 5 [ Es(u(®),ue) + Vida)et.
where

Vile) = 177" (us 1)
This is the standard form of an optimal control problem. 5.1 is called the
control law. 5.2 says that the control steers gy to ¢;. 5.3 is called the cost
function or value function. X, is called the drift vector field.

This reformulation is important for two reasons. First, it allows us to
view the problem as a feedback control problem. This is probably the
correct point of view for of the cat; when blindfolded she usually fails to
land on her feet (Kane [1989], private conversation). Second, it makes
sense even if the metric ks on shape space has no relation the metric on Q.
For example , ks might be an empirically or analytically determined power
dissipation law. This is the case for Shapere and Wilczek’s microorganisms
[1987]. And V), might be some “potential” which one must keep small.
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§6. Sub-Riemannian Geometry.

§6.1 Basics of Sub-Riemannian Geometry.

The geometrical cat’s problem of §3 is a special case of the problem of
finding sub-Riemannian geodesics. This more general point of view provides
a straightforward proof of our Theorem 1. In fact, we simply quote a result
of Rayner [1967] or Hammenstadt [1986] which we have summarized here
as Theorem 4.

Definition A sub-Riemannian metric on the manifold § consists of
a (typically nonintegrable!) distribution HOR C TQ, together with a
smoothly varying positive definite product x(g) on HOR,.

A contravariant object, for example a curve or vector, is called “horizon-
tal” if it is tangent to the given distribution. In general, we only consider
horizontal objects.The length of the horizontal curve v is

(6.1) length [] = / NECOROL

The sub-Riemannian geodesic problem is the problem of finding the
shortest horizontal curve joining two fixed endpoints g9, ¢ € Q.
Definition: A minimizing sub-Riemannian geodesic is a rectifiable hori-
zontal curve which is the shortest such curve among all such curves joining
its endpoints.
Definition: A locally minimizing geodesic is a rectifiable horizontal
curve for which each sufficiently small subarc of is a minimizing sub-Rieman-

nian geodesic. (Compare with the definition of local solution to the spinning
cat problem.)

If we take HOR to be as in the previous sections and take x to be k
restricted to the horizontal distribution then the zero-angular momentum
cat problem is precisely the problem of finding minimizing sub-Riemannian
geodesics.

Remark Sub-Riemannian metrics are also referred to as Carnot-Carathe-
odory metrics, non-holonomic Riemannian metrics, or singular Rieman-
nian metrics.

A sub-Riemannian structure defines, and is defined by, a constant rank

“ co-metric” g. This is a symmetric contravariant two-tensor whose rank
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is the dimension of the distribution. We can think of it as a symmetric

vector bundle endomorphism ¢: T*Q — T'Q in which case it is defined by
the requirements:

(1) image(g) = HOR
(2) ifv=g(q)(p) € T,Q, then k,(v,v) = p(g(q)(p))

We can also think of g(g) as a bilinear form on 7,/ Q in which case we write:

9(a)(p1,p2) = P1(9(9)(p2))-

The fiber-quadratic form

(6.2) Ho(q,p) = %g(q)(p,p)

is called the horizontal kinetic energy, sub-Riemannian kinetic energy or
optimal control Hamiltonian.

THEOREM 4. [Rayner [1967], Hammenstadt [1990]] Let (q(t), p(t)) be a
solution to Hamilton’s equations with the Hamiltonian function Hy of equa-

tion [6.2]. In other words suppose (q(t), p(t)) satisfies the differential equa-
tions

dg’ ij dpi 1. [a(g™)
=YNgiip.. P __ % : )

dt 9 - Pj; dt 2 aq, PPy,

where (q¢*, p;) are canonical coordinates on T*Q, and Hy = 15g% (q)prp;.

Then ¢(t) , the cotangent projection of this curve, is a locally minimizing

sub-Riemannian geodesic.

This theorem seems to have first been proved by Rayner [1967]. It was
later proved and strengthened by Hammenstédt. See her [1990] paper. We
will not reprove this theorem. Instead, we will content ourselves by in §6.3
with calculating the Hamiltonian Hy (and H,) and by showing that in the
case of a deformable body that the Hy of Theorem 4 is equal to the Hg of
Theorem 1. Thus Theorem 1 is a restatement of Theorem 4.

