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Abstract

Various holonomy phenomena are shown to be instances of the reconstruction procedure
for mechanical systems with symmetry. We systematically exploit this point of view for fixed
systems (for example with controls on the internal, or reduced, variables) and for slowly moving
systems in an adiabatic context. For the laiter, we obtain the phases as the holonomy for a
connection which synthesizes the Cartan connection for moving mechanical systems with the
Hannay-Berry connection for integrable systems. This synthesis allows one to treat in a natural
way examples like the ball in the slowly rotating hoop and also non-integrable mechanical systems.
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Introduction

This paper is concerned with the interpretation of the Hannay-Berry phase for classical
mechanical systems as the holonomy of a connection on a bundle associated with the given
problem. The techniques apply to the quantum case in the spirit of Aharonov and Anandan [1987],
Anandan [1988] and Sirﬁon [1983] using the well known fact that quantum mechanics can be
regarded as an instance of classical mechanics (see for instance Abraham and Marsden [1978]). In
carrying this out there are a number of interesting new issues beyond that found in Hannay [1985]
and Berry [1984], [1985] that arise. Already this is evident for the example of the ball in thé hoop
discussed in Berry [1985]; some remarks on this example are discussed in.§1 below. For slowly
varying integrable systems and for some aspects of the nonintegrable case, progress was made
already by Golin, Knauf, and Marmi [1989] and Montgomery [1988]. The sitﬁétion for the
integrable case has beeﬁ generalized to the context of families of Lagrangian manifolds by
Weinstein [1989a,b]. However, these do not satisfactorily cover even the ball in the hoop
example. For this and other examples, there is need for a development of the formulation, and it is
the purpose of this paper to give one, following the line of investigation initiated by these papers.
One of the crucial new ingredients in the present paper is the introductipr{ of a connection that is
associated to the movement of a classical system that we term the Cartan connection. It is
related to the theory of classical spacetimes that was developed by Cartan [1923] (see for example,
Marsden and Hughes [1983] for an account). Another ingredient is the systematic use of symmetry
and reduction, which are the key concepts needed to generalize to the nonintegrable case. In fact it
is through the reconstruction process that the holonomy enters.

The paper begins in §1 with some simple examples. The purpose is to give an idea of the
Cartan connection. The first example is the ball in the hoop. The second example is the problem of
two coupled rigid bodies to illustrate some of the ideas involved in reconstruction (here there are no
slowly varying parameters, but there is still holonomy). We also give the Aharoniov-Anandan
formula for quantum mechanics (given in detail in §4) and a resume of slowly varying integrable
systems from Golin, Knauf, and Marmi [1989] and Montgomery [1988]. Fmally, we give the
example of reconstructing the motion of a freely spinning ri gld body.

'$§2 and 3 deal with the general theory of reconstruction. Given a phase space P and a
symmetry group G, we show how to reconstruct the dynamics on P from dynamics on the
reduced spaces. If J: G - g* is an equivariant momentum map for the G-action, the reduced
space is P, = J—l(u)/Gu, where G, is the coadjoint isotropy at p. This reconstruction is done
using a choice of connection on the principal Gu—bundle J ) — PH (assuming the action is

free). In case P is a cotangent bundle, there is a family of natural choices of connections
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depending on a choice of metric on the configuration space and on a choice of transverse cross
section to the Gu -orbit. We shall later refer to this one as the mechanical connection. Another

one is built out of the canonical one-form and applies when Gu is abelian. The mechanical
connection connection was defined by Guichardet [1984] and is closely related to connections
defined by Smale [1970] and Kummer [1981]. For the case of cotangent bundles of semisimple
Lie groups, the first includes the second as a special case.

We treat both the Lagrangian and Hamiltonian cases, since in the former the procedure is
considerably more concrete because the Euler-Lagrange equations are of second order. In these
sections there are no slowly varying parameters, but there are connections and holenomy. The
connections are combined with the Hannay-Berry construction in §14.

§4 gives,for the convenience of the reader, background material on Ehresmann -
connections, curvature and holonomy that-is needed for the paper. It is illustrated with the
Aharonov-Anandan formula and other examples of mechanical systems-—such as the top in a
gravitational field and coupled planar rigid bodies in §5. In §§6, 7 and 8 we present the basic
defining properties and the existence and uniqueness of the Hannay-Berry connection. A crucial
aspect of the construction is to take a given connection and average it relative to the action of a
group G. This action also defines a parametrized momentum map I, which plays an important
role. We generahzc the theory developed in Montgomery [1988], and Golin, Knauf, and Marmi
[1989] for trivial bundles with symplectic fibers and the standard connection to nontrivial fiber
bundles whose fibers are Poisson manifolds and with a connection compatible with this structure.
It is important to allow a nontrivial connection at this stage, even if the bundle is trivial, in order to
deal with moving systems, like the ball in the hoop. For moving systems, the nontrivial
connection used is the Cartan connection described in §11. §9 gives another way to look at the
Hannay-Berry connection by utilizing the momentum map for the group G. §10 studies the
important case of slowly moving integrable systems. This is the case that motivated the
development in Montgdmcry [1988], Golin, Knauf, and Marmi [1989], and Weinstein [1989a,b].
We generalize this to our context.

§12 presents a general construction for inducing connections on a tower of two bundles: E
—F — M with a given a connection on E — M and a family of fiberwise connections on E —
F. This is applied in §13 with E =T"1(u), F = = I‘l(u)/G and M the parame’ter space. This is a
parametrized version of the bundle of reduced spaces. This construction allows us to glue together
the Hannay- Berry connection and the connection on the bundle J-1(u) — P usedin §§2 and 3

to obtain a connection on I-l(u) — I"1 (u)/GLL . The holonomy of this synthcsxzed connection

givcsrhe desired phase changes in many of the equations.

In this paper, there are three lines of investigation one can focus on if desired. We regard
§4 on Ehresmann connections as necessary background for all three. The three lines are:

1 Reconstruction ideas: §1C, D, F,§2, 3, 5,13

2 Adiabatic phases and moving systems: §1A,B,E,6,7,8,9,10,11,12

3 Synthesis and future directions: §13, 14. '



§1 Some Examples

In this section we present some elementary examples exhibiting the general geometric
features that will be discussed in the body of the papcr.‘ They focus on the ideas of reconstruction
of dynamics and the "phases" obtained when reconstruction is performed on a closed loop. In this
case, we shall distinguish between a geometric and a dynamic phase. Such phenomena naturally
occur in Hamiltonian systems depending on a parameter, for example, in moving systems or in
integrable systenis depending on a "slow" parameter. The reader will find additional examples in
§5. In particular, the rotéting top in a gravitational field (the heavy top) and the dynamics of a

" system of planar coupled rigid bodies are treated there. The formula for the phase of the system of
coupled planar rigid bodies is first computed by hand in §5E, so this can be read as part of the
present section if desired.

Before beginning any serious examples, we will give an elementary example—Elroy's
beanie—which still illustrates many of the interesting features of more complicated examples. In
general, the theory and examples in this work cah- be divided into two types—those involving
adiabatic phenomena and those that are "pure mechanical” or "pure reconstruction”. Our first main
example on moving systems in §1A is of the adiabatic type, while Elroy's beanie is purely
mechanical.

Example—Eiroy's Beanie Consider two planar rigid bodies joined by a pin joint at their

center of masses. Let 1, and I, be their moments of inertia, and 0,, and 8, be the angle they

make with a fixed inertial direction, as in the figure.

g l inertial frame

Elroy's Beanie
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Elroy and his beanie

Conservation of angular momentum states that Ilél + 1262 = |l = constant in time, where

the overdot means time derivative. The shape space of a system is the space whose points give
the shape of the system. In this case, shape space is the circle S! parametrized by the hinge
angle y =0, -0, . We parametrize the configuration space of the system not by 6, and 6,

butby 6=6, and y. Conservation of angular momentum reads

I
2 gy = —F—dt. ¢))

Ié+‘(é+' = u; thatis, dO+
19+ 5O+ = L+ 1, I+ 1,

The left hand side of (1) is the mechanical connection discussed in detail in §2.4. Suppose that the
beanie (body #2) goes through one full revolution so that  increases from 0 to 21 . Suppose,
moreover, that the total angular momentum is zero: W = 0. From (1) we see that the entire

configuration undergoes a net rotation of
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I 2 I
Ag = - —2 J' dy = -| —2— |2=n. @
L+1,J0 L +1,

This is the amount by which Elroy rotates, each time his beanie goes around once.

Notice that the result (2) is independent of the detailed dynamics and only depends on the
fact that angular momentum is conserved and the beanie goes around once. In particular, we get the
same answer even if there is a "hinge potential" hindering the motion or if there is a control present

L

II+I2

radians, where k is an

in the joint. Also note that if Elroy wants to rotate by - — 2rnk

integer, all he needs to do is spin his beanie around k times, then reach up and stop it. By

conservation of angular momentum, he will stay in that orientation after stopping the beanie.

Here is a geometric interpretation of this calculation. The connection we used is A, =

de + ; EI dy . This is a flat connection for the trivial principal S!-bundle 7:S! x S! — §1
1 2 - .

given by (6, y) =y . Formula (2) is the holonomy of this connection, when we traverse the
base circle, 0 <y <2n. (We note that this is the same connection that appears in the Aharonov-
Bohm effect.) '

§1A Moving systems

Begin with a reference configuration Q and a Riemannian manifold S. Let M be a space
of embeddings of Q into § andlet m, be acurvein M. If a particle in -Q is following a curve
q(t), and if we imagine the configuration space Q moving by the motion m,, then the path of the
particle in § is given by » m(q(t)). Thus, its velocity in S is given by the time derivative:

T oM 40 + Z(m(q()) L )

where 2, , defined by Z(m(q) = % my(q), is the time dependent vector field (on S with

domain m(Q) ) generated by the motion m, and Tq([)mt-w is the derivative (tangent) of the map
m, at the point q(t) in the direction w. To simplify the notation, we write

m = Tq(t)ml and  4(t)= m..[(Q(t))-

Consider a Lagrangian on TQ of the form kinetic minus potential energy. Using (1), we thus
choose '

L@ ) = 3 lmev+ ZE@)IP -~ V@ - Uw) . @

where V is a given potential on Q and U is a given potential on §.
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Put on Q the (possibly time dependent) metric induced by the mapping m,. In other
words, we choose the metric on Q that makes m, into an isometry for each t. In many examples
of mechanical systems, such as the ball in the hoop given below, m, is already a restriction of an
isometry to a submanifold of .S, so the metric on Q in this case is in fact time independent. Now
we take the Legendre transform of (2), to get a Hamiltonian system on T*Q. Recall (see, for
example, Abraharn and Marsden [1978] or Arnold [1978]), that the Legendre transformation is

L ;
given by p = g— . Taking the derivative of (2) with respect to v in the direction of w gives:
\Z ,

pw = (mv+ Z(q), mow) o = {mev+ 2T, mew) (3a)

where p-w means the natural pairing between the covector p e Tq"(‘t)Q and the vector w €
TwQ Gl denotes the metric inner product on the space § at the point g(t) and T denotes
the tangential projection to the space m(Q) at the point g(t). Recalling that the metric on Q,
denoted (‘; )q(t) is obtained by declaring m, to be an isometry, (3a) gives

pw = (vt m 2o, W)y ie, p=(v+mlZqe)TE (3b)

where b denotes the index lowering operation at q(t) using the metric on Q. The (in general time
dependent) Hamiltonian is given by the prescription H = p-v — L, which in this case becomes

3 IPI2 = BZ) - L IZLE + V@@ + Ugw)

H,(4, p)

Ho(@.p) - BZ) - 5 1ZHP + UGqw), @

where Hy(q, p) = % Ipli2+ V(q), the time dependent vector field Z, € X(Q) is defined by Z(q)

= ‘I[Zt(mt(q))]T, the momentum function AY) is defined by HY)(q, p) =p-Y(q) for Ye
X(Q), and where Z{- denotes the orthogonal projection of Z, to m(Q). Even though the
Lagrangian and Hamiltonian are time dependent, we recall that the Euler-Lagrange equations for
Lm[ are equivalent to Hamilton's equations for ng These give the correct equations of motion

for this moving system. (An interesting example of this is fluid flow on the rotating earth, where it
is important to consider the fluid with the motion of the earth superposed; rather than the motion
relative to an observer.) o

Let G be a Lie group that acts on Q. (For the ball in the hoop, this will be the dynamics
of H, itself). We assume for the general theory that H; is G-invariant. Assuming the
“averaging principle” (¢f. Arnold [1978], for example) we replace Hmt by its G-average,

(H,) @0 = L IpI2—(BZ)) - L1 2L + Vi@ + (U(g)). )
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where () denotes the G-average. This principle is hard to justify in general and is probably only
justified for torus actions for integrable systems. We will only use it in this case in examples, so
we proceed with the form (5). Furthermore, we shall discard the term % (1 Z+1?); we assume itis

small compared to the rest of the terms. Thus, define

© Ha,p,0) = FIIpI>—(BZ)) + V(@ +(UG)) = Hyla, p) —(BZ)+{U@D)). )
The dynamics of #{ on the extended space T*Q x M is given by the vector field

Xy Z) = (XHO - X(l’(Z ) + X(U° my Zt). D

The vector field

hor(Z[) = (—XCI{ZL)) N Z[) . (8)

has a natural interpretation as the horizontal lift of Z, relative to a connection, which we shall call
the Hannay-Berry connection induced by the Cartan connection; see §11 and §12,
especially Theorem 11.3. The holonomy of this connection is interpreted as the Hannay-Berry
phase of a slowly moving constrained system. Let us give a few more de;ailé' for the case of the
ball in the rotating hoop.

§1B The ball in the rotating hoop

In the following example, we follow some ideas of J. Anandan.

Consider Figure 1B-1 which shows a hoop (not necessarily circular) on which a bead
slides without friction. As the bead is sliding, the hoop is slowly rotated in its plane through an
angle O(t) and angular velocity () = é(t) k. Let s denote the arc length alon‘g the hoop,
measured from a reference point on the hoop and let q(s) be the vector from the'origin to the
‘corresponding point on the hoop; thus the shape of the hoop is determined by this function g(s) .
The unit tangent vector is ¢'(s) and the position of the reference point q(s(t)) relative to an
inertial frame in space is Regq)q(s(t)) , where Rg is the rotation in the plane of the hoop through
an angle 0. '
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.~
~
.
-

Figure 1B-1

The configuration space is diffeomorphic to the circle Q =S! with length L the length of the
hoop. The Lagrangian L(s, s, t) is simply the kinetic energy of the particle; i.e., since

S Roy 60) = Reg@ () 0 + Req[o(®) x a(se)] ,

we set ;
. 1 oo
L(s, s 1) = 3m[q(s) s+ o xq(s) I2. , )
The Euler-Lagrange cqhations
| 4L _a
dt as Js
become

d M ’ g /4 M 4 ' ’ ”
gols+q - (@xq] = mlsq”- (@x @ +sq" - (@xq" )+ (@xq) (@xq)]
since ||q’||>=1. Therefore

. ST @X Qi+ (OXQ = 37 (@ X Q) + (@ x Q) (0 xq)
t.e.,
s—(@xq)-(@xq)+q-(bdxq) = 0. @

The second and third terms in (2) are the centrifugal and Euler forces respectively. We
rewrite (2) as ' ,
s = 0w¥q-q - wgsina : , 3

where o is as in Figure 1-1 and q=|lq||. From (3), Taylor's formula with remainder gives

t

s() = sg+ §0t+‘[ t-1) {m(t’)2 q-g'(s(t')) — @(t)q(s(t)) sin a(s(t’))} dr . @

0
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Now ® and ® are assumed small with respect to the particle's velocity, so by the averaging

theorem (see, €.g. Hale [1969]), the s-dependent quantities in (4) can be replaced by their
averages around the hoop:

T L L
s(T) = sy+s,T + J. o (T-t) {q)(t’)zi JO q-q ds — o) il: J- o q(s) sin ds} a’'. (5

Aside The essence of the averaging can be seen as follows. Suppose g(t) is a rapidly varying
function and f(t) is slowly varying on an interval [a,b]. Over one period of g, say [o, B], we
have ' '

B B :
J. f(hgm)dt = I f(t)E dt . ©)
o [+ 4 R

1
B-a

B
where g = Jl g(tdt is the average of g. The error in (6) is
[0

B
'faf(t)(g(t) —-g)dt

which is less than (B — o) x (variation of f) x constant < constant |f’ B~ d)z . If this is added
up over [a, b] one still gets something small as the periodof g —0. ¢

The first integral in (5) over s vanishes and the second is 2A where A is the area
enclosed by the hoop. Now integrate by parts:
T 7 T o o
jo (T-t) a(t)dt' = —Tw(0) +j0 o)t = ~Te(0) + 2r, )

assuming the hoop makes one complete revolution intime T. Substituting (7) in (5) gives

. 2A 4nA :
s(T) = SO+SOT+—L—(DO - 8)

' The initial velocity of the ball relative to the hoop is s0 , while that relative to the inertial frame is

(see (1)), ‘ :
Vo = q(0)-1q'(0) sp+ 0y x g(0)] = §+ w, q(sg) sin a(sy). ®

Now average (8) and (9) over the initial conditions to get

(s(T) - 55— vDT) = - “TA ' : (10)
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4nA
L

hoop. Note that if ®,=0 (the situation assumed by Berry [1985]) then averaging over initial

which means that on average, the shift in position is by between the rotated and nonrotated

conditions is not necessary. This process of averaging over the initial conditions that we naturally
encounter in this example is related to the recent work of Golin and Marmi [1989] on experimental
procedures to measure the phase shift.