The converse to Theorem 4 is false. Unfortunately, the converse has been
stated as a theorem in many papers going back at least as far as Rayner!
Béar in his thesis gives examples of a locally minimizing horizontal curve
which does not satisfy the geodesic equations. (Sufficiently small subarcs
of Bar’s curve admits a “cotangent lift” which satisfies Hamilton’s equations
but these cannot be smoothly spliced together.) Montgomery [1991] gives
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examples of globally minimizing sub-Riemannian geodesics which do not
satisfy the geodesic equations. In each of these examples the distribution
generates the tangent bundle to Q. That is, it satisfies the conditions of
Chow (also called the conditions of Hérmander ; see the next section.) Such
“pathologies” do not occur in Riemannian geometry.

Some History: Sub-Riemannian geometry appears in the study of CR
and contact structures, hypoelliptic operators, the analysis of rigidity prob-
lems for spaces with nonpositive curvature such as complex or quaternionic
hyperbolic space, and the collapsing of Riemannian manifolds. There is
a fair-sized literature on sub-Riemannian geometry. Among the works
that have come to our attention are Hermannn [1962,1973] Rayner[1967],
Hamenstadt [1986,1988,1990], Bar[1989], Brockett [1981,1983], Bail-
lieul [1975], Gunther [1982], Strichartz [1983,1989], and Taylor [1989)].
Vershik and V. Ya Gershkovich [1988] give a kind of review with a sum-
mary of facts and some intriguing pictures. The sub-Riemannian geodesic
problem is a special case of the problem of Lagrange in the Calculus 0f
Variations. This is treated in generality by Carathe’odory [final chapter]
and Bliss [1930].

§6.2. Chow, Ambrose-Singer and Controllability.

There may be no horizontal paths which join the point go to the point
¢1. In this case there are, of course, no solutions to the corresponding
sub-Riemannian geodesic problem. To avoid this situation we would like
conditions on a given distribution which insure that any pair of points
(40, 1) € @ x Q can be joined by a horizontal path. A distribution, or more
generally, a control law, which satisfies such a property is called controllable.

Let E;,z = 1,2,... be a local frame for the horizontal distribution. Form
the iterated Lie brackets [E;, Ej], [E;, [Ej, Ex],... and evaluate these at
1€ Q.

Definition: We say that Chow’s condition holds at ¢ if these vectors,
together with the E;(q), eventually (i.e. after enough iterates of Lie brackets
are taken) span all of T,Q.

THEOREM. [Chow, Rashevsky] If Q is connected and Chow’s condition
holds everywhere, then any two points of ) can be joined by a smooth
horizontal curve.
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Chow’s original theorem is actually slightly stronger than this. Chow’s
work actually contains no Lie brackets; instead, his original condition is
phrased in terms of push-forwards of vector fields and is a localization of
the above theorem about a given horizontal curve.

Remark. What we are calling Chow’s condition is very often referred
to as "Hoérmander’s condition”.

A corollary to Chow’s theorem is the Ambrose-Singer [1953] Theorem
for connections on principal bundles. (See also Kobayashi-Nomizu [1963,
p. 83-89]). Suppose we are in the previous setting in which @ — S is a
principal G-bundle. Let X,Y, Z,... be horizontal vector field on Q. Recall
that the curvature F of the connection A at can be defined by the equality:
vertical part of ([X,Y](q)) = 04(F,(X,Y)). Similarly, the vertical part of
[Z,[X,Y]](q) is equal to oy ( Dz F,(X,Y")) and analogous statements hold for
the higher covariant derivatives of the curvature. Applying Chow’s theorem,

we obtain the following weak version of the Ambrose-Singer Theorem.

THEOREM. [Ambrose-Singer] Suppose Q) is connected and let ¢ be some
point of Q. Let A(q) denote the Lie subalgebra of the Lie algebra of G which
is generated by the values of the curvature F(X,Y) at ¢, together with all
of its covariant derivatives Dz F(X,Y),DwDzF(X,Y),... evaluated at ¢
as X,Y,Z,... range through HOR,. If A(q) is the entire Lie algebra then
any two points of () can be joined by a smooth horizontal path.