This extra length ‘% is sometimes called the Hannay-Berry phase. Expressed in

2
angular measure, it is 8,1;2A . In §11B we show, using the Cartan connection, how to realize this

answer as the holonomy of the associated Hannay-Berry connection.

§1C Coupled planar pendula

We return now to an example similar to Elroy's beanie, with which we began. Consider
two coupled pendula in the plane moving under the influence of a potential dependihg on the hinge
angle between them. Let 1, , 1, be the distances from the joint to their centers of mass and let 6,
and 0, be the angles formed by the straight lines through the joint and their centers of mass
relative to an inertial coordinate system fixed in space, as in Figure 1C-1. The Lagrangian of this
system is '

- A2
L= mlrfe1 +

1
2

Ry

m2r%9§ - V(8,-6,)

and is therefore of the form kinetic minus potential energy, where the kinetic energy is given by the
metric on R?
: 2 — o 2 462 2 462

ds® = m;ry d8f + m,r5 dO3

‘ y

Figure 1C-1
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To illustrate the ideaé, we look at the special case m; =r;=1 so that

L =3 (83 +63) - V(e, -8,
and _
ds? = do7+d63 = 7d(8, — 6,)% + 3 d(8, + 0,)’

The group S! acts on configuration space T2 = {(8,,0,)} by 8-(8,,0)=(0+6,,0+86,)
so L is invariant under this action. Letting ¢ = 6, + 62)/\]2_7. and y=(9, - 62)/\15 , we see that

0- ((p, Y) = (p+ 6, y) and hence that the induced momentum map for the lifted ziction J:T*T?
— R is given by J(g, v, Py pw) =Py - Therefore the reduced space J-1(u)/S? is diffeomorphic

to T*S! = {(y, p)} with the canonical symplectic structure. The Hamiltonian on T*T2 is
1
H(Q, ¥, Py Py) = 5 (5 + PI)+ V(2 W)
and the reduced Hamiltonian is
1.2 '
H,(y.py) = 5p¢ + VO2Y) .
The equations of motion for H are
b = pys By =0 o

Equations (2) are Hamilton's equations for Hu on the reduced space.

Assume that we have solved (2) with initial conditions (v, p%) “and are given the initial
conditions (@g, ¥, Pg,
(o), w(v), p(p(t), pw(t)) of (1), (2) we proceed in two steps: ’
Step 1 Consider the curve d(t) = (¢ W(1), 1, pw(t)).

Step 2 Solve the equation 9°(t) =, 6(0) =0 yielding 6(t) = ut.

=L, pwo) of a solution for the system (1), (2). To find the solution for

»Then the solution to (1), (2) is given by c(t) = 0-d(t) = (@, + Lit, \V(t), U, pw(t)).

This method is quite general and applies to all Hamiltonian systems. We will discuss it in
§2 and §3. To get a feeling of what is happening, we make some remarks. The principal
Sl-bundle J-'(u) = ((9, v, W, pw)} — T*S!, (o, v, 1, pw) - (v, pw) “has a connection whose

horizontal space at any point is generated by the vector fields {—a— ——@—} . Then the curve d(t) in
. .

oy ’ dp
Step 1 is simply the horizontal lift of the integral curve of the reduced system (y(t), pw(t))
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through (9, Vo, 1, Py,) - Note that this connection on J-l(u) - T*S! is the pull-back of the
connection on. T2 — S!, (¢, W) > W, whose horizontal space at any point is generated by Sa; ,

by the map which is the restriction of the cotangent bundle projection T*T? — T2 to J-!(n).

Relative to this connection and identifying T*T? with TT? using the kinetic energy metric ds?>=_
. : . ) 2 2
do? + dy?, p is the generator of the vertical part of this curve; note “ ;—(P ” = ” 5%; “ = 1.

Thus the differential equation in Step 2 is on the group S! and has right hand side given by the
generator of the vertical part of the horizontally lifted curve in Step 1. Roilghly, this describes
the method of reconstriction of dynamics. We shall explain this in §2 and address the
specific case of Lagrangian systems in §3, circumventing the use of the connection in Step 1.

§1D C'o'upled bodies, linkages and optimal control

The above example can be generalized to the case of coupled rigid bodies. Already the case
of a single rigid body in space is an interesting example that will be discussed in §1G below. For
several coupled rigid bodies, the dynamics is quite complex. For instance for bodies in the plane,
the dynamics is known to be chaotic, despite the presence of stable relative equilibria. See Oh,
Sreenath, Krishnaprasad, and Marsden [1989]. Berry phase phenomena for this type of example
are quite interesting and are related to some of the work of Wilczek and Shapere on locomotion in
micro-organisms. (See, for example, Shapere and Wilczek [1987]). In this problem, control of the
system's internal variables can lead to phase changes in the external variables. These choices of
variables are related to the variables in the reduced and the unreduced phase spaces, as we shall
‘'see. In this setting one can formulate interestinig questions of optimal control such as "when a cat
falls and turns itself over in mid flight (all the time with zero angular momentum!) does it do so
with optimal efficiency in terms of say energy expended?"
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Figure 1D-1

There are interesting answers to these questions that are related to the dynamics of Yang-
Mills particles moving in the associated gauge field of the problem. See Montgomery [1989] and
references therein. This bundle approach to mechanics will be a theme developed in this work as
well. » B

We give two simple examples of how this works. Additional details will be given for this
type of example in §5. First, consider three coupled bars (or coupled planar rigid bodies) linked
~ together with pivot (or pin) joints, so the bars are free to rotate relative to each other. Assume the
bars are moving freely on the plane with no external forces and that the angular momentum is zero.
However, assume that the joint angles can be controlled with, say, motors in the joints. Figure
1D-1 shows how the joints can be manipulated, each one going through an angle of 2n and yet
the overall assemblage rotates through and angle n. A formula for the reconstruction phase
applicable to examples of this type is given in Krishnaprasad [1989].

A second example is the dynamics of linkages; see §5E for more details. This type of
example is consideres in Krishnaprasad [1990], Yang and Krishnaprasad [1989], and
Krishnaprasad and Yang [1990], including comments on the relation with the three manifold
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theory of Thurston. Here one considers a linkage of rods, say four rods linked by pivot joints as in
Figure 1D-2. The system is free to rotate without external forces or torques, but there are
assumed to be torques at the joints. When one turns the small "crank" the whole assemblage turns
even though the angular momentum, as in the previous example, stays zero.

overall phase rotation
of the assemblage

Figure 1D-2

§1E Quantum mechanics

The original motivation for geometic phases came from quantum mechanics. Here the
important contributions historically were by Kato in 1950 (for the quantum adiabatic theorem),
Longuet-Higgins in 1958 for anomalous spectra in rotating molecules, Berry [1984] who first saw
the geometry of the phenomena for a variety of systems, and Simon [1983] who explicitly realized
the phases as the holonomy of the Chern-Bott connection. For more information on quantum
mechanical phases, and for the references quoted, see the collection of ‘papers in Shapere and
Wilczek [1988]. -

For the purposes of the present work, the paper of Aharonov and Anandan [1987] plays an
important role. They got rid of the adiabaticity and showed that the phase for a closed loop in
projectivized complex Hilbert space is the exponential of the symplectic area of a two-dimensional
manifold whose boundary is the given loop. The symplectic form in question is naturally induced
on the projective space from the canonical symplectic form of complex Hilbert space (minus the
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‘ imaginary part of the inner product) via reduction, as in Abraham and Marsden [1978]. We shall
show in §4 that this formula is the holonomy of the closed loop relative to a principal S!-
connection on complex Hilbert space and is a particular case of the holonomy formula in principal
bundles with abelian structure group.

Littlejohn [1988] has shown that the Bohr-Sommerfeld and Maslov phases of semi-
classical mechanics can be viewed as incarnations of Berry's phase. To do this he notes that
Gaussian wave-packets define an embedding of classical phase space into Hilbert spélce, then uses
the Aharonov-Anandan point of view on phases, together with the variational fo_rmulatibn of
quantum mechanics. The quantum-classical relation between the phases is also considered in
Hannay [1‘985]', Anandan [1988], and Weinstein [1989a,b].

§1F Integrable systems

Consider an integrable system with action-angle variables (I}, I,, ..., 1, 0,,0,,...,0.)
and with a Hamiltonian H(I;, L, ... [, 0,,0,, ... 0_; m) that depends ona parameter m € M.
Let ¢ be aloop based at a point m; in M. We want to compare the angular variables in the torus
over m,, once the system is slowly changed as the parameters undergo the circuit c. Since the
dynamics in the fiber varies as we move along c, even if the actions vary by a negligible amount,
there will be a shift in the angle variables due to the frequencies o' = JH/OL of the integrable
system; correspondingly, one defines

1
dynamic phase =.f (1, ct)) dt .
0

Here we assume that the loop is contained in a neighborhood whose standard action coordinates
are defined. In completing the circuit ¢, we return to the same torus, so a compé;rison between the
angles makes sense. The actual shift in the angular variables during the circuit is the dynamic
phase plus a correction term called the geometric phase. One of the key results is that this
geometric phase is the holonomy of an appropriately constructed connection called the Hannay-
Berry connection on the torus bundle over M which is constructed from the action-angle
variables. The corresponding angular shift, computed by Hannay [1985], is called Hannay's
angles, so the actual phase shift is given by '

A® = dynamic phases + Hannay's angles .

The geometric construction of the Hannay-Berry connection for classical systems is given in terms
of momentum maps and averaging in Golin, Knauf, and Marmi [1989] and Montgomery [1988].



16 ' Marsden, Montgomery, and Ratiu

In this paper we will put this geometry into a more general context and will synthesise it with our
work on connections associated with moving systems.

§1G The Rigid Body

The motion of a rigid body is a geodesic with respect to a left-invariant Riemannian metric
(the inertia tensor)on SO(3). The corresponding phase space is P = T*SO (3) and the momentum
map J:P — R3 for the left 80(3) action is right translation to the identity. We identify so(3)*
with 0(3) via the Killing form and identify R? with so(3) via the map v v where v(w) =
VX W, X being the standard cross product. Points in so (3)* are regarded as the left reduction of ,
T*S0(3) by SO(3) and are the angular momenta as seen from a body-fixed frame. The reduced
spaces J‘l(u)/Gll are identified with spheres in R3 of Euclidean radius [p]|, with their
symplectic fdnn ®,=-ds /llnll where dS is the standard area form on a sphere of radius ||
and where G con51sts of rotations about the p-axis. The trajectories of the reduced dynamics
are obtained by mterscctmg a family of homothetic ellipsoids (the energy ellipsoids) with the
angular momentum spheres. In particular, all but at most four of the reduced trajectories are
periodic. These four exceptional trajectories are the well known homockinic trajectories.

Suppose a reduced trajectory II(t) is given on Pu’ with period T. After time T, by how
much has the rigid body rotated in space? The spatial angular momentum is 7 =y = gI1, which is
the conserved value of J. Here ge SO(3) is the attitude of the rigid body and II is the body
angular momentum. If II(0) =II(T) then p = g(O)I1(0) = g(MIKT) andso g(T)lu = 2Oy
ie., g(MgO)! isa rotation about the axis . We want to compute the angle of this rotation.

To answer this question, let ¢(t) be the corresponding trajectory in J-1(u) c P. Identify
T*S0(3) with SO(3) xR3 by left trivialization, so c(t) gets identified with (g, TI(t)). Since
the reduced trajectory TI(t). closes after time T, we recover the fact that ¢(T) = gc(0) for some g
€ G Here g=gT )g(O)‘ in the preceding notation. Thus, we can write

g = exp[(A0)(] ¢}

where £ =p/)jn]l identifies g, with R by a{ a, for ae R. Let D be one of the two

spherical caps on $? enclosed by the reduced trajectory, A be the corresﬁonding~orientedAsolidA
angle, i.e.,, | A= (area D)/[|u|]?, and let Hu be the energy of the reduced trajectory. All norms

are taken relative to the Euclidean metric of R3. We shall prove below that modulo 27, we have

= —A+ —H— @)
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(The special case of this formula for a symmetric free rigid body was given by Hannay [1985] and
Anandan [1988], formula (20)). ‘

true (reconstructed)
trajectory

"dynamic phase { &0

holonomy ' In J-' ()
(geometric phase)

horizontal lift of reduced
trajectory

o T
Figure 1G-1 For G, = S!, (log holonomy) = me o, (log dynamic phase) = m J'O E(D dt, where,

" T = period of reduced trajectory and o= reduced symplectic form.
To prove (2), we choose the connection one-form on J! (1) to be (see Propositibn 2.2)
A=—9 o 3)

where Gu is the pull back to J-1(u) of the canonical one-form 6 on T*80(3). The curvature of
A as a two-form on the base P, the sphere of radius [[uf] in R3, is given by
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11

-—®, = — dS C))
fell ™ liel?

The first terms in (2) represent the geometric phase, i.e., the holonomy of the reduced trojectory
with respect to this connection. By Corollary 4.2, the logarithm of the holonomy (modulo 27) is

given as minus the integral over D of the curvature, i.e., it equals

1
— |l w6 = (arecaD) = —A (mod 2rx) &)
TR u2

The second terms in (2) repfesent the dynamic phase. By the algorithm of Proposition 2.1
it is calculated in the following way. First one horizontally lifts the reduced closed trojectory II(t) |
to J-1(u) relative to the connection (3). This horizontal lift is easily seen to be (identity, II(t)) in

the left trivalization of T*S0(3) as 80(3) x R3. Second, one computes

E® = (A-X(TIW) . ©6)

Since in coordinates

=ZpidqiandXH=Zpi-a—.+itenns
i v T o dp

for pi= Zgijpj, gl being the inverse of the Riemannian metric g; on 30(3), we get
]
©®,- XpI®) = Zpipi = 2H(identity, TI()) = 2H,. )
1 .

where Hp is the value of the energy on S2 along the integral curve II(t). Consequently,

- _E ®)
&) = il g

Third, since &(t) is independent of t, the solution of the equation

2H, 2H 1
. , _ 2Ht
g=gE= ™ " gl is  g® CXP(" " CJ

so that the dynamic phase equals

2H
A, = —ET (mod 27) ®
T el

Formulas (5) and (9) prove (2). Note that (2) is independent of which spherical cap one chooses
amongst the two bounded by II(t). Indeed, the solid angles on the unit sphere defined by the two
caps add to 4w, which does not change formula (2).



§2 Reconstruction of Dynamics for Hamiltonian Systems

This section presents a reconstruction method for the dynamics of a given Hamiltonian
system from that of the reduced system. The method and formulas found here are applied in the
next section to Lagrangian systems. '

§2A General Considerations

We begin with the abstract reconstruction method. Let P be a Poisson manifold on which
a Lie group acts in a Hamiltonian manner and has a momentum map J : P — @*; here g is the

Lie algebraof G and g* is its dual. For a weakly regular value g€ g* of J. assuming that
the reduced space P = J“l(u)/G is a smooth manifold with the canonical projection a
surjective submersion, P a Poisson manifold (see Marsdcn and Ratiu [1986] for the general
theory of Poisson reductlon) Given f, h: P —R, lift themto J~}(u) by" T, , then extend

them to G-invariant functions on J“I(Ou), where Ou is the coadjoint orbit of QL in g*, and

then extend these functions arbitrarily to f, h : P — R. The Poisson bracket of f and h in the
Poisson structure of P, is defined by {f, h} om, = {T) 0,, HIOH}. If P is symplectic, then P,

is also symplectic (see Marsden and Weinstein [1974] and Abraham and Marsden [1978], Chapter
4). If H:P > R is a G-invariant Hamiltonian it induces a Hamiltonian H}L : Pu — R and the

flow of the Hamiltonian vector field Xy on P isthe G -quotient of the flow of Xy; on J‘l(u).
" S
Assume that an. integral curve ¢ (t) of Xy on P is known. For p, e

J“l(u), we search for the corresponding integral curve c(t) = Ft(Po) of Xy such that (c(t)) =
c (), where m,: Jlw) - P, is the projection. Pick a smooth curve d(t) in J-!() such that
d(0) = py and m (A1) = c (). Write c(t) = ,,(d()) for some curve g(t) in G, tobe

“determined. We have
X)) = O = Ty®, (@) + Ty @, ( oLy (& (t)))p(da)) )

Since (D:XH = X(D*H =Xy, (1) gives
g

d'(r)+(Tg(l,Lg(l)_l(g')(t))P(d(t)) =TO | Xy(@yydD) = @Xp(d(0) = Xy(@). @

This is an equation for g(t) written in terms of d(t) only. We solve it in two steps:

19
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Step 1 Find £(t) € g, such that

EMp(d®) = Xy(d(®) - d'(v); &)

Step 2 With &(f) determined, solve the non-autonomous ordinary differential equation on Gu:

g'() = TLy(§(), with g(0)=e. | @

Step 1 is typically of an algebraic nature; in coordinates, for matrix Lie groups, (3) is just a matrix
equation. We show later how &(t) can be explicitly computed if a connection is given on J-1(u)
- Pu‘ Step 2 gives an answer "in quadratures” if G is abelian as we shall see in formula (5) .
below. In general (4) cannot be solved explicitly and represénts the main technical difficulty in the

reconstruction method. With g(t) determined, the desired integral curve c(t) is given by c(t) =
(Dg(t)(d(t)). The same construction works on P/G, even if the G-action does not admit a

momentum map. .

Step 2 can be carried out explicitly when G is abelian. Here the connected component of
the identity of G is a cylinder RP x T¥P and the exponential map exp(&,, ..., £,) = €, .., &
§p 41 (mod 2m), ..., &k(mod 2m)) is onto, so we can write g(t) = exp n(t), n(0) = 0. Therefore
0 =Tyl

solution of (4) in Step 2 when G is abelian is

(gW)=n'(t) since N’ and M commute, i.e., N(t) = L: E(s)ds. Thus the

t
g0 =exp UO £ ] ®

This reconstruction method depends on the choice of d(t). With additional structure, d(t)
can be chosen in a natural geometric way. What is needed is a way of lifting curves on the base of
a principal bundle to curves in the total space. We do this using connections. One can object at this
point that at the moment, reconstruction involves integrating one ordinary differential equation,
whereas introdixcing'a connection will involve integration of mwo ordinary differential equations,
one for the horizontal lift and one for constructing the solution of (4) from it. However, for the
determination of phases, there are some situations in which the phase can be computed without
actually solving either equation, so one actually solves no differential equations; a specific case is
the rigid body, discussed in §1G. In other circumstances, one can compute the horizontal lift
explicitly (see Marsden, Ratiu, and Raugel [1990]). However, in general, without such added
information, it is true that the number of equations in principle is two rather than one.

Suppose that Ty J i) — Pu is a principal Gu-bundle with a connection A. This
means that A isa g,,-valued one-form on J-(w) c P satisfying
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i Ap-ﬁp(p)=§ for £ e g,

il LjA=Ad oA for ge G,
Let d(t) be the horizontal lift of cy through p; i.e., Ad’(t) =0, T, 0 d= Cs and d(0) =
Po-

2.1 Theorem Suppose T, Jl(w - P, is a principal Gu-bundle with connection A. Let
Cy be an integral curve of the reduced dynamical system on Pu‘ Then the corresponding curve ¢
(through py € n‘ul (cu(O))) of the system on P is determined as follows:
i Horizontally lift ¢, to form the curve d in JYW) through p,.
i Set &(t) = A - X (d(1)), so that &(t) is a curve in g,
ili  Solve the equation g(t) = g(t)- E(t).
Then c(t) = g(t)-d(t) is the integral curve of the system on P with initial condition p; .

Suppose N is a closed curve; thus, both ¢ and d reintersect the same fiber. Write
d(l)=g-d0) and c(1)=h-c(0)

for g,he Gu‘ Note that
h=gl)g. ’ ©)

The Lie group element g (or the Lie algebra element log g) is called the geometric phase. Itis
the holonomy of the path Cy with respect to the connection A and has the important property of

being parametrization independent. The Lie group element g(1) (or log g(1)) is called the
dynamic phase.
For compact or semi-simple G, Gp is generically abelian. The computation of g(1) and

g are then relatively easy, as was indicated above.

§2B Cotangent Bundle with Gu one Dimensional

We now discuss the case in which P =T*Q, and G actson Q and therefore on P by

cotangcﬁt lift. In this case the momentum map is given by the formula
JO)E = agbo@ = Ep,o(0g) 1 6(),

where £ g, o€ T*Q, 0=)>p dqi is the canonical one-form and _| is the interior product.
w q q b
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Assume G, is the circle group or the line. Pick a generator { e g, {=0. For
instance, one can choose the shortest { such that exp(2nl) = 1. Identify g, with the real line

via @ > @f. Then a connection one-form is a standard one-form on J-1(1).

2.2 Proposition Suppose G, = S! or R. Identify g, with R via a choice of generator
L Let 9pl denote the pull-back of the canonical one-form to Y '(W). Then

T
u, &)

A=

0,®¢

is a connection one-form on J\(u) — Plr Its curvature as a two-form on the base Pu is

1

Q=0 S

where o, is the reduced symplectic fdrm on 'PW

Proof Since G acts by cotangent lift, it preserves 0, and so 6, is preserved by G, and
therefore A is G -invariant. Also, A-Lp = [{p 10/ (1, OIC = [J5Kn, ©IC = . This

verifies that A is a connection. The calculation of its curvature is straightforward. (See §4 and
note that @ =—d0 in our conventions.) m

Remarks 1 The result of Proposition 2.2 holds for any exact symplectic manifold. We shall
use this in §5A.
2 In the next section we shall show how to construct a connection on J-1(w) — Pu

in general. For the case Q=G it includes the connection in 2.2. For Q =80(3) this recovers
the connection for the rigid body. We will return to this point shortly.

. §2C Cotangent Bundles - General Case

If Gu is not abelian, the formula for A given above does not saﬁsfy the second axiom of
a connection. However, if the bundle Q —» Q/G“ has a connection, we will show below how this
induces a connection on J-1(u) — (T*Q)u‘ To do this, we recall the cotangent bundle reduction

theorem of Satzer, Marsden and Kummer (see Abraham and Marsden [1978], §4.3 and Kummer
[1981]).

Assume the Lie group G acts freely on the left on Q; lift this to a symplectic action on
T*Q. The momentum map of this lift is J(o)-§ = 0 -Eo(q), where o, € T’;Q, Ee g, and
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&,Q(q) = %ls—o (exp €€-q) is the infinitesimal generator of the G-action on Q defined by E.

Assume that | is a weakly regular value and that J‘l(u)/G‘l = (T"‘Q)u is a smooth manifold and
that the canonical projectiéri T, JFlw —» (T*Q)p. is a surjective submersion. Let §, = ne
g | (@dn)* =0} be the isotropy Lie algebra at ; i.e., the Lie algebra of Gu’ and denote by p’
=ulgyeg :, the restriction of p to g,. Assume that p,, : Q—>QiG, isa principal bundle
and ye QUQ; gu) is a left connection one-formon Q, i.e., y(nQ) =1 forall ne g, -and ¥
is Gu-equivan'ant: Y. q(g -v) =Adg(y(v)) forall ge Gu, qe Q, ve TqQ.

2;3 Theorem Let ch_rv(y) be the curvature of 'y and let B be the pull-back by the cotangent
bundle projection T* (Q/G“) - Q/Gu of the two form on Q/Gu induced by the \W'-component
u’-curv(y) e QXQ) of curv(y); thus y'-curv(y) is a closed real-valued two-form on Q and B
is a closed two-form on T* (Q/Gu). Endow T*(Q/Gp) with the symplectic form o —B, where
 is the canonical ‘tw0~fovrm of the cotangent bundle. Then (T *Q)u is symplectically embedded in
(T* (Q/Gu)’ ®— B) and its image is a vector subbundle with base Q/Gu. This embedding is onto
ifandonly if g=4,.

Denote by J“ : T*Q - g: the induced momentum map, i.e., Ju(aq) = J(aq)l g, - From

the proof of the theorem, which is ultimately based on a momentum shift in the fiber, it follows
that this diagram commutes:

Fig —J ) ——=J10) ~ T'Q ——=Q

Ty . ' | P
* Lk

(T*Q), T*Q/G,) QG,
[o] F [org = b+ )] F— — [q]

where t (o) = o, - H'Y,() is fiber translation by the |'-component of the connection form and
where [o, — u’-yq(')] means the element of T* QG determined by o — u’-yq(-). Call the

composition of the two maps on the bottom of this diagram o : [aé] € (T"‘Q)u Plqle QG, - A
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natural way of inducing a connection on J-l(u) — (T*Q)u is to be consistent with this theorem,

L.e., by pull-back in the diagram above.

2.4 Corollary The connection one-form ve QNQ; g,) induces a connection one-form y*

e QIJ 'y 8,) by pull-back: T = (o t“)*‘y, ie.,

W(“q),' Ua, =@ To ©(Uy), for o e T;Q, Uy e Taq(T*Q).'

Similarly curv(¥*) = (mo tu)* curv(Y) and in particular the |\'-component of the curvature of this

connection equals B, the pull-back of W'-curv(y).

The proof is a direct verification.

2.5 Corollary Assume that Py - Q- Q/Gu is a principal G, -bundle with a connection ye
QUQ; gu). If bH ;'s a G-invariant Hamiltonian on T*Q inducing the Hamil;onian Hu on
(T"‘Q)}l and cg(t) is an integral curve of XHu’ denote by d(t) a horizontal lift of gD in
J-Y(W) relative to the natural connection of Corollary 2.4 and let q(t) = n(d(t)) be the base
integral curve of c(t). Then &(t) of step ii in Theorem 2.1 is given by

_ §®) = v(q()-FH(d(),
where FH : T*Q —>‘TQ is the fiber derivative of H, i.e., ]FH(ocq)‘Bq = %‘[:0 H(o, + th).

Proof yHX, = YTnXy = yvFH. =

If Q carries a G-invariant Riemannian metric {(, )) define an associated connection Yimech
e QUQ; gu) by declaring the horizontal space at any q € Q to be the orthogonal complement of

the vertical space. Assume also that the Hamiltonian H is of the form kinetic energy with respect
to the metric ((, )) plusa G-invariant potential energy.

2.6 Corollary Under these hypotheses, step iiin Proposition 2.1 is equivalent to
i Ebne q, is given by S
&) = Vmeen(AO) A, where d(1) e TF,\Q.

Proof Apply Corollary 2.4 and use the fact that IFH(OLq) = ag. (In coordinates, BBTH = g"¥p, )
[
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In this case, Y,,.q4, is closely related to the mechanical connection that appears in the
work of Smale [1970], Guichardet [1984], Wilczek and Shapere [1988], Montgomery
[1988,90a,b], Lewis, Marsden, Simo and Posbergh [1989] and Simo, Lewis and Marsden
[1989]. Itis given explicitly as follows: let L(®: g, — g: be defined by ]IH(C)(T]) = (CQ(q),
nQ(q)) be the W-locked inertia tensor. This name is used because for coupled rigid (or rigid-
flexible) structures, I,(q) 1is the inertia tensor of the system with the joints locked in the

configuration q, thereby forming a rigid body. Then y,__.: TQ — g, is

Ymech(vq) = ]Iu(Q)_lJ(qu)

where qu is the one-form corresponding to the vector A via the metric. Shapere and Wilzcek

call this the "master formula".

Besides choosing the connection Ymecn 10 be defined by the metric orthogonal to the G,-

orbits, one can use other complements. Here is one such:

2.7 Corollary If Q =G, dim G, =1, and { is a generator of g, the onesform Yy €
QUG) given by ' :

Ye® = —TIR ()

(u, g) ®

induces via the procedure in Corollery 2.4 the connection A e Ql(Jil(pL)), given-in Proposition

2.2, where J(a) = T:Rg(ag). Here, {u, {) is the natural pairing berween | and .

Proof The axioms of a left principal G, -connection, namely Yr(€s) =€ and Yrhe) (T Ly (v,))
=yR(g)(vg) forall he Gg and v, € TgG are straightforward-verifications; recall that CG(g) =
TeRg(C). Moreover, for o, € Jii(n) and Uage Tov.g I, we haye‘

Te(@ Uy, = %@ Ty nU,)
R S : = Al
%0 TeR W T, 1Ug) = AUy,

since o, € J7'(W) is necessarily equal to T:Rg_l(u ). =



§3 Reconstruction of Dynamics for Lagrangian Systems

In this section we reconstruct the dynamics of a given Lagrangian system with symmetry
from the reduced dynamics. We begin by recalling the basic facts about Lagrangian systems.

§3A Lagrangian Systems

If Q is'va manifold, L : TQ — R is a smooth function, and t: TQ — Q the piojection, let
FL:TQ — T*Q be the fiber derivative of L given by

FL(v) - w = 4 L{v + gw),
de Te=0

for v, w e TqQ.‘ If Q denotes the canonical symplectic structure on T*Q, let Q = (FLY*Q, a
closed two formon TQ. If Q; is a (weak) symplectic form, we call L regular. In local charts

this is equivalent to the second derivative in the fiber variable to be a (weakly) non-degenerate
bilinear form. If FL is a diffeomorphism, L is called hyperregular and FL the Legendre
transformation. Returning to a general Lagrangian L, let A(v) =FL(v)-v be the action of
L and E= A —L the energy of L. A vector ficld Z e X(TQ) is called a Lagrangian
system, if i,Q, =dE, where i, denotes the interior product (or contraction) with Z. If L is
regular, then Z is a second order equation, i.e., Tt o Z =identity on TQ, where t: TQ—>Q is

the tangent bundle projection. . In general, if we assume that Z is second order, then locally
Lagrange's equations hold:

SD,LE®. 40) = DL, 41)

where q(t) =dq(t)/dt and D, and D, denote the partial Fréchet derivatives. Moreover, E is

conserved by the flow of Z. In this section we will assume that Z. is a second order equation.
If L is hyperregular, then Z =X is the Hamiltonian vector field relative to £ defined

by E. Then H=Eo (FL) : T*Q — R defines a Hamiltonian system Xyu oﬁ T*Q whose flow
is conjugate by FL to thatof X on TQ. The fiber derivative FH : T*Q - TQ of H (defined
in Corollary 2.5) is the inverse of FL. Conversely, if H: T*Q — R is hyperregular, i.e., FH:
T*Q — TQ is diffeomorphism, let ©(X,;) be the action of H, where © is the canonical one-
formon T*Q. Our conventionis Q=-dO. Let A = BOXy)e (FH),E=Ho(FH)!, and L =

26
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A—E. Then L is the Lagrangian system inducing H and the above prescription defines a
bijective correspondence between hyperregular Lagrangians on TQ and hyperregular
Hamiltonians on T*Q. Moreover, the base integral curves (i.e., the projections of the integrals
curves on TQ and T*Q onto Q) of X and Xy coincide. See, e.g., Abraham and Marsden
[1978] for the proofs.