§6.3 Calculation of the Hamiltonian.

We will calculate the Hamiltonian H,, from the constrained Lagrangian
L : HOR — R, L(q,u) = 3r4(u,u) + Vu(g). This does not constitute
a proof of any of the theorems, rather it lends to their credibility. (We
have proved the theorems merely by quoting the theorems of others.) Our
method of calculation is identical to the method used for prescribing the
Hamiltonian of the Pontrjagin maximum principle. This in turn is identical
to the method of Legendre transform used in classical mechanics once we
realize that § = u + X,(q) where u € HOR,. Note also that L(q,u) =
1k4(q,4). See §5 where we note that V,(¢q) = 3I;'(u, p) for the spinning
cat.

Define

H(q,p,u) = p(u + X,(q)) — L(q,u)
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where ¢ € @, p € T;Q,u € HOR; and X, is the “drift vector field”
introduced at the beginning of section 5. If gy = 0 then X, = 0 which is
the case stated in Theorem 1. The Hamiltonian H is by definition is the
Legendre transform of L:

H(q,p) = inf,H(q,p,u)

By elementary calculus this infimum is realized by the unique vector u €
HOR, such that p = k4(u,-) when restricted to HOR,. We can reexpress
this relationship by

u = g(g)(p)
Evaluate H(q,p, g(q)(p)) to find that

(63) H(g,p) = 30(0)(p,1) + p(Xu() ~ Va(a)

which is the desired result.
In the case of our deformable body « is the restriction of the Riemannian

metric k on @ and there is a simple formula for the cometric g. Let
Puor: TQ — HOR;Pyv: TQ -V

denote the k-orthogonal projections. Let k™1: T*@Q — T'Q be the k-induced
isomorphism. Then

g=Phopok ™t =k —Pyok™!.

Moreover -

Pvzo'OA

where A is the natural mechanical connection of §4. Combining these for-
mulas with the formula for A and the definition of M, we find that the Hy
of Theorem 1 (equations [3.3 or .4]) equals the Hy of Theorem 4 (equation
[6.2]). Similarly the H above is the H, of Theorem 1.
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§7. Examples. Point masses.

§7.1 N Point Masses.

The body B consists of N point masses in d-dimensional Euclidean space.
We are most interested in the case d = 3 but it is no extra work to follow
the general case, at least for awhile. The masses are my,...,my and have
positions z1,...,zny € R?. We assume that we are in the center of mass
frame: ¥m,z, = 0. Then Q is a d(N — 1)-dimensional subspace of ReN,
Notice that we do not delete the collision configurations {z, = z3}. To
imagine changing the shape of a configuration when d = 3 suppose that
each mass slides back and forth upon a massless rod and that these rods
can be swung about by means of massless joints attached to the center of
mass.

An element of the shape space S = @/SO(d) can be visualized by con-
necting the N points in order by line segments so as to form an N-gon.
For example, if N = 3 then S is the space of triangles. Coordinatizing S
for large N is an interesting problem in classical invariant theory (H. Weyl
[1938])

The metric on Q is ©m,||dz,]|?. M = Em,z, Av, is the angular momen-
tum. When d = 3 we have A = X, the vector cross product. The inertia
tensor I = Tm,z,'z,7. Thus I({,€) = Zma:caizajffﬁf. (For d = 3 the
isomorphism of s0(3) with R® converts this into the earlier formula for I.)
I is nondegenerate as long as the positions z, of the masses span either a
subspace of dimension d — 1 or all of R¢. We will say that such configura-
tions are in general position. For instance when d = 3 a configuration is in
general position provided all of its points do not lie on the same line.

The action of SO(d) is free on the set of points in general position and
so @ — S forms a principal SO(d) bundle upon restriction to the con-
figurations in general position. As in §4 the distribution {M = 0} of
zero-angular momentum deformations defines a connection on this prin-
cipal bundle. Guichardet [1984] showed that this connection satisfies the
conditions of the Ambrose-Singer Theorem (§6.2) provided N > d. Conse-
quently any two generic configurations can be connected by a zero angular
momentum path when N > d. The condition “can be joined by a zero-
angular momentum path” is a closed condition on the set of pairs of points
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in Q. It follows that any two configurations can be joined by a zero angular
momentum path when N > d.