Leta Lie group G acton Q and that L is invariant under the lifted G-actionto TQ. The
Legendre transformation FL is equivariant relative to this action and the cotangent lifted action on
T*Q, and so A, E, Q, and Z are G-invariant. Assuming that (TQ)/G is a smooth manifold
with the projection p : TQ — (TQ)/G a surjective submersion, E induces a smooth function Eg
and Z a smooth vector field Zg on (TQ)/G; the flow of Z; conserves Eg. The question we
shall address in this section is the following: given an integral curve cgt) of Zg, cs(0) = [vq]
and v € TqQ, construct the integral curve c(t) of Z satisfying c(0)=vq.

§3B Reconstruction for Q =G

We begin with the simplest case: Q =G with a left-invariant Lagrangian L : TG - R,
L(Tth(vg)) =L(v,), where h,ge G, ve€ T,G, L : G — G denotes left-translation by h,
L, (k) = hk, and Tl : TgG - Tth is its tangent map.

3.1 Proposition Ler L: TG — R be a left-invariant Lagrangian such that its Lagrangian
vector field Z. € X(TG) is a second order equation. Let Z € X(8) bethe induced vector field
on (TG)/G = g and let £(t) be an integral curve of Zq If gty € G is the solution of the non-
autonomous ordinary differential equation g(t) = TeLg(t)ﬁ(t), g0 =e, and ge G then v(i) =

Teng(t)i(t) is the integral curve of Z satisfying v(0) =T.L, E0) and v(t) projects to E(1),
ie., TL gyt VD) = E().

Proof Let v(t) be the integral curve of Z satisfying v(0) = TeLgi(O)' for a given element E(0)
€ g. Since &(t) is the integral curve of Zs whose flow is conjugated to the flow of Z by left-
translation, we have TLT(V(t))—l v(t) =&(). If h(t) = 1(v(t)), since Z is a second order equation,
we have : :
VO =h® =Ty, E® and  h©)=1(v(0) = ¢

so that letting  g(t) = g 'h(t) we get g(0) =¢ and
80 = TLy1 h(9) = TLATLy ) 1) = TL ) E(.

This determines g(t) uniquely from £(t) and so
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v = TLyy E() =T, E(r). m

In general, Zg is not Hamiltonian. However, if L is hyperregular, then the Legendre
transformation FL will induce a Poisson structure on g. In fact, in this case, we can reconstruct

the dynamics of the induced Hamiltonian system.

3.2 Corollaryj Let L:TG — R be a left-invariant hyperregular Lagrangian, H : T*G - R
the induced Hamiltonian, and h-: gf — R the induced Hamiltonian on the dual g¢* of @

endowed with the Lie-Poisson structure; h=H|g*. Let W(t) be an integral curve of X,y =

. .
ad @—D H, w0) = TeL (), o e G fived. If §t) = (FL)Y'W(t) and g(t) is the solution of
g0) = TLy, &), £(0) =e, then () = T*L g 1 W) is the integral curve of Xy on T*G,

g
a0) = o, and aft) projects to u(t),'i.e., T:Ln(a(t)) =W(®); 7: TG > G denotes the cotangent
bundle projection.

The proof is a consequence of the previous result and the fact that FL. commutes with left
translation: FL o TL, = T*Lg—l o FL.

83C General Q

In §3B we studied reconstruction for the case of Lie-Poisson reduction for a given
invariant Lagrangian. In the general case, instead we take a symplectic reduction viewpoint. Given
is L: TQ— R, G-invariant, Z € X(TQ) its Lagrangian vector field which we assume to be &

second order equation. The lift of the G-actionto TQ induces an equivariant momentum map J :
TQ — g* given by
- J(vg)-& = FL(v )Eq(Q) )

for Vg€ TqQ, Ee g. Let pe g* bea weakly regular value of J énd assume that p, :,Q -
Q/Gu’ TQ - (TQ)/Gu are principal Gu-bundles, where Gu is the coadjoint isotropy group at
u. By conservation of J, Gu acts on J-1(1) so we can form the r;duced space (TQ)H =
J‘l-(u)/Gu. Given is vy € J1() and an integral curve cu(t) of the induced vector field Zue
X((TQ)H),- cu(O) = [vq]; we want to explicitly find the integral curve c(t) satistying c(0) = v,

For this purpose we formulate the tangent bundle version of Theorem 2.3 of the previous section.
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3.3 Proposition Ler w'=p|g, and J*: TQ - g be given by J*(v))n = FL() M@
forall ne g, Assume that there is a vector field Y’l € X(Q) suchthat Yu(Q) c (MW’ and
Y, is G-equivariant: Y (gq) =g Y,(@. T. hen there is an embedding ¢, : (T Q),L = J'I(I.L)/GlL
- T(Q/G,)) whose range is a vector subbundle with base Q/G,,. This embedding is onto if and
onlyif a= g, If L:TQ - R is a G-invariant Lagrangian whose Lagrangian vector field Z
X(TQ) is a second order equation, let c(t) denote an integral curve of Z andlet q(t) = t(c(t)) be
the corresponding base integral curve, where 1 : TQ — Q is the tangent bundle projection. Let
qu(t) = pu(q(t)) be the corresponding curve in Q/Gp and Y‘u € X((Q/Gp) the vector field induced
by_ Yu' Then the integral curve cu(t) of Zu covered by c(t) is (pal(qﬁ(f) - 7u(qp(t))). The
curve qu(t) is the image of cu(t) by Yu Jollowed by the projection T(Q/Gu) - Q/Gu.

Proof The first part of the proof is a restatement of the standard proof of Theorém 2.3. Indeed,.
Y, induces, by equivariance, the vector field ?u on Q/G,: ?uo P =Tpyo Y, ‘Define the
projection Tyt (TQ))L -3 Q/Gp. by Tp([vq]) =[ql, sothat pyotT=1,0m, where, as usual, 7,
J ) — (TQ), is the canonical projection. Let t: N1 o5 JW10) be givenby t,(v) =v -
Yu(q) and let 9,: (TQ)M - T(Q/Gu) be the induced map, Puom, = Tp}L oty defined on the set
J1(w). Then 9, is an embedding and it is easy to see thatitisonto iff ¢ =g, by comparing
@ 1(0) with J(0).

For the second part, let cu(t) = nu(c(t)) be the integral curve of Zu covered by c(t). Then
q,(® = p,@®) = (p, o V(D) = (T, o T I(c(t) = T,(c,(1)). Let us show that g (1) - ?,u(qu(t)) is
in the range of 9, We have

4.0-Y,@,® =Tp,@®)-q0- Y.,

=T, (@'®) - Tp,(Y,a(®) = Tp (G ® Y, @®)-

Since Z is a second order equation, q'(t) = c(t). By conservation of J, c(t) € Jlqu) forall t,
so q'(t)~ Y,(q(0) =1,(q'() and thus '

440~ ¥,(,0) = (Tp, 0 1 )@'D) = (@,  T,)Q'D) = (@, o TCW) = B L€, (V).

Therefore, the integral curve c,(t) covered by c(t) equals c’;(t)=<pﬁ1(q;l(t)—7u(qu(t))) and the

proposition is proved. m
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In general, Zu is not a second order equation. However, its integral curves are still
uniquely determined by the corresponding base integral curves i.e., by their projections on Q/Gu'

We next turn to the question of reconstruction of dynamics. We are given a base integral curve
qu(t) of Zu determined by the initial conditions qu(O) and %(O) and an equivariant vector field

Y with values in (M1 (), implementing the embedding of (TQ) into T(Q/G ). We want to

reconstruct the mtegral curve c(t)=q’(t) of Z covering ¢ (t) o 1(qp(t) Y (qu(t))) For this
purpose, let Ye QYQ; g ) be a connection for the principal G -bundle Py : Q- Q/G
Horizontally lift q“(t) to acurve qu(t) in Q with q,(0) =q(0):

Pu(qh(t)) = q,(® and ¥(gy(t)-q(® = 0. )

Define the induced connection ¥ e QI(J-1(w); g,) by

?“(Vvq) = Y(Q)'TT(VVq) &)

for v € TqQ :an(‘i Vvq € Tvq (TQ). (Note that if L is hyperregular, i.e., FL: TQ - T*Q isa
diffeomorphism, then (FL)* ¥* = ¥, for ¥* the connection given in Corollary 2.4). In Step i
of the reconstruction procedure we horizontally lift cu(t) toacurve d(t) in J-1(u) with d(0) =
c(0): nu(d(t)) = cu(t) and Y(d() - d'(t) = 0. To determine d(t), we begin by showing that
T(d(1) = g, (1). Indeed, T(d(t)) covers qu(t): pu('t(d(t))) = (Tu o nu)(d(t)) = “u(cu(t)) = qu(t).
Moreover, since (T o d)’(t) = Tt(q(t)), the horizontality condition on d(t) becomes Yt(d(t))-(To
d)’(t) =0, i.e, 1(d(1)) is horizontal. Finally, since ©(d(0)) = 1(c(0)) = g(0) = qn(0), the equality
d®) = q,(® fblloWs by uniqueness of horizontal lift.

Next, we show that g (t) is the y-horizontal part of d(t). Indeed, since nu(d(t)) = cu(t) =
(p;tl(qﬁ(t) - 'Y"u(qu(t))) by Proposition 3.3, we have

4,0-¥,@,®) = (@, 0 m)(Cc®) = (9, o m)A®) = (Tp, o t,)}d(D)
Tp,(d(®) - Y,(q,®) = Tp,(d(®) - ¥,(p, (1))

Tp,(d®) - ¥,(q,®),

I

ll

whence
q, (1) = Tp, (d(®)).

Since Tpu(q}'l(t)) = ql’L(t), it follows that d(t) - qy(t) is vertical, so g;(t) is the horizontal part of
d(t) and thus there is a unique &(t) € g, such that

d@® = gz(®) + §(Dg(aM)- @
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Note that E_,(O)Q(q) is the vertical part of the initial condition Vg The only remaining condition on
d(t) is that it liein J-'(u), i.e., that

FL(q;(®) + §(0(a,(1)) M@y = -1 , 5)

for all ne g. This condition uniquely determines £(t) by the formuia &)= 'y(qh(t))-d(t). We
have proved the following: ‘ :

3.4 Corollary Under the hypotheses and notations of Proposition 3.3, let q,(t). be the base
integral curve of Zue x((TQ)u) with initial conditions qu(O), q}’L(O) and’ cu(t) = ‘P_pl(qﬁ(t) -
?ﬁ(q#(t))) the corresb‘onding integral curve of Zu' Let ye QY(Q; gu) be a conrnection on the
principal G,-bundle p, : Q- QG,. Then the integral curve c(t)=q'(t) of Ze X(TQ)
covering cu(t) with initial condition 2 1r;l1(cu(0)) is found in the following way:

i~ horizontally lift q,(t) to a curve g, in Q, q(0)=q;

ii  determine £(t) € g, from the system

FL(q5 () + &(1)q(an(t)) No(@y()) = u-n

forall m e a; this implies that the horizontal part of the initial condition A is q;(0)
and the vertical part is §(0)Q(q); '
iii  solve the non-autonomous ordinary differential equation g'(t) = TeLg(l)ﬁ(t) with initial
condition g(0)=e on the Lie subgroup Gu‘
Then the base integral curve q(t) of Z with initial conditions q(0) =q, qO) = A is given by
q(®) = g(t)-q,(t) and the integral curve of Z with initial condition Vg is @)= g(t)-(q}"(t) +
E0QUaHD))-

The vector field Y, € X(Q) postulated in the hypotheses of Proposition 3.3 can be

chosen consistent with the connection Y given by (3). Namely, define
Y, (® = FL@WY(®), | ©)

ie., Yu(g) is the Legendre transform of the p’-component of the connection Y€ QNQ; gu).
This choice for hyperregular Lagrangians (i.e., if FL is a vector bundle isomorphism between
TQ and T*Q) allows one to pass freely between the Lagrangian and Hamiltonian point of views
both at the unreduced and reduced levels. We shall use this remark in §4D.
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§3D Simple Mechanical Systems

To specialize this Corollary to the case of Lagrangians of kinetic minus potential type, let
(Q, {,) be a Riemannian manifold with positive definite, G-invariant metric {(,) andlet V:Q

— R be a G-invariant potential. Then the classical Lagrangian L(vq) =% Il \ 1> - V(@ is G-
invariant. The metric induces a principal connection on Py Q- Q/Gu by declaring the

horizontal subbundle to equal the orthogonal complement of the vertical subbundle. The condition
determining &(t) € g, becomes

(g7® + E®g@u®): M(gy®)) = pn M

for all 1 € g. Condition (1) implies that q}’l(O) is the horizontal part and &(O)Q(q) the vertical
part of the initial condition v € TqQ. Split g = 9, @ E for some complement E of g e Ifin
(1) m is taken to lie in 9 then by the definition of the connection,

(EDQEH®), Nola®) =1 @

forall ne g,. an equality uniquely determining &(t)Q(qh(t)) for every t, and hence by freeness
of the Gp-action, uniquely determining E(t) € g,. There are still dim G~ dim G, equations to
be satisfied; these hold automatically by the previous corollary. We have thus proved the
following:

3.5 Corollary In the hypotheses of Proposition 3.3, let L(vq =%|| \A IIZ - V(q), where

{,) isa G-invariant positive definite Riemannian metricon Q and V:Q — R is G-invariant.
Let Z e X(TQ) be the Lagrangian vector field of L and let Z,e X((TQ)u) be the induced
vector field on the reduced space. Let Ve € J ) and let q”(t) be the base integral curve of Zu

with initial conditions . (v ). Then the integral curve c(t) of Z with initial condition c(0) =V

is found in the following way:

i  endow the principal G -bundle Py Q- Q/G with the connection ymech whose
horizontal subbundle is the orthogonal complement relative to {,) of the vertical |
subbundle; ‘

il horizontally lift qu(t) to a curve q(t) in Q satisfying qh(O) =q;

ili'  determine &(t) e 8, from the algebraic system (§(t)Q(qh(t)), nQ(qh(t))) un for all
ne 8, this implies that  q;(0) and §(O)Q(q) are the horizontal and vertical parts of
the initial condition vy

iV solve the non-autonomous equation g'(t) = TLyq EM®,g0) =e in Gn‘
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Then vq(t) = g(1)-qu,(t) is the base integral curve of Z with initial conditions q0)=q, q'(0)= A
and c(t) =q'(t) = g(t)-(q; (1) + F,(t)Q(qh(t))) is the integral curve of -Z with initial conditon c(0) =
= B
It is easy to check that the Legendre transform of c(t) gives the integral curve of the
associated Hamiltonian system as obtained in 2.1 relative to the connection in 2.6.
There are several important situations when step iv can be carried out explicitly.
a If G, is abelian, the equation g'(t) = L E(, g(0) =e, has solution given by g(t)

=exp j &(s)ds. If G, =S!, E(s) canbe exp11c1tly determined from condition fif and hence the
reconstruction method of Corollary 3.5 has an explicit solution. Indeed, if we denote by {e 9,
a generator of g, then (a(t)C)Q a(t)CQ, so that by ii we get p-{ = (a(t)CQ(qh(t)) CQ(qh(t))) =
a() || CQ(qh(t)) > and hence

154
(RO

a(t) =

Thus writing g(t) = exp(6(1)), the solution of the equation in iv is given by

o) = (u-t;)f — g
0 1q@y)lI

3.6 Corollary Ler (Q,(,)) be aRiemannian manifold with a G-invariant metric and V : Q
— R be a G-invariant function. Assume G equals S' or R andlet { beagenerator of

8, If v € J ) = {ue TQ|(u, CQ(q) Y=uL) and q, Is the base mtegral curve of the
induced vector field Zu € X((TQ)H) with initial conditions Jtp(vq), the base integral curve and
solution of the Lagrangian vector field Z given by L(vq) = %]qullz— V(q) with initial condition

v, is given by

a(V) = exp®®L)q,® and c(®) =q'() =exp(e(t)t;)-(q,;(t) sl CQ<q,,(t»), @

[[ONCRON

where

l .
o) = (u-C)f — o - ®)
0 Hq@MII v

and q,(v) is the horizontal lift of qu(t) satisfying q;(0) = q.
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b A second case in which the equation g'(t) = TeLg(t) E(t) can be solved, even if Gu is
non-abelian when &(t) = £(0) = § is constant. Then -g(t) = exp(tf) is the solution. This holds if
¢ admits a non-degenerate metric (,) satisfying

&M = (€@, (@) ©

for any q € Q. This condition is prohibitively strong. For example, it implies that (,) definesa
positive definite metric on g. Denoting by <I>g :Q > Q the action of G on Q, this relation

implies by G-invariance of the metric {,) on Q that:

(Ad,E, Ad, ) = ((Ad, F,)Q(q) (AdMg@) = (@.515x(@), D,5mo@)

(TO, (g1 0), TOMoE"a)) = (Eole™d. ngle™ q))-(& n),

i.e., (,) mustin addition be bi-invariant. This excludes semisimple Lie algebras of non-compact
type. What is even worse, if G is compact and we are interested in classical Lagrangian systems
on TG defined by left-invariant metrics on G, this condition forces the metric (,) to be bi-
invariant: (€, ﬁ) = (€g(e), ngle)) = (€, m) . This hypothesis thus fails for the free rigid body
(unless it is spherically symmetric). A class of compact Lie group actions where such a condition
holds occurs in Kaluza-Klein theories; see Montgomery [1989). Using condition fii in Corollary
3.5, condition (6) implies that £(t) is constant : (£(t), 1) = (&(t)Q (9, (D), nQ(qh(t))) =pn and
therefore &(t) =&, where (€, ) =p| g,

3.7 Corollary Ler (Q,(,)) be a Riemannian manifold with a G-invariant metric and a G-
invariantLagrangia}l. L——llv I - V(q). Assume @ carries a positive definite bi-invariant
metric (,) satisfying E,n= (?';Q(q), T]Q(q)) for all qe Q. Then the solution of the Lagrangian
vector field on TQ with initial condition Ve € Jl(w) is determined from the solution of the
reduced system by following steps i - iv in Corollary 3.5 with g = exp(t€) for € e a,
determined by (€,-) =] g,

€ Another class of problems where g’(t) =T g([)?';(t) is explicitly solvable is as follows.
We begin by trying to find a real valued function f(t) such that g(t) = exp(f(t)E_,(t)) solves this
equation. Since g(O) e, werequire f(0) =0. We have

g = (Troeexp)E'® EW + £0) E'®).

From the formula (Tnexp)~n =TL

Lexpn M We get

TeLiexp ot 5O = f(t) 7o Telesp rop@® £
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= 75 Tt PED EO) = (Tygsuexp)ED)
so that g'(t) = TeLg(t) E(t) for g(t) =exp £(1) E(®) is satisfied if and only if

£(0) E(1) + £(1) £'(1) = £ .

This requires £'(t) = o(t) £(t) in which case f(t) is given by

t s
f(t) = -“0 eprt a(r)dr] ds.

: ‘ N
This procedure can be generalized as follows. Consider f(t) = Z £(ED() and assume
=1 .

i that it commutes with &(t) forall t, and

N
ii E_,(N+1)(t)=z o(t) §9(1), for some functions (L), ..., o(t).
i=1 ‘

Then proceeding as before and using the formula (Tnexp)(?;) =TLeo T‘(E‘,) for [§,M] =0 oneis

led to the system of ordinary differential equations with variable coefficients £ = Af+ v, where

fO 1 0 0...0 —ao(t)

0 10 ... 0 -ou(t

f= , v=1|.1, = 1(®
) ) 0 -1... 0 —oy0
fx 0 0 0 ... 1 —a®

Here g =exp(f&l+ ..+ fNE,,N) is sometimes called the Magnus expansion.
d Another method by which one can treat g = TeLng, was pointed out by P S.
Krishnaprasad. If GM is solvable, this method leads to explicit solutions. Write -

g = exp(f;x,)exp(fx,)...exp(f;x )

for a suitable basis {x;} of q,. For solvable Gu » Wei and Norman [1984] showed that the f's
+ can be obtained by quadrature. For 80(3) it leads to some nonlinear equations for £, 5,5

which do not seem to be integrable by quadratures.



§4 Ehresmann Connections and Holonomy

In this section, we review some of the relevant facts from the theory of connections that
will be needed. The exposition is by no means complete and is provided for the convenience of the
reader. For applications to phases, the context of principal G-bundles is not adequate for all the
examples, so we work in the larger framework of Ehresmann connections. These connections
were introduced in Ehresman [1950]. Since our needs are modest, we do not attempt to survey the
vast modern literature on connections, but we do make some historical remarks below.

‘§4A Ehresmann Connections

Let :E— M be a surjective submersion, V =ker Tn the vertical subbundle of TE
and xven(E; M) -its space of sections, elements of which are called vertical vector fields. An
Ehresmann connectionon ® :E —» M is a smooth subbundle H of TE called the
horizontal subbundle such that H @ V = TE. The space of sections of H, denoted by
X1or(E; M) is the space of horizontal vector fields. Since Tn|H:H — TM is an
isomorphism on every fiber it has a fiberwise inverse called the horizontal lift operator horp :
Tn(p)M - TpE forall pe E,ie, horp = (Tpn: | HP)‘1 . Since H is a smooth subbundle of TE,
the horizontal lift defines a linear map hor : X(M) — X, (E; M) by (hor X)(p) = horp(X(p)).

In general, a lift of a vector ve T, M is a vector field lift v along (and in general not
tangent to) 7-}(m) such that T r(iftv) =v and v lift v islinear. Given X € X(M), define
lift X : E— TE by (lift X)(p) = (lift X)(n(p))(p) and note that (lift X)(p) € TE . We say that
the lift is smooth if 1ift X € X(E) forall X € X(M). With these definitions, we see that an
Ehresmann connection is alternatively defined by a smooth lift hor : X(M) — X(E) such that if

=hor (T, M), then H= U/ 1s a smooth subbundle of TE complementaryto V.
H, = hory (Trg)M o plementary

Forany ue TPE , let u=uP"r + u"°" be its decomposition into its horizontal and vertical

parts. The vertical projection y(p): T,E =V, given by y(p)u) = u“‘“ deﬁnes_a smooth V-

valued one-form ye Q(E; V), called the connection one form. This form‘satisﬁcs- Yp =

identity on Vp. Conversely, given y with Yo = identity on V,» it uniquely determines a smooth
horizontal lift by

hor, v =7 ~1(p)©) M

36
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where v € Tn(p)

Ehresmann connection is equivalently described by a horizontal subbundle, a horizontal lift, or a
vector bundle valued connection one-form which is the identity on the vertical subbundle.
If e QKE), its covariant exterior derivative Do € Q¥*1(E) is defined by

M. and Ve T,E is an arbitrary vector satisfying T ,n(V) = v. Thus an

Da(X,, ..., X)) = da(Xpr, ..., Xho), 7 )

where X, ..., X, € X(E) and X‘-’“’r is the horizontal part of X, taken pointwise. In terms of

pointwise operations, we can write, with a minor abuse of notation,
Da(m)(vy, -.., v))P) = Da(p)(hor,vy, ..., hor,vy), for m =n(p). 3)

If A e QKE; V) is a V-valued k-form, where V is the vertical subbundle of TE , the
covariant derivative DA e QF1(E: V) is defined using Cartan's formula:

k
DA, --s X)) = Z (- yi[xhoer, A(xhor, .., X, ..., Xhory]vert
i=0 .
o @
+ 2 (—DI(xbor, xborg, XBor, ., X, o, X, XEOT)

0<i<j<k

where X, ..., X, € X(E) and " above a vector field means that it is deleted. As above, the
covariant derivative of A can be thought of as a (k + 1)-form on' M with values in xvm(E; M),
or equivalently, as a (k + 1)-linear skew symmetric map DL:XM) x--xXM) > Xyen(Es
M), namely ,
DAYy, ..., Y,) = DA(hor Yy, ..., hor Yy) - ‘ 5)

If ye QYE; V) is a connection one-form, then Dy=Q e Q2(E; V) is called the curvature of
Y. Sometimes we shall write curv(y) for the curvature of y. Since 7y annihilates horizonal

v vectors, (4) gives ' '
QX, V)p) = —y@e)([(X™, Y ](p) ©)

and its induced map on the base O : X(M) x X(M) —» X, (E; M) is given by QU, W) =
Q(hor U, hor W) = hor[U, W] — [hor U, hor WJ; this follows from the identity [hor U, hor W]her

= hor{U, W] which we now prove. By definition of the horizontal lift, [hor U, hor W]hor is
horizontal and Tr([hor U, hor W]t°r) = Tr([hor U, hor W]) = [U, W] because hor U and U
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are m-related and m-relatedness is bracket preserving. Note that Q and Q determine each other

uniquely. We just saw how Q induces Q. Conversely, let Q be given by (6). This
determines Q uniquely on horizontal vectors and so declaring i,Q=0 forall Ze X, (E;:M)

determines Q on X(E) x X(E) . The formula for Q follows from the definition of Q and the
fact that Y¥(p) is the vertical projection T, E - V

Bianchi's identity states that DQ 0 . This is proved by using the deﬁmtlon of the
covariant derivative and the remark that the Lie bracket of any vertical with any projectable vector
field is again vertical; a vector field on E is projectable if it is n-related to some vector field on
M. For example, the bracket of any horizontally lifted vector field with a vertical vector field is
again vertical. -

Let m(t), t € [0, 1] be a smooth path in M . A horizontal lift of m(t) is a smooth’
path p(t) in E such that n(p(t)) = m(t) and the tangent vector p(t) to p(t) is horizontal for
every te [0,11. If n:E —M is a locally trivial fiber bundle, then given a smooth path m(t),
in M with my=m(0),0<t<1 and Py € n~Y(m(0)), there is a unique locally defined
horizontal lift p(t) of m(t) satisfying p(0) =p, . If p(t) can be extended for all t € [0, 1], we
call the connection complete. We will generally assume this is the case; if E is a locally trivial
finite dimensional fiber bundle with structure group acting transitively on the fibers and if the
Ehresman connection is invariant under the action, then the connection is complete using the
following local existence argument, compactness of [0, 1] and the fact that the time of existence is
independent of the position on a given fiber. In particular, completeness holds for principal
connections. To prove local existence and uniqueness of horizontal lifts, it suffices to do so for the
case of a trivial bundle E=M xF with #: M xF — M the projection. The equality

Y(m, f)(u, v) = v + A(m, £)(u) )]

for me M,fe F, ue T,M,and ve TF defines a bijective correspondence between
connection-one-forms ye QM x F; V) and smooth sections of the bundle L(TM, TF) > M x
F of vector bundle maps from TM to TF with base M xF. Thus (u, v) is horizontal iff v=
- Mm, f)(u), so that if m(t) is a path in M, define p(t) = (m(t), f(t)) with f(t) the solution of
the time dependent differential equation

% = - X(m(t), f(t))rh(t) (8)

with initial condition f(0) = f, , where p; = (myg, fy) . By local existence and uniqueness for

differential equations this defines f(t) (and hence p(t)) for small t. If the path m(t) is constant
and equal to my, then p(t) is also constant and equal to p;. Let m(t) be a general path, m(0) =
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m, and m(1)=m, . If ep(t) is the horizontal lift of m(t) satisfying ep(O) =pE€ n‘l(mo) , then
the map sending p to ep(s) defines, by uniqueness of horizontal lift, a bijection from 1r1(m0) to
n~!(m,). By smooth dependence of solutions of ordinary differential equations on initial
conditions, it follows that this map is a diffeomorphism; it is called the parallel transport
operator.

Historical Remarks

We thank Arthur Fischer for the following remarks. An Ehresmann connection ¥y ona
fiber bundle 7 :E — M induces an Ehresmann connection Ty on the tangent bundle Trn: TE —
TM in a functorial way. (This is due to Kobayashi [1957] for the principal bundle case and to
Vilms [1967] for the \;ector bundle case). More interestingly, the connection Yy also induces a
connection yB on the vertical bundle vp:VE - E, called the Berwald conﬁection (see Yano
and Okubo [1961], Vilms [1968], and Tong Van Duc [1975].) The original work of Berwald
[1926, 1933, 1939] was for the case of E =TM. In particular, formula (4) above may be viewed
as the covariant exterior dérivative with respect to the Berwald connection ¥B induced by the given
Ehresmann connection. ‘ '

§4B Holonomy

Now let m(t), te [0, 1] bc a closed path in N, m(0) = m; . The diffeomorphism of
xt (m,) onto itself given by parallel transport along m(t) is called the holonomy of the path
m(t). Itis easy to see that parallel transport sends juxtaposition of loops based at my into the
composition of diffeomorphisms of n‘l(mo) . Thus the holonomy operation. is a group
homomorphism of £{m,) , the loop group at my, to the diffeomorphism group of n‘l(mo) ;its
image H(m,) is called the holonomy group at m . Itis straightforward to see that if M is
connected all holonomy groups are conjugate: H(mgy) and }l(rﬁl) are conjugéte by the parallel
transport along any path connecting m; to m,. Thus if M is connected, we speak of H, the
holonomy group of the connection. '

If ®:ExG — E is a (by tradition, right) Lie group action of G on E and the
connection y is G-invariant, i.e., if Hp‘g = TP (Dg(Hp) forall pe E, ge G, then parallel
transport is equivariant. This happens if & :E — M is a principal G-bundleand ye QUE; @) is
a principal connection: horizontal lift commutes with the G-action. Here we have identified the
vertical bundle V with M x g, which is done by using the group action. This map is G-
equivariantk when we take the action on E x g to be the diagonal one:

€ 8)rg = (eg Ad_, £).
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Consequently, the G-equivariance of A as a g-valued one-form means that
g = Ad,oy.

The holonomy can be realized more explicitly in the principal bundle case by fixing a point p e
! (mg). Associate to every holonomy operator ¢ € H(m,) the group element g of G by o(p)
=p-g Wewill call this the holonomy measured from p. If we measured the holonomy from 1
=p-g 'instead,_ we would find that g gets replaced by g‘llggl. This is because ¢ commutes
with right multiplication. ‘

In what follows, we consider the case of principal bundles for which the computation of
the holonomy of a path is theoreﬁéally very simple.

4.1 Proposition Let n:E - M be a principal G-bundle and ve QUE; @) a principal
connection. Let ¢ be a closed pathin M which is contained in the open set U. Suppose s:U C

M —E isalocal sectionand set a = s™y sothat a isa g-valued one-formon U. Let g(t) be
the solutionto

B - —a(®) e

with 8(0) = 1. Then the holonomy of c, measured from s(c(0)) is g(1).
Remark The solution g to this equation is written Pexp (—f a) in the physics literature,
' [+

where P denotes "path ordering”.

Proof The section s induces a local trivialization of E in the usual way: write e =s(x) - g.