When N = d Guichardet has shown that a generic configuration moving
with zero-angular momentum must remain on the d — 1 dimensional sub-
space which it initially spans as long as it remains generic. (Exercise: use
Cartan’s lemma for two-forms to prove this.) Note that the fact that the
center of mass is zero says that the d vectors cannot be linearly independent.

When N = d it is still possible to join any two configurations by a
zero-angular momentum path. By the above observation the only way
to do this when the two configurations span different hyperplanes in R¢
is to pass through some intermediate degenerate configuration, that is, a
configuration whose span has codimension 2 or greater. These degenerate
configurations thus act as “switching yards” between the different hyper-
planes. When N = d = 3 we will show explicitly how to connect triangular
configurations spanning different planes by passing through collinear con-
figurations.

The optimal control Hamiltonian for our zero angular momentum “cat”
problem here is given by the formula of Theorem 1:

Ho =K — %I”I(J, J)

Here K(z,p) = 1Z||pa||?/ma is the kinetic energy and J = Yz, A p, is the
angular momentum written in terms of momentum variables.

An interesting fact about this Hamiltonian is that it is collective for the
linear symplectic group Sp(d) of R?¢. To see this, note that we can write
T*Q C R?? @ RV, the tensor product of the symplectic vector space R%d
with the inner product space RN where the inner product is defined by the
masses. In general, if (Z,w) and (E, (,)) are two such vector spaces then the
symplectic form on Z@W is given by (21 ®e1), (22 ® e2) - w(z1, 22)(€1, €2).
The groups Sp(Z) and O(E) act in a linear symplectic fashion on Z @ E
and form one of the standard examples of a Howe dual pair. The Sp(Z)
momentum map is given by ®(Xz, R e,) = Tz, (ep,en)zn € 5p(Z2)* =
5%*(Z). Here we have identified the Lie algebra sp(Z) of Sp(Z) with the
space S%(V*) of homogeneous quadratic polynomials on Z by taking such
a polynomial to its corresponding linear Hamiltonian vector field. In our
case, let z°,v7 € R?? be symplectic coordinates so that w = Zdz* A dv'.
The metric on RY is given by ©m,(dts)?. Then we have nonsymplectic
coordinates z, v{ on R22@RY. The Sp(d) momentum map & takes values
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in the space of 2d x 2d symmetric matrices. It consists of the four d x d
blocks m, 2t zd, Tmazivi, Smavizl, Em,vivi. By inspection Hy can be
written as a smooth function of the entries of ®. Thus, by definition, Hy is
collective for the group Sp(d). This means that by solving one Hamiltonian
differential equation on sp(d)* we will have solved our cat’s problem for all

N. Unfortunately, I do not see how to solve this universal system, even for

d=2or3.

§7.2. N = 3 Point Masses in the Plane: Exact Solutions.

We will use complex coordinates so that R = C. Up to equation [7.2.10]
our formulas can be found in Iwai [1987a].
The configuration space is

Q = {m1z1 + mozg + M3zz = 0} C Cs.

By Graham-Schmidt (see Iwai)

mimsg
21 = —_—— —
(7.2.1a) a ”m1 +m3(21 z3)
(7.2.1b) @ = ma(my + m3) (21 iz +m3z3)
my + mse + mg my +mg

define orthonormal coordinates on @), namely,

(722) k= qu1|2 + |d(p|2.
The rotation group acts according to
eiw(qlan) = (ei‘l’qh eiq’qZ)‘

and this action is free on @\ {(0,0,0)} = C%\ {0}. The natural mechanical
connection on @ \ {0} is

1
(7.2.3a) A= ;3@10@1 + G2dg2),
where

(7.2.3b) r=laf+lel =1,
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is the moment of inertia of the configuration (g;,¢2). (Check that A =1
on the infinisimal generator (igy,2g2) of the action and that A annihilates
the perpindicular to the generator.) The projection

(7.2a) 7: Q — S, restricted to @ \ {0},

is equal to the radial extension
(7.2.4b) m: C*\ {0} — R*\ {0}

of the well known Hopf fibration $* — S§2. Specifically, we can identify §
topologically with R® = C x R. Then

(7.2.5) (91, 92)) = 2q1¢2, |1 |* — lg2|?) = (z + iy, 2).