Let (c(t), g(1)) be the "coordinates" of the horizontal lift © of ¢ in this trivialization. By the
transformation law for connections,

¥x, 8) = gla+d)g = glag+ gldg

in this trivialization. Here we have used matrix notation for simplicity:. that is, we write glag =

Adg_I o a. The condition that a curve T be horizontal is that E*'y =0 z:.e., y((é—(:) =0. Iﬁ our

coordinates this reads

d d .
g‘l(a(a—ct-)- g+atg) = 0 Le., da;é = ——a(%) g . m
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Now assume that G is abelian; then it is a cylinder RX x T¥ and in particular each g is
of the form expmn . Therefore 'I'Lg_1 g=1 so, by the proposition, the holonomy element is

1
g(1) = expn(l) = exp (— fo (" @) - m’(x)dx) = exp H] s* dv) (10)

where the last equality is obtained by Stokes' theorem and .U denotes the integral over the two

dimensional submanifold of M whose boundary is the loop m(t),te [0, 1]. ‘Such a surface may
not always exist in which case the last equality in (10) is dropped in the expression of the
holonomy. For example, a circle which is one of the generators of a torus does not bound any
surface on the torus. This case actually occurs in the dynamics of three coupled rigid bodies (see
§5). Returinng to the case when m(t) does bound a surface, the structure equations imply that
dy=Dy=Q, the curvature of y. Thus, thinking of the curvature as a two-form on the base with
values in the adjoint bundle, which for abelian groups is trivial, we obtain the well-known result:

4.2 Corollary If n:E — M is a principal G-bundle with G abelian and ye Q\(E; @) isa.
principal connection, then the holonomy of the closed path m(t) in M is gzven by the group
element

holonomy‘ = exp(— ” dy) = C);p (— _” Q ) | an

where the integral is taken over any two-dimensional submanifold in M whose boundary is m(t) .

For the S!-connection on J-(i) — T"‘Qu given in Proposition 22 the holonomy of a

exp (515 .U By );

' the 1nteg1al being taken over the two-manifold in M whose boundary is the given loop. Returning
to the reconstruction formula for the free rigid body given in Example 1F, note that the ﬁrst term
in (1F.2) is the holonomy of the closed integral curve on S2. -

closed loop is given by



§5 Reconstruction Phases

. In this section we give a number of examples of how to compute phases that arise from
pure reconstruction (i.e., without adiabaticity) using the theory of the preceding section. The free
rigid body was already indicated in the introduction. Here we consider a number of other
mechanical systems. In addition, we compute the rigid body phase using another choice of
connection and compute the phase for the heavy top. In particular, we see that the nice choice of
connection for the free rigid body is not so convenient for the heavy top, primarily because it does
not drop down to configuration space. We also compute phases for some other éxamples,‘
including coupled planar rigid bodies.

§5A Quantum Mechanics

Classical holonomy can be used for the computation of the geometric Berry phase in
quantum mechanics, using the well known fact that quantum mechanics is a special case of
classical mechanics, and the Schrodinger equation is a special case of Hamilton's equations. These
points are discussed in Abraham and Marsden [1978] and references therein. In this spirit, we
have:

5.1 Proposition (Aharonov and Anandan [19871) The holonomy of a loop in projective
complex Hilbert space is the exponential of twice the symplectic area of any two-dimensional
submanifold whose boundary is the given loop.

Proof Let # bea complex Hilbert space and M = P%, the space of complex linesin #{. In
Corollary 4.2,let E=#, G=S! and use the connection A defined by

A(Y)¢ = Re(~iy, ¢) = -Im(y, )

where ¢, ye Hand (,) isthe Hermitian inner product. The curvatufe is the differential of A
and equals ;
e, y) = 2Im(Q, ¥) = - 2a(y, ¥)

where @ e Q%(H) is the usual symplectic form on complex Hilbert space. Therefore — _” Q=

ZH @ = twice the symplectic area of the 2-manifold whose boundary is the given loop, where ® is

the reduced symplectic form on projective Hilbert space PH. m

42
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Remarks

a The result of Proposition 5.1 can be derived from Proposition 2.2 (generalized to
exact symplectic manifolds). Take P = #, with the symplectic form (@, V) = - Im (@, V),
and the Sl-action the multiplication of a vector by a scalar of the form €. Then G = G, =5

forany pe g* =R . The generatorof g istakentobe 1. If £e R, then Eqr(@) =ik for
any ¢ € # so that the momentum map J : H{— R is J(¢) = - |[@}|¥/2 . The symplectic form ©

is exact and w=—d6, where B(q)y = %Im {@, V). The level set J‘l(— %) is the sphere in
H of radius 1 and P, = P#H. Thus the connection A is precisely the one used in the proof of
. Proposition 5.1.

b The connection A used in the proof of 5.1 is the connection used ip Simon [1985]. ¢

§5B Phases for simple mechanical systems with S_l-symmetry

Let (Q, (-,-)) be a Riemannian manifold, G a Lie group acting by isometries on Q and

assume H((xq) = % ||(1qu2 + V(q) is a classical Hamiltonian, where V: Q - R is a G-invariant
potential energy and ||ocq|| denotes the norm of the bundle metric induced by {,:) on T*Q,
ie., ||an| = ||0cq#|| , where #: T*Q — TQ is the index raising operation induced by the metric.
- The momentum map J : T*Q > ¢* is J(o PE= o, &(q) forany Ee g. Let pe g* and
assume throughout this section that G, = S1 and that Pu:Q— QG, andm, 0 (T
(T*Q)u are principal S!-bundles. Let { be a generator of g, 1mplement1ng the isomorphism of
e, with R. Let ¢ (t) be an integral curve of the reduced system with Hamiltonian H on
(T*Q) and assume it is periodic with period T. If c(t) denotes_the reconstructed 1ntegra1 curve
lying in the level set J-l(u), then

T® = exp(@))-c(0) ' | 0

for some angle ¢, called the total phase of the integral curve c(t). In this section we shall
compute @ in two ways, by choosing the connection A of Proposition 2.2 and the connection
Voecn ©Of Corollary 2.4 where y=1, ., is the mechanical connection associated to the given
metric. See the discussion surrounding Corollary 2.6. :

We begin with the connection A € QI(J-'(u)) given by

A =6, @
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where Gu is the pull-back of the canonical one-form 8 of T*Q to J-l(u). Let d,(t) denote the
A-horizonal lift of Eu(t) and qu(t) = n(d,(t)) its base curve, where = : T*Q - Q is the
canonical projection. By Theorem 2.1, c(t) = exp(y()0)-d A (1), where /(1) = (A-X(d () =
G(dA(t))-XH(dA(t))/(u-C). Thus the base integral curve g(t) of c(t) equals g(t) := n(c(t) =

exp(\y(t)C)-dA(t), whence by G-invariance of V, we get Vg, =V(@q®) = v (qu(t)) where

V Q/G '— R is induced by V via V=V woPy and qu(t) is the projection of ¢ (t) € (T*Q)
to Q/G (see Proposmon 2.2). Thus,

B(d, (D) Xy(ds () = Ild,g(t)ll2 = ZH(d,(1) -2V(q,() = 2H, -2V, (q,®)
where H'u is the constant value of the reduced Hamiltonian on the integral curve Eu(t)' Therefore

() = (2Ht 2J' Vu(q(s))ds) . 3)

Since the curvature of the connection (2) is — @ /(u {), where @, is the reduced symplecuc

form on (T*Q) Corollary 4.2 shows that the holonomy is the exponential of

(Zell, o) e

where D is a two-dimensional surface in (T *Q)u whose bouhdary is Eu(t)‘ As we discussed in
§4B such a surface might not always exist, but we shall assume it does, for convenience, in the
sequel. Consequently, by the reconstruction method of Theorem 2.1, the total phase of the
integral curve c(t) in J"'(u) equals

2(H, - (V)T
o 28, T
where
AARES RACKOL: _ (5b)

is the average of the potential V on the base integral curve qu(t) Note that if Q=80(3), V= 0
and H is the kinetic energy of a free ngld body, (5) reduces to formula (2) in §1G by choosing {
=ufip |l and where we have identified so(3) and its dual with R3 in the usual manner (using
the Killing form).

Next we turn to the total phase computation using the connection ™ n induced by the

mec,
mechanical connection 7y, _,. We begin by translating the results of Corollary 3.6 to the



Symmetry, Reduction, and Phases in Mechanics 45

cotangent bundle setting. The notation will be that of §3C and §3D, namely, L denotes a
classical Lagrangian with energy E(vq) = % qull2 + V(q), FL = b . TTQ — T*Q is the
corresponding Legendre transform which is a vector bundle isomorphism, cu(t) is an integral
curve of the reduced system on (TQ)u, and c(t) is a reconstructed integral curve on the p-level
set of the momentum map. We shall fix the mechanical connection Y, € QYQ) inducing both
the connections ¥, (in Corollary 2.4) and ¥, _, " (see (3) in §3C). In addition, we shall use
in the cotangent bundle reduction theorem both in cotangent (Proposition 2.3) and tangent
(Proposition 3.3) formulations, the embeddings into T* (Q/Gu) and T(Q/Gu) respectively as
being given by momentum or velocity shifts induced by Y (see closing comments in §3C). We
let H=Eo(FL)"! be ihe corresponding Hamiltonian system on T*Q. Since (FL)*Y. ., = Yoo
as remarked in §3C, FL will transport all information from the Lagrahgian side to the
Hamiltopian side. For example, if (IFL)u : (TQ)u — (T ='7Q)u is the inducea diffeomorphism, we

conclude that Ep(t) = FL(C.u(t)) is an integral curve of the reduced Hamiltonian system on (T*Q)u’

that c(t) = FL(c(t)) is the reconstructed integral curve on J-!(u), and that d(t) = FL(d(t)) is the
‘Yﬁwch-horizontal lift of Eu(t) iff d(t) isthe . . -borizontal lift of Eu(t). Thus by Corpllary 3.6

we have
c®) = CXP(G(I)C){Q;:O)*‘ _wl g (qh(t))JfJ 6
IEolanz 2 |
with
‘ ds
8 = (o) @

0 IS (an(oNI?
where q,(t) € Q isthe 7, -horizonal lift of the projection q,( e Q/G‘l of the reduced integral
curve C (t) € (T*Q) cT* (Q/G ). '

Let us determine the 4., -holonomy of the periodic curve c u(® with penod T. In the
proof of Corollary 3.4 we showed that the e -horizontal lift of ¢ (t) is the curve d(t) = qh(t)

+ (- C_,)CQ(qh(t))/II CQ(qh(t))ll2 (see formula (4) in §3C). Thus since d(t) = d()P and the group
action is by isometries, the holonomy of C (t) measured from c¢(0) equals the holonomy of ¢,(¥)
measured from c(0). Let ke G =81 be the holonomy of qu(t) measured from q(0), i.e.,

(D = kq, 0) = k-q(0) . - )

Since G, is abelian and (e g, the vector field Cq is equivariant and we get
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' B-g
d(D) = q(T) + ————— T
® = D+ oriE D
) ’ uc
= kql0) + —E 2k (q.(0))
WO o
= k-d(0) O

i.e., the holonomy of Eu(t) measured from c(0) equals the holonomy of qu(t) measured from
q(0) = t(c(0)) =n(c(0)). Letting k = exp(x{), we conclude from Theorem 2.1 and (7) that the

total phase equals

= —_— - 10
® =1+ @D I mlcQ(qh(s»u2 (

We collect formulas (5) and (10) in the following :

5.2 Proposition Given is a simple mechanical system on T*Q with Hamiltonian H.
Assume that for L e g¥, G,’1 =81, that Jl(n) - (T"‘Q)ll and Q - Q/G,, are principal S' -
bundles and that vy

nech € QNQ) is the connection on the second bundle whose horizontal

subbundle is the orthogonal complement of the vertical bundle. Let Eu(t) e JX ) be a periodic
integral curve with period T of the reduced system with energy H, andlet q,(0 e Q/G’L be its
base integral curve. Then the total phase of the reconstructed integral curve on the level set J1(lL)
measured from ¢(0) equals

e N

u-g 0 IICo(qh(S))II2

where  is a generator of @ w O is the reduced symplectic form on (T*Q) , V isthe potential

energy of H, (V ) is the average over qu(t) of the induced function V Q/G =R, qyt) is
the Y .4 horlzontal liftto Q of qu(t) and Y, isthe Y. -holonomy of qu(t) measured from
q(0) := mt(c(0)). Here, D is a two-dimensional surface in (T* Q) whose boundary is ¢ (t) and

whose existence is assumed. The first terms in the two formulas are the geometrzc and the second
the dynamic phases
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§5C Phases for the Free Rigid Body

As we already remarked, if Q =80(3) is endowed with the left invariant Riemannian
metric whose value at the identity is {(x, y) = xIy, I = diag(l;, I, L), I; >0,i=1,2,3, V=0,

and {=n/lpll, the total phase formula given by the first equality in Proposition 5.2 is equal to
formula (2) in § 1.F, namely

2H T
o= A+ b | M

il

where Hu‘ is the energy of the solution curve II(t) on the sphere, T is its period, and A is the
oriented solid angle it bounds. We shall derive below a similar formula but using the connection
& o, Which is given by the second equality in Proposition 5.2.

We begin by explicitly computing the connection Y, on the principalr S!-bundle Py
S0(3) — SO(3)/S! = 82, Pue) = gl If u, € T,80(3), since { is the generator of g, (=

Wl L ]] we can write the horizontal plus vertical decomposition of u, as
u, = v, + XCSO(?,)(g)) = Vg+7tt_,g )

Since Vg is horizontal, i.e., orthogonal in the Riemannian metric of S0(3) to zg, we conclude

that {u,, Ze) = MLg. Lg), or using left-invariance, (g~'-u,, g18g) = Mg g, g1Cg), whence
A= (g‘l-ug)"-]Ig‘IC/g‘IQ]Ig—lC, where ~:so(3) —» R3? is the inverse of the Lie algebra

homomorphism

0 -x;3 x,
xeR3>x = X3 0 -x, |eso@.

- X, X 0 -
Therefore, the connection form Y, ., € QLS801)) is giQen by
(gl u)"Ig™'¢
w) = ——F———= | 2
Y@ == 8= @

To compute the dynamic phase, we need to determine the horizontal lift g,(t) € S0@3) of
the closed path TI(t) on S2, the sphere of radius ||p|l. By (1), g, () is the horizontal lift of
TI(v) iff ' ’

g1 = T and (g,®'g,®) Ig,®' = 0. 3)
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However, the square of the norm of aso (3‘)(gh(t)) = zgh(t) in the 80(3) metric is by left-
1
P

invariance and (3), gh(t)‘IC-IIgh(t)‘lC = TI(t)-ITI(t), so that the dynamic phase in the

second formula of Proposition 5.2 equals

T dt

| — 4
W [ ot @

To determine the geometric phase, we need to compute the curvature of the connection (2).
On 80(3) this equals dY, .cnr By Cartan's formula, W ecnXs Y) = X[ ooy Y1 - Y[ een X1
~ Tmecn'[X, Y] for any two vector fields X, Y € X(80(3)). If X(g) = TeLgi, xe R3 we
have , ' }
(g X(g)"Ig™'C _ _xIg~'(
ggIg71g g ' Ig™g

(’Ymech.X) (g) =

€

so that if Y(g) =T LgS', we get

Y[’YmeCh'X] (g) = i I (YmechX)(g €Xp 8.;' )

- g I OE I - 2618 O LD

Therefore
Neeth(@(T LK, T,LF) -
1
= T e 1@ I Iy (x x g0 ~ Ix(y x g10) + (x x y)Ig-IC
(g“C-llg“C)z{ gt [ ¢ & ]

= 20 Ig O x g0 1g10) + 20 Ig 10y x g T 1)}.(5)

The curvature Q as a two-form on the base S2, the sphere of radius [[jL||, is given by the

condition pyQ = dy,,. Since
- TP(TLX) = gluxx = ull g x x, )

we get Qg lu)(glu xx, g lpxy) = Y recn ()T LX, TL,§) so that letting I1= gy, one
has [|ITjl=|lull and (5)yields

g(n)(ﬁ/x % TIxy) = -%%{(n-m)[ny-(x x IT)~Ix-(y x IT) + (x x y)-II]

= 2(y-II)((x x M) + 26 T)((y M)}

Up to a factor of 2, the last two terms equal
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(I x IT)-y)(MI-x) — (I x I)-x)(IM-y)
= ((I1 x IIT) x ITT)-(y X x)

= (I |1 — (CTL-IDHT)-(x X y)
so that Q becomes - ,

Q@D xx, TI xy) = ;(r'l'—.;‘r'l'—)i{(n~nn)n~(ﬁy xx - Ix X y)
= (LI)((x X y)-TID) + 2 | TP (x x y)).
Howeyer, : .
H-(jIy XX —-Ixxy)-IIl-(xxy) = — (trDII-(x X y)
so that , , ‘ ‘
o _ el 2 _ . »
QDA xx, T xy) = [20011P - I eD [T x x y)

(T1-111)2

2| I |2 — (T1-IT)(trD) : S
= — dS(IDAI x x, I xy) @
(I1-111)2 ¢ y
where dS(IDII x x, [T xy) =||ufiI1-(x x y) is the area element on the sphere of radius [[p]l.
Thus the total phase of the integral curve starting at c(0) e J-1(n), reconstructed from the

periodic orbit TI(t) of period T on the sphere of radius [|jLf] is (mod 2x) equal to

T
(@ «
“*“"anmm | ®)

_ 2|| T | — (1-IT)(trl)
¢= J. J' D (I1-I11 )2

where D is the spherical cap bounded by TI(t). The first term is the geometric and the second the
dynamic phase. The right hand sides of (1) and (8) are equal since they both represent the total
phase of the same integral curve. We see here how the split of the total phase into geometric and
dynamic phases is entirely dependent on the chosen connection. - The same phenomenon will be
discussed for the ball in the hoop example (see §1B) in §12B.
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((I1 x )-y)AI-x) — ((IT x IT)-x)(IT1-y)
= (11 x IT) x ITT)-(y X x)

= (|| I /20T — (TL-IIT)-(x X y)
so that Q becomes :

QDI xx, T xy) = -(—r%%{(n-m)n-(ny xx = Ix x y)
— (ELI)((x X )T + 2 | I |- Gx X y)}.
Howevcr, '
H~(]iy XXx-Ixxy)-IlI-(xxy) = — (eDII-(x x y)
so that . _
T _ ‘
QAL x, Txy) = = e TP - LMD JIT-x x ) _‘

2 _ (1. . _
- - 2MHNE = GCIDED 0y 11 ¢ x, 11 x ) )
(I1-111)2 : .
where dS(IDI x x, IT'x y) = |ullI-(x X y) is the area element on the sphere of radius .
Thus the total phase of the integral curve starting at ¢(0) € J-1(u), reconstructed from the

periodic orbit TI(t) of period T on the sphere of radius [Jji|| is (mod 2x) equal to

T
sf __d (%
ds + [l jo el @®

_ j 2)| I 12 — (- )(wd)
D (I1-111)2

where D is the spherical cap bounded by II(t). The first term is the geometric and the second the
dynamic phase. The right hand sides of (1) and (8) are equal since they both represent the total
phase of the same integral curve. We sec here how the split of the total phase into geometric and
dynamic phases is entirely dependent on the chosen connection. - The same phenomenon will be
discussed for the ball in the hoop example (see §1B) in §12B.



50 Marsden, Montgomery, and Ratin

§5D Phases for the heavy top

The notations and conventions are as in the previous example, except that the Hamiltonian equals
1
H(oy) = 5 lloyIP+ Mglkhy , oye Ty S0(3), 1)

where k is the unit vector of the spatial Oz-axis, g is the gravitational acceleration pointing in the
negative direction of Oz, M is the total mass of the body, the fixed point about which the body is
moving is the origin, and 7 is the unit vector of the straight line segment of length £ connecting
the origin to the center of mass of the body. The Hamiltonian is left-invariant under the rotations
about the spatial Oz-axis and the corresponding momentum map is J : T*80(3) - R, Jh,ID)=
hIlk, where T*80(3) is identified with SO (3) x R3 via left translations. The reduced spaces '
J-l(u)/S! are generically cotangent bundles of spheres with the symplectic form equal to the
canonical form plus a magnetic term, or, equivalently coadjoint orbits in so(3)* = R3x R3, O=
{a,Dinor =H, ITI?=1}; themap J'(u) > O is given by o > (TL,(0y) =TI, where
h"lk =T, as in Marsden, Ratiu, and Weinstein [1984]. After an appropriate momentum shift
(see Proposition 2.3), the cotangent bundle projection I1: O — S2 of O onto the sphere of
radins 1, is givenby n(IL T) =T

Let (I1(1), ['(1)) be a periodic orbit of period T of the heavy top equations. *Then
considering the connection ye QI(80(3)) whose horizontal bundle is the orthogonal (relative to
the rigid body metric) of the vertical bundle, all considerations of the previous example apply and
we get the total phase onrmula

[ 20T - (I T &
o= R as + [ @)

(T-IT)2 orIIr

where D- is the spherical cap on the unit sphere inclosed by the closed curve I'(t), te [0,T].

Next, let us recompute the total phase using the connection A of Proposition 2.2. Since
in the left trivialization, J-1(u) = {(h, I)|hIIk =TT =p} and 6(h, IT)(hx, A) = II-x, the

connection one-form (2) in this case becomes
AGID(R, ) = [ TIx . | B

The A—horiiontal lift of the closed curve TI(t), T'(t)) is (h(), II(t)) € J-1(u), where h(t) is
uniquely determined by the conditions

h(ty'k =I'(t) and (h()h(t))"-TI(H) =0 . e))
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Thercfbre, the cotangent bundle projection of this horizontal lift is h(t) and hence
V(h(t)) = Mglk-hy = MglI(t)-x . (6))]
Thus, by Proposition 5.2, the dynamic phase is
1 . t
= (ZH T- 2MgEJ. I(t)-xdt ©)
H H 0
The geometric phase is obtained in the following way. Let D be a two-dimensional surface in
T*80(3), = O = TS bounded by the integral curve (I(t), I'(®)) and let
@, ILTY((IIxx+T xy,Txx), [ xx +Txy,Tx x))
= —IM-(xxx)-T-xxy —x xy) o )
be the orbit symplectic formon O. Then the geometric phase equals

i”‘@w" ’ | | ® ,

By (6) and (8), the total phase equals

1 . 1 T
¢ = E”@mu + E[ZHuT—- 2Mg? _[Or(t)-xdt} ©

Again, as in §5B, two distinct formulas, (2) and (9), are obtained for the total phase.

§SE Phases for Coupled» Planar Rigid Bodies -

In this section we compute the phase for another mechanical s&sti:m with S! symmetry,

namely a system of coupled rigid bodies in the plane. We thank P.S. Krishnaprasad for informing

" us of this example; see Krishnaprasad [1990] and Krishnaprasad and Yang [1990] for more

information. Following Krishnaprasad's lecture at the Geometric Phases workshop at MSI-Cornell

University (October 10-13, 1989), we first calculate the phase "by hand" without using any of the

general theory, and then we shall show that the formula so obtained is.a special case of formula
(10) in §5B (see Proposition 5.2). ‘ , ,

We consider n bodies forming a chain, as in Figure 5E-1.. The center of mass motion

has been assumed to have been eliminated, so thé conﬁguraﬁon space Q=T"=8'x...xS! is

the product of n copies of the circle. The i circle describes the orientation of body i with
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respect to an inertial frame. We let qi € S! denote this angle for the i body and note that from
these angles, the configuration of the bodies in the plane is known.

body #1

Sesir

it hne iy
Rtk
T U3y

body #3

Figure 5E-1

As shown in Sréenath et. al [1988], the equations for the dynamics of coupled planar rigid
bodies are the Euler-Lagrange equations for a Lagrangian of the following form:

n
=1 iT. i
L =3 ool 6))
i,j=1
where ! =gi. The matrix J;; is a positive definite inertia-type matrix that depends in a nontrivial

way on the angles q' . The Hamiltonian H : T*Q > R corresponding to (1) is obtained by the
usual Legendre transform, p; = lTijmi, giving

1 n
=2 2 PUp; @

where Ji' is the inverse matrix of T -

Imagine two types of motion. First, we consider free motion according to the Lagrangian

or Hamiltonian system just described and second, the motion where the joints are controlled with a
torque T, exerted on body i by body i+ 1 by, say, a motor at the joint between the bodies.

Here, i=1,..:n—1 and the torques are internal , so in either case, the angular momentum of the
overall system is conserved. Correspondmg to overall rotations of the system, the group S! acts
on Q by the dlagonal action ¢- (q q yeee s QB = (q + @, q +¢,...,q" + ‘P), and hence on the
tangent and the cotangent spaces by the tangent and the cotangent lift. The Lagrangian and the
Hamiltonian are both invariant under this action, as is reflected by the invariance of the matrix J.
Infact, J depends only on the phase differences, 8i=gi*! - gi. Notice that the phase
differences parametrize the shape space S=Q/S1= T“‘_I. The reduced space is therefore T*S.
The unreduced motion occurs on the space of ¢' 's and the reduced motion on the space of 6''s.

Note that for n =3, the shape space is the two torus, so possible difficulties with a loopon S not
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being the boundary of a surface in S can certainly occur. Identify the Lie algebra of S! with R;

: 3 9
if & € R, then the infinitesimal generator is given by &y(@) =& Y, owE The associated
i=194

T
momentum map is J(q, p)§ =& z p; =&eJw, where e is the column vector consisting of n
i=1

1's. Write
- 0 -
! 1 él
o’ 1! . . . .
So=| |=ey. |+ 6, +9, = w'e + MO, - 2)
‘V“O;n 1 M
- L0, + ... +0, ]

which defines the matrix M. Suppose that the unreduced motion takes place with angular
momentum W = J(q, p)§ = Ee-Jo. Substitution from (2) gives

= Ee-(Jo,e) + Ee- TMH

so that :
it = ote B VO ®
Ee-(Je)  Ee-(Te)
Integration of (3) along a given curve c(t), 0 <t<T in shape space gives
T T 1Mé
Aql -n J dt _ J I . @
o &e-(Je) o &e-(Je)

(A choice of ’ & corresponds to a choice of the unit of time.) Note that the second term of (4) can

be written as an integral over the shape space curve

J TMde - : )
&e(Je)

where we regard JMdO as a one form on S. In particular, (5) is parametrization independent,
which is a hallmark of a geometric phase. The first term of (4) corresponds to the dynamic phase
and is parametrization dependent. Both integrals are regarded as integrals over a curve in shape
space S. From (4) we can construct the change in g!, and from this and the supposed known
changes in the 61, get the phase changes in the remaining variables, thus reconstructing the
dynamics explicitly in terms of quadratures, with or without internal torques. We are, of course,
most interested in these formulas when the curve in shape space is closed, but at this point it can be
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a general curve. To be even more explicit, for the case of two bodies, and using the formula for J
from Sreenath et. al.[1988], one finds that (5) equals

J I, + ed,d,sin®

- ©)
L+, + 2ed,d,sin@

where 0 is the single joint angle, I, and I, are augmented moments of inertia of the two bodies
m,m,

(see Sreenath, er. al. [1988] for the definition), € =
. ’ m,; + m,

is the reduced mass and d; are the

distances from the center of mass to the hinge point for body i. We remark that (6) can be
integrated explicitly (see for instance Frohlich [1979]), although the corresponding formula for n
bodies is rather complicated.

Formula (4) can be derived from our Proposition 5.2. Indeed, we assert that the formula ‘

(10) in Section 5B gives formula (4) above as a special case. To see this, first note that the
connection Y, is given from the remarks following Corollary 3.6 by

e-Jd
Timech = —— | %
e-Je

Indeed, it is easily verified that (7) defines a connection one form and it is clear from its expression
that its horizontal subspace (i.e., the kernel of (7)) is the (metric) J-orthogonal complement to the

L. orbits, that is to the space spanned by the vector e. The general formula from Proposition 5.2
is

+( _ds ®
- J. 0 ucQ(qh(s)) P

In this formula, the phase ¢ is the phase in the S! fiber for the reconstructed motion. In our
case, the projection Q — S has a fiber which we identify with the phase of the first body, namely
with Aql. By definition, the term % is the holonomy for the connection ¥, . This is most
easily computed using the formula (10) of §4.B. Indeed, here one interprets the matrix M as the
derivative of a global section s for the bundle Q — S and so the pull-back of the form (7) is just

. TMd#

§ 'Ymech = &C'(JTC)

whose integral is the second term of (4). Thus, the second term of (4) is exactly the geometric
phase, that is, the first term of (8). To deal with the second term of (8), take { = and use the fact

. n
that §Q(q) = £ z aiq‘ =Ee, as we have seen. Thus,
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IEq@pGII? = (GNP = &l eI =EP%e: T,

recalling that J depends on the joint angles only, so that this expression does not require the
computation of the horizontal lift g, , but depends only on the reduced variables. Thus, it is clear
that the second term of (8) gives the first term of (4), so our assertion is proved.

When the reduced curve bounds a surface in § (which need not happen if the curve has
non trivial homology class on the torus—that is, if it winds around the torus nontrivially) then the
holonomy can be converted to a surface integral of the curvature of the mechanical connection.

Formula (5) of section 5B provides an alternative formula for the phase in the case there
are no torques. (Torques are not allowed in that formula since it involves the energy of the reduced
curve and with internal or external torques, this need not be conserved.) To include the possibility
of torques, one replaces the term ZHHT with the integral of 2Hp along the reduced curve. That

is, we have

Aq! = iU [ 0.+ 2m ] | | ©)

where

1 L '
(H) = fjo H,(6(1) dt .

In this formula, note that the reduced symplectic form is on T*S = T*T™! and the surface D is
chosen to span the curve (9, py), where Pe is the conjugate momentum to the joint velocities 6.
Note that the computation of the double integral in (9) involves the magnetic terms of the reduction,
which involves the computation of the curvature of the mechanical connection. Also, the reduced
energy Hu is rather complicated. It is computed in Sreenath er.al. [1988]. One substitutes (3) in
(1). This expression involves the amended potential for the reduction. '

Tt seems, therefore, that for examples like coupled rigid bodies, the approach using the
mechanical connection rather than the canonical one form conmection A gives the most tractable
results.



§6 Averaging Connections

The purpose of this section is to define the Hannay-Berry connection by the averaging
process. The main properties of such connections are given here and will be shown to characterize
the connections in the next section.

§6A Families of Actions

Let n: E — M be a Poisson fiber bundle, i.e.,, T isa surjective submersion, all fibers are
Poisson manifolds, and the transition functions are Poisson maps. Let G be a Lie group. A
Jamily of Hamiltonian G-actions on E is a smooth (left) G-action on E such that each
fiber ®~(m) is invariant under the action and the action restricted to each fiber is Hamiltonian,

i.e., itis Poisson and it admits a fiberwise momentum map I:E — g*. This means that for each

&e g, we have
D) = X(p) 1)

where §q(p) = i— I (exp €§-p) is the infinitesimal generator of the action defined by & and
1=0

X,(p) is the Hamiltonian vector field on the fiber through p defined by the function I5: E —» R
restricted to this fiber. Here, I5 denotes the real valued function defined by Ié(p) I(p)-€ , for
P€E and £ g. Since the action on each fiber is Hamiltonian, the symplectic lcaves of the

fiber are G-invariant. Also note that the Casimirs are G-invariant.
An Ehresmann connection on n: E — M is called Poisson, if its horizontal lift is a

Poisson bracket derivation, i.e.,
(hor Z)[{£, h}] = {(hor Z)[f], h} + {f, (hor Z)[h]} . @

forall f,h:E >R and Ze X(M). Here, the bracket means that the functions are restricted to
the fibers and the bracket is computed fiberwise. Equivalently, (2) says that

D{f, h}'X = (DfX, h} + {f, Dh-X} o @

forall X e X(E), where D is the covariant differentiation defined by hor. As we shall see later,
our two main examples, the Cartan connection and the Hannay-Berry connection built from it (or
from another suitable connection) do satisfy the condition (2).

56
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If the fibers are symplectic, this notion is the same as that of a symplectic connection.
Symplectic connections have been studied by Lichnerowicz [1978], Hess [1981], Marsden, Ratiu
and Raugel [1990], and Guillemin and Lerman [1989].

At present, these two structures -- the connection and the G-action -- have no relationship
to each other. The goal of this section is to show how a given connection can be altered so that

DI =0 : 3)

holds. (In doing so, we may also have to alter I by adding to it fiberwise Casimirs.) .