The origin 0 = 7((0,0,0)) is a distinguished nonsmooth point of S (an
orbifold point). It represents the special shape consisting of all three masses
sitting at the origin.

We have r = /22 + 42 + 22 = |¢1|>+|q2|%. (Compare [7.2.3b].) It follows
that 7 maps the 3-sphere $3(,/r) of radius 1/r centered at the origin in
Q = C? to the sphere S*(r) of radius r in § = R3. Setting r = 1, we obtain
the standard Hopf fibration S% — §2.

Warning: the induced (ks) metric on the sphere S?(r) is that of a sphere
of radius /7. See formula [7.2.8].

We have the following facts concerning the suspended Hopf fibration
[7.2.4b]. The curvature F of the connection A is that of a point magnetic
monopole with strength  at the origin 0 of S = R3. In symbols,

(7.2.7a) F= %dQ,

where d{} is the usual solid angle two-form

zdy Adz + zdz A dy + ydz A dx
3

dQl =

If we identify two-forms F and vector fields F on R? in the usual way:
F(vy,v2) =< F,v; X v3 > then

(7.2.7b) F(x) = %x/r, x € R*\ {0}
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Warning: The d of d2 is conventional; it does not mean the exterior de-

rivative. df) is not an exact differential but it is closed.
The induced metric on S \ {0} is calculated to be

(7.2.8) ks = ‘—11;(11:102 +dy? + d2?)

where dz? + dy? + dz? is the standard metric on R3. In particular it is
conformal to the standard metric. It follows from [7.2.7b] that the Lorentz
force

(7.2.9) ks'eF(%,+) = Ax x X,

where A is a scalar. In fact A = —2e.

Formula [7.2.7] for the curvature is well-known. Formula [7.2.8] for the
shape metric is not as well-known but can be found in Iwai [1987a]. For
completeness we will derive these formulas. They are somewhat simpler if
we use polar coordinates on C2:

(7.2.10) (q1,42) = Vr(cos(8/2)e™ , sin(8/2)e*?e™Y).

with 6/2,¢, and ¥ being angles. In these coordinates the SO(2) action is
¥ — ¥+ AV¥. One finds that

(g1, ¢2) = r(sin 8¢, cosf).

It foliows that (r,6,4) are the standard polar coordinates on R® with 6
the angle which (z,y, z) makes with the z-axis. Differentiating [7.2.9] and
plugging this in to [7.2.2, .3] yields

(7.2.11) A = d¥ + sin®(6/2)dy
and
k= %{dr2 + r*dé*} + r{sin?(8/2) — sin®(8/2)}dp? + rA2.

The metric ks is obtained by setting A = 0 in this last equation. Since
sin®(6/2) — sin*(6/2) = [} sin8]? we obtain

ks = %[drz + r2(d6® + sin? 8dip?)]
T

1
= E[dalc2 + dy® + d2?]
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which is formula [7.2.8]. To obtain [7.2.7a] take the exterior derivative of
[7.2.11] and note that sin?(6/2) = 1(1 — cos §). This yields

F=dA= %sinG(dG A dp)

which is the expression for %dQ in polar coordinates.

The Lorentz equations on S\ {0}

Our A, being an SO(2) gauge field, is just a one-form {vector potential).
It follows that the optimal control equations, which are the equations of
motion for a particle in a Yang-Mills field ( §4, Theorem 3), are just the
Lorentz equations of a particle in the magnetic field F except that the
metric on S is not the standard metric on R® but rather the funny metric
ks. These Lorentz equations are

V,'(}.{ =dx xXx
where
(7.2.125) A = constant = —2e.

and where V is the covariant derivative for the shape metric ks.
Symmetry and Momentum Map. The rotation group SO(3) acts
on RxT*S = R x R* x R® by R(e,x,v) = (e, Rx, Rv). This action is a

Hamiltonian action and preserves the Wong Hamiltonian
H(e,x,v) = 4r|v|?.
By virtue of these facts, the momentum map
L: R x R® x R® — R® = 50(3)*
for the SO(3) action, which is given by
(7.2.13) L{e,x,v)=xx v+ %ex/r
is constant along Wong trajectories. This formula for the momentum map is

well- known. See for example Jackiw and Manton [1980]. For completeness
we present a derivation of it in the appendix.
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Solutions. Let (e,x(t), v()) be a solution to our Wong’s equations, and
Ly the value of the momentum map on this solution. Then

(7.2.14) x:-Lo =x L(e,x,v) = —;—r.

This is the equation of a cone C = C(Lg, e) in R? since Ly is a constant
vector in R3. The curve x(t) is constrained to lie on this cone, and x must
be tangent to the cone at x. Since the radial vector x is also tangent to
the cone, the acceleration Ax x x of [7.2.11] is always normal to this cone.
The shapemetric ks on R® \ {0} is conformal to the standard one so that
this normality also holds in the shape metric. This demonstrates that

Every extremal trajectory is a geodesic on some cone C in R®. The

geodesic equations are those of the shape-induced metric on the cone.

We now solve the geodesic equations on the cone. Without loss of gener-
ality, we can suppose that Lg is parallel to the z-axis: Ly = e3||Lo||. Then
the equation for the cone reads r||Lo|| cos = er, or

(7.2.15) cos 6 = g /Lol

(Note ||Lol| > %le|, so that the right hand side of this equation is less
than or equal to 1 in magnitude.) The induced metric on C is then

(7.2.16a) ks = %[drz + r% sin” 8dy?].
Set

(7.2.16b) p = /T
Then

(7.2.16¢) ks = dp? + ¢?p?dy?,

where ¢? is the constant

1 1 1 ¢ 1°
7.2.16d A==sin?0=={1- [— ] .
(1-2.164) i 3 ( 3 o]

This shows that the effect of the nonstandard metric ks is to make the
cone’s geometric angle of opening, smaller than its opening angle as mea-
sured in the standard metric, dr? + r? sin?(8)dy?.
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[7.2.16¢] is the equation of the metric on a standard cone whose generator
makes an angle sin~!(¢) with its axis of symmetry. In particular, the metric
is flat. The geodesics can be found by cutting and unfolding the cone along
a generator. The cone is isometric to the closed convex wedge

C* = {0 < ¢ < 27c} in R? with its standard metric,

with boundary rays identified (with the generator) and (p, ) being polar
coordinates on this R2. ‘

From here one can very easily obtain explicit coordinate expressions for
the extremal trajectories of the three particle system. We will content
ourselves with two observations regarding the extremals.

Observation 1. The largest possible value for ¢ is ¢ = 3. This corre-
sponds to # = 7, which is the negative z-axis. This corresponds to C* being
a half-plane. All other values of c lead to opening cones C* with opening
angles 2rc¢ < 7. On these cones every geodesic except the rays through
the cone point ( that is, the generators) are self-intersecting. These rays
represent simple dilations: (x1(t),x2(t),x5(¢)) = r(t)(x1(0),x2(0),x3(0)).
Except for these rays, all extremal curves have points of self-intersection,
and thus define extremal loops in shape space.

Observation 2. The moment of inertia of an optimal trajectory
I(t) = p(t)? is a quadratic function of time.

This can be seen by writing the p? = 2 +4? where = and y are Cartesian
coordinates on C*, and then writing the parametric equation for a line in
terms of z and y.

§7.3. Three Point Masses in Space.

The configuration space is
(7.3.1a) Q = {mix1 + maxy + m3x3 = 0} C R**3.

The change of variables [7.1], with x; in place of z; gives

(7.3.1b) Q = R® x R® with the standard metric ||dq || + ||dqz ||?
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Geometry of Shape Space. The shape space

S =R? x R%/SO(3)
(7.3.2) ~ R? x R2/0(2),

where the groups act diagonally. In order to see this second isomorphism
identify R? with the z-y plane in R®. For any pair of points (qi,q2) €
R? x R® we can find a rotation matrix R € SO(3) such that (Bqy, Rqz) €
R? x R? C R® x R?, namely find an R which takes span {qi,q2} into R2.
The ambiguity in R is O(2), not SO(2).

The natural projection
(7.3.3) R? x R?/S0(2) — R? x R?/0(2)

is 2: 1 except on the orbits of the collinear points, where it is 1: 1. Since
0(2)/50(2) =2 Z,, the two-element group, we have

(7.3.4) S = S*/7,

where $* = R? x R?/50(2) is the planar shape space of §7.2. The Z, action
on $* = C x R is given by (w,t) — (w,t) where w denotes the complex
conjugate of w. (This can be seen by noting that the Z, action can be
realized on R%? x R2 = C x C by (21,22) — (1, £))2) and then inducing the
action on S* by the projection [7.2.5a].) Consequently, S has the structure
of a closed half-space with a distinguished point on its boundary. A more
accurate picture is that S is a closed convex cone.

S is stratified according to symmetry type. There are three strata, the
open interior, the boundary cone, and the apex of the cone. Points in the
interior of S represent generic triangles. They have non-zero area. Points
on the boundary are the collinear triangles. The apex point represents the
“point” triangle, in which all three masses are co-incident.

Our three point masses must remain in the plane which they define up
until they become collinear, that is, until their shape hits the boundary of
S. More precisely, we have

PROPOSITION 7.3.1. Suppose that three point masses move continuosly
and piecewise differentiably in space in such a way that their total angular
momentum about their center of mass is zero (whenever it is defined).
Suppose that a < t < b is an interval of time for which they are never
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collinear. Then the plane P, containing the three points is constant (in the
center of mass frame) on any time interval a < t < b for which the three
points are never collinear.

Proof. The theorem is more easily proved in terms of the coordinates
(d1,92) € R®* x R%. The plane P, is span {q:(t),qz(t)} C R®. The proposi-
tion is equivalent to the implication q; x vy +q2 X vy = 0 and q1 X gz # 0
implies vy,vy € P = span {qi1,q}.

To prove this, write e3 = q; x qz. Since e3 # 0, {q; x e3,q2 X e3,e3}
form a basis for R®. Write ’

Vi = Wi +aes, vy = W3 + be;
with w; € P. Then the total angular momentum M is

M=q; xvi+qz XV
= de3 +aq; x e3 + bgz X e3.

Since this is zero, it follows that a = b= 0.

Remark. A less direct proof is obtained from Iwai’s expression for the
curvature and connection of the natural mechanical connection. With re-
spect to a certain local section ¥, both of these take values in the one-
dimensional subalgebra generated by es = span (¥;,¥2)L. The result
follows from the Ambrose-Singer Theorem.

What happens if the particles become collinear? Can the plane they
define change? Yes. See figure 1.

In this figure q; (%), g2(t) are continuous ; and approach qo as t — 0. Both
the left and right derivatives, ¢;(0™) and q;(0%), of these vector-valued
functions exist at ¢+ = 0 and these derivatives lie in the plane perpindicular
to qo. These right and left derivatives are not equal. The initial plane
of motion is spanned by qo and @;(07)(= —¢2(07)). The final plane of
motion is spanned by qo and §;(0*). The total angular momentum is zero
throughout the motion. In summary,

The collinear configurations can act as “switching yards” between
different planes of motion.

What are the optimal trajectories? As long as the particles are not
collinear, they move in a fixed plane according to proposition 7.3.1, and so
the problem is identical to the problem solved in §7.2. When they become
collinear, the plane of motion can change. In summary, we have
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PROPOSITION 7.3.2. The optimal curves are piecewise smooth concatena-
tions of the planar optimal curves of §7.2. Derivative discontinuities can
only occur when the masses become collinear. If the desired re-orientation
R € SO(3) does not preserve the initial plane, P = span {q:(0),q2(0)},
(assuming it is a plane) then the optimal curve must have such a derivative
discontinuity. '

—t<O

-b-(O

Figure 1
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Appendix.

Calculation of the Momentum Map [7.2.13].

We derive the formula [7.2.13]
1
L=xxv+ iex/ r

for the SO(3) momentum map L of §7.2. We will use the symbol “J”
instead of “L”.

We begin by recalling the definition of a momentum map, and the stan-
dard formula for the momentum map associated to an action on configu-
ration space. If a Lie group K acts in a Poisson fashion on the Poisson

manifold P, then a mementum map for this action is a function
J: P — £* = dual of Lie algebra of K

which satisfies
{f,J - &} = df - £p for all smooth functions f on P, and all £ € g.

Here J - ¢ is the £ component of J, and {p is the infinitesimal generator
on P. if P =T"(Q) and the K action is the cotangent lift of an action of K
on (), then

(A1) J(g,p) =p-&e(q)

defines a momentum map. (This is formula [3.1a].)

The Poisson structure on the Wong phase space g*(Q) ® T*S is induced
from that on T*@Q so we can use [Al] to calculate the corresponding mo-
mentum map on the Wong phase space g*(Q) ® T*S. Recall in that set-up
(84) we had n: @ — S a principal bundle with structure group G, and
connection A. The isomorphism

g* X 7r*T*S’ — T*Q
is given by

(A2) (:ua (CI,PS)) —Pp=H- Aq + h;ps.
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Here ¢ € @ and ps € T:(q)S', and hj: T;‘(q)S’ — T;Q is the dual of the
horizontal lift operator h. Suppose that K acts by bundle automorphisms
of @, that is, it commutes with the G action. Then by projection K acts
on § and 1*{g = £s. [A1] reads

(43) (J-&)a,p) = p-Ag-£@ +ps - Es.

(The hj disappears because £g = h-£s+ vertical, and hyps- vertical = 0.)
J is automatically G-invariant, so defines a function on the Wong phase
space g*(Q)®T™*S = (g* x 7*T*S)/G. This is the desired momentum map.
Note that the second term of [A3] is the £ component
of the standard momentum map [A1] for the K action on T*S.

We apply formula [A3] to our SO(3) action. First, lift the action to the
standard action of K = SU(2) on C2. Choose the (standard) basis

0
1
502;

o]

o ifL 0] _d
T30 -1 T3

NI

]
€1 = = 501;

2

N =

€3 =

C = O e

ot

for the Lie algebra of K. (The o; are the Pauli matrices.) This gives us an
identification x* = R® 2 50(3)*. Moreover, if we write w = Sw’e; , then

under this identification
ws(X) =w x x, where x € § = R®.
It follows that the second term of [A3] is
ps-ws(x) = (x x p) - w,

which is the w-component of the standard momemtum map, x x p, for the
action of SO(3) on T*S. This yields the first term of [7.2.13].

We will be done if we can show that the first term of [A3] gives the second
term of [7.2.13], that is, if

e
(A4) €A, - wg = X w

Aside: e, the fiber coordinate of ¢*(Q) is simply a real numbér, the same
real number appearing in [A4]. The group G = SO(2) is a one-dimensional
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Abelian group. Its dual Lie algebra g* can be identified with R , on which
S0(2) acts trivially. [4.4] then reads

g (@ dT*S=R xT*S.

The R factor is “central”, that is the function e is a Casimir: {e, f} =0
for all functions f. But the Poisson structure depends on e. In fact, the
symplectic leaves are {e} x T*S with symplectic form wg + eF, where w, is
the standard symplectic form on T*S, and F' is the curvature form, pulled
back to T*S by the cotangent projection.

To calculate [A4], one checks that at (q1,¢2) € @ = C? one has

(45)  ()e=3(@-a) (2e=1@mn) (s)o= 3 —a)
Recall that the connection is
(A6) A= % im (q1dg: + G2dgs)
Plugging [A5] into [A6] , and using formula [7.2.5] for = :
m((91,92)) = 202, laa[* — lg2?) = (= +1iy, 2),

we obtain

(47) A-(e1)g = 5% A (e2)g = 5y A (e3)g = 5%

[A4] follows immediately from [AT].
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