6.1 Theorem: Averaging of Connections Let n : E — M be a fiber bundle and Y e
QUE, V) an Ehresmann connection. Suppose the compact Lie group G acts on E by bundle
transformations, not necessarily covering the identity. Then the average &) of vy isalsoan

Ehresmann connection. Moreover the G-action commutes with the action of parallel translation
with respect to {Y).

Proof Since v is vector-bundle valued we have to be careful in deﬁniﬁg its average. If g isa
bundle automorphism we define the pull-back g*y of ¥ by '

(g*V)(e)v = Tgly(ge)Tgv.

This works because Tg maps V to V. Define the average of y by

= IGII (g*Y) dg Q)

where dg is a Haar measure and {G]| is the total volume of G.

To check that the V-valued one form (y) is a connection one-form, we need only check

that it is the identity on the vertical bundle V. Indeed, if ve V then g yv=v, so that

__.1_J' . _LJ‘ L
(Y)v_IGI G(g’Y)Vdg—lGI G Vdg = V.

One alsochecks that
g =(y) for ge G.

It follows that G takes (y)-horizontal spaces to {y)-horizontal subspaces. Now let c(t) be a curve

in M and T a horizontal lift of c. It follows that g€ is a horizontal lift of g-c. (Since G acts

by bundle automorphisms it induces an action of G on M.) Thus the G-action commutes with
parallel translation. (Note that this Proposition ‘still holds if 7 : E — M is just a submersion.) Bl
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§6B The Hannay-Berry Connection

We now return to the setting where G defines a family of Hamiltonian G-actions. Fix a
Poisson Ehresmann connection with horizontal lift hor, and corresponding covariant

differentiation operator Dy, -

6.2 Definition The Hannay-Berry (HB) connection induced by the Poisson-Ehresmann
connection hor,, is the Ehresmann connection on T : E — M obtained by averaging hor

according to equation (4). We willlet D denote its covariant derivative, hor its horizontal lift,
and ye QUE, ker Tr) its connection one-form. -

If A is any tensor field defined along (as opposed to on) a G-invariant submanifold of E,
its average ()) is the smooth G- invariant tensor field of the same type defined along the same
submanifold by

D Y B
W =rg7), @b,

where @ : G xE > E is the G-action on E. Note that (A) is a G-invariant tensor field.

6.3 Proposition Suppose G is compact and connected. Then the HB connection satisfies
the following properties:
i [Itis Poisson.
i Ifve TmM then its HB horizontal lift is given by horv = (hor, v).
iii  hor Z = horyZ + Xy ,, for a smooth function K-Z:E >R and Z € X(M).

IV The connection one-form of the HB connection is given by

) = %) = X pry @), for ve TE. 16

v (K-Z) is a fiberwise Casimir function.
vi DAY = (DA = {dA)oP, .forany Ae Q¥E), k=0, 1,.., where P

hor * is the

hor
horizontal projection relative to hor.

vii  DIShor Z = (DyI%hor Z) is a Casimir for each &€ g and Z e X(M). Moreover
DI=(D,I) and hence DI =0 jff (D I)=0.

Remarks

1 The function K in property iii can, in many examples, be constructed using symmetry
properties. See §8.
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2 Property Vi holds for any averaged connection. The rest of the properties are
consequences of the following general principle:

If E has structure group G, and both v, and G preserve this structure, then (y,)
also preserves this structure. In the HB case, G is the group of Hamiltonian
automorphisms of the fiber. '

Instead of trying to prove this general principle, we will prove proposition 6.3 "by hand."

The proof of part iv of proposition 6.3 will follow from a lemma which we prove first. ¢

6.4 Lemma Ler n:E — M be a Poisson fiber bundle and hor, be the horizontal lift of a

Poisson-Ehresmann connection. Then
fhoryZ, X(] = X 4t horgZ

- In particular, if E is also endowed with a family of Hamiltonian G-actions with parametrized
momentummap 1:E — a* | then

[horyZ, &gl = Xdﬁ.horoZ

forall Ze XM) and £ g.
Proof Forany g:E — R we have

[horyZ, X¢llg]l = (horgZ)[Xdlgll — X (horyZ)(g]]

(horyZ)[{g, £}] — {(horyZ)(g], 1}
= {g, (horyZ)[f]} = X(horOZ)[f][g]

and the first formula is proved. The second follows from the first and the equality €= XIg . n

Proof of 6.3 S
ii Let ve T M. horv is defined by the two conditions: Tr-hor v = v, {y)-hor v =0.
- Since Tm-horv=v and G is fiber-preserving, {horyv) automatically satisfies the first

condition. Therefore
(horgv) = horyv+Y 5)

where Y is some vertical vector field on E . Since {(horyv)) = (hor,v), we have (Y) =0.
We now check that (horyv) satisfies the second condition. It is automatically G-invariant:
TO g-(horov)e = (horov)g,e' Thus
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1
(Yp)e:(horgv) = EJ’G Td;y(g-e) T @ (horyv), dg

IGI J T<I>“ “Yo(g-e) (horov)gedg

1
= — T<I)‘1 e)-((hor,v). _+ Y )d
G| “Yo(g-€)-((horyv), . ge)d8

_1 -
|G|J oY, dg = (Y) = 0,

and the second condition is satisfied.
iii Since G is compact and connected, the exponential map is onto. We can write g =
exp § for some &€ g. By Lemma 6. 4,

d):(ho'rOZ) —horyZ J. @ (I)exp té(hor(,Z)dt = J (Dexp ta[é’;E, hor,Z]dt

* -
_Io¢exp & Xart . hor,Z dt = ‘J OXd):xp‘g((dIE . horoZ)dt = Xt,()
where

1
(g = —J()(D:xp t§(dI§-h0rOZ)dt :E-R,

a smooth function on E. The function f; depends on E e g . Since there can be more than one
way to write g =exp§,let g=expn for some other M e g and denote by h,(g) the

corresponding smooth function on E. Therefore
% - —
CI)g (hor Zy) — hor Z, = sz(g) = Xhz(g)

ie, f;(g)—h,(g) isfiberwise a Casimir and in particular is G-invariant. Therefore

Y = hor Z -hor,Z = {(hor,Z)—hor,Z = 1 ®*(hor Z,)dg —hor, Z
0 0 0 1G1 g e 0 0

1

= E ((I)*(horOZ) horOZ)ig Gl J sz(g)dg = Xz
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1
IGl ¢

difference of their averages is again a Casimir, so any two possible K-Z's differ by a Casimir,

where K-Z = f,(g) dg. Since any two possible f;(g)'s differ by a Casimir, the

which makes Xy, well defined.

i Foreach Ze X(M), horyZ and Xy, are both Poisson derivations. Thus, hor Z,
which is their sum by i, is a Poisson derivation.

iv This is a restatement of iii . '

v Since G acts canonically on the fiber and using the definition of the average,

0 = ((horyZ) — horyZ) = (hor Z - horyZ) = Xy ) = Xkzy

Therefore (K - Z) is fiberwise a Casimir.
vi We prove the result for A =f, a function on E, the proof for general k-forms being
similar. Letting Z € X(M) and using that hor Z is G-invariant, we get

1

D{f)horZ = d (lGl

j (I)Zfdg)- hor Z = —1—J @ (df-hor Z)dg = (df-hor Z)
G IGl g - ‘

1 J’ * 1 *
= ——| & (DfhorZ)dg = (—j D (Dt)dg) horZ =-{(Df)-hor Z .
IGlJg & IGlJg B

We have proved that D(f)-hor Z = (Df)-hor Z = {df-hor Z). Since Q:ﬁE =&, forany Ee

q and ge G, we have

1

<Df>'§]-: = I_G—I'

: LU ot e
fG @00 E; a5 = - J’G @O £ = 0

since Df-E; = 0. Therefore both D{f) and (Df) vanish for vertical vectors, proving the equality
D(f) = (Df) . Finally, since (Df) o P, . vanishes on vertical vector fields, the string of equalities

in Vi is proved, if we show that
{df)-hor Z = (Df-hor Z) = {df-hor Z)
for all Z € X(M) . But this has been shown above. _ :
vii Since hor Z is G-invariant, [horZ, &;] = 0 forall Ee g . But & = X £ 50

by lemma 6.4 we have XD[§h 7= 0. Thus DIS-hor Z is a fiberwise Casimir. Since G
-hor Z - ) .

acts in a Hamiltonian fashion, it leaves fiberwise Casimirs invariant. Consequently by iii,
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DI%hor Z = (DIShor Z) = (d15-(hory Z + X))
= (DgI%horyZ) +(dI5Xy ) = (Dyl)-hor Z — (§[K-Z])
= (DgI%)-hor Z - £ [(K-Z)] = (D,1%)-hor Z.

Thus DI¢ and (DOI§) coincide on horizontal vectors relative to the HB connection. Since both
vanish on vertical vectors, we get DI5=(D/I%). W



§7 Existence, Uniqueness, and Curvature of the

Hannay-Berry Connection

In this section we show that the HB connection is the unique Ehresmann connection on T :

E — M satisfying three conditions. We also calculate its curvature. As in §5, we assume E has

a family of Hamiltonian G-actions with a parametrized momentum map I:E— g andlet hor,,

denote the horizontal lift of a Poisson Ehresmann connection. The proofs in this section are almost

verbatim from Montgomery [1988].

§7A Characterization of the HB Connection

7.1 Theorem Let hor be the horizontal lift of an Ehresmann connection on n:E - M

satisfving
a

b

Then

DI =0, where D is the covariant differentiation given by hor ; this says that parallel
translation relative to hor preserves the level sets of 1,

hor Z = horyZ + Xg.; for a smooth function K-Z:E — R where Z+> K-Z is
linear,

{K-v) is a Casimir funcnon on ®Y(m) where ve T M replacing K-v by

K-v —{K-v) , we can assume that this Casimir is zero.

such a connection is umque,

such a connection exists if and only if the ‘adiabatic condmon
(D()I> =0 N (A

holds, in which case it is the Hannay-Berry connection, and its covariant differentiation
on functions is given by

Dfu = Dyfu + {f, KTn(w)} ' @

forany ue TE.

Proof i Suppose there are two horizontal lifts hor,, hor, satisfying @, band ¢. By b,

hor,v = horyv + XKl_v , hor,v = horyv + XKz-v . Thus hor;v — horyv = XKl-v—Kz-v so that by

a, dI'XK1~v—K2-v = 0. Therefore, for each & e g,

63
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0= dI‘i-xKr,,_Kz_v = —E.[K;v - K,v]

and thus K;-v - K,v is G-invariant by connectedness of G. In particular K;-v —K,v =
(K;v = Kyv) = (K;-v) = (K, V) =0 by €. Therefore K;v=K,v for any ve TM and
the two connections are equal. . ‘

" il Forany £€ g and Ze X(M), b gives

0 = DI5hor Z = dIShorgZ + dI8-X ., = D I5hor Z — EL[K-Z]

so that using € and proceeding as in 6.3vi, we conclude
0 = (DgI8)-hor Z — E-[(K-Z)] = (DgI)-hor Z .

This shows that (A) is a necessary condition for existence.
Now assume, conversely, that (DyI) = 0. The HB connection satisfies @, b, and ¢ by

proposition 6.3. ‘
Formula (1) is an immediate consequencé of -6.3iii.

Remark We call condition (A) the 'adiabatic condition' because in the context of a family of

completely integrable systems this equality is the content of the classical adiabatic theorem. See
also §9.

7.2 Corollary If G is semisimple and 1 is equivariant the adiabatic condition (A) holds.

Consequently, the HB connection satisfies property a, b, and € of Theorem 7.1.

Proof By properties vi and vii of Proposition 6.3, DI = (DI) = D(I). By equivariance Mmé =
I® forevery £Ee g. Now (£) is an Ad-invariant vector. Since G is semi-simple this means
€)=0, consequently (I) =0, and thus DI =0. (Recall that for semisimple Lie groups the adjoint

representation is irreducible.) m

7.3 Corbllary Suppose, for each ve T, M there is a function K-v:n-l(m) —» R
satisfying

dl&horgv + {15, Kv) = 0 @
forall & c g. Set Kv=Kv-—(Kv) and horv= horyv + Xy . Assume (DgI) =0.

Then hor defines the HB connection.
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Proof hor so defined clearly determines an Ehresmann connection satisfying properties b and
¢ of 7.1. To prove property a, fix £ € g and compute for Z e X(M)

DI5-hor Z

dI5-(horgZ + Xy.;) = {I5, K-Z} + dI>horyZ

(15, K-Z) + dI5-horyZ — {15, (R-Z)} = E(K-Z)] = 0

by G-invariance of (K-Z) . By uniqueness, hor defines the HB connection. M E

§7B Curvature of the Hannay-Berry Connection

7.4 Corollary In addition to the hypothesis of 7.1, assume that the curvature Q, of hory is
Hamiltonian i.c., ﬁO(Zl, Z,) = XK~(ZI, Z,) for some K-(Z,,Z,) : E >R . Then the curvature

Q: XM) x XM) — X,.(E; M) of the HB connection is also Hamiltonian, and given by

NZy,Z) = X _(kz,, KZ) + KZr Zo) - €)

Proof By definition of curvature,
Q(Z,,Z,) = hor[Z,, Z,] - [hor Z}, hor Z,] .
Write hor Z, = horyZ, + XK~Zi ,i=1,2, sothat by Lemma 6.4,

fhor Z,,hor Z,] = [horOZ1 + XK_Zl , horOZ2 + XK-ZZ]

= [horgZy, horgZ,) ~ Xyx 2,y horyz, ¥ Xa 2,y horyz, =~ X1k Z,. K 2Z5)
= [horgZy, horgZy] + X, _ o . @

where
F,=-{KZ, KZ,} +‘(_1(K-Zz)-horoz1 - d(K-Z,)-horyZ, . (&)

Let us show that F), — K-(Z,,Z,) satisfies
di&horg[Z,, Z,] + {I&, F, - K-(Z;, Zp)} =0 - (6)

forall Ee g. Indeed

di-horg(Z,, Z,] + {15, Fy, — K(Z,, Z,)} = d15(horg[Z,, Z,] - [horyZ;, horyZ,])
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+ dI%[horyZ,, horyZ,] + {I5, F,,} — {18 K:(Z,, Z,)}
= (horyZ,)[(hor Z, ~ XK_ZZ)[I§]] — (horgZ[(hor Z, - Xy 7 I + (15, Fy)
= = (horyZ)[{15, K-Z,}]1 + (horgZ,)[{1%, K-Z,}] + {I5, F,,}
= — {(hor Z)[1%] - Xg 7, [, K-Z,} = {15, (horoZ )IK-Z,]} +

{ (hor 22)[151 - XK,Zz[IE], K-Z,} + {15, (horyZ,)[K-Z,1} + {15, F,}
= {{I5 KZ,}, KZ,} + {{K-Zy, I8}, KZ,} - {15, (horyZ))[K-Z,)

= (horgZy)[KZ,] - F, )

=-{{K-Z,,K-Z,}, 5} - {5, (K- Z,,K- Z,}} =0

so (6) holds. Therefore, by 7.3, F,, - K-(Z,, Z,) ~ (F,, - K-(Z,, Z,)) is the Hamiltonian
function generating the HB connection for [Z,,Z,], i.e.,

hor(Zy, 251 = Xy, 710 = Xk@, 29k @ 20 + 1O%0lZ1> 23] -
By (4),

©Z,,Z,)

hor[Z,, Z,] - [hor Z,, hor Z,]
= XF12-(F1 ) XK-(ZI. 7 -KZp ) T horylZ,, Z,] — [horyZ,, horyZ,] - XFlz

= X ry ™~ X2 2t Xz zn t o5 Zy)
= Ximpy+ KTy Zo))

By 6.3vi and G-invariance of hor Z, , the condition (K-Z,) =0 implies

D(K-Z,)hor Z, = (D(K-Z,))-hor Z, = d{(K-Z,)-hor Z,)

0 =
= (d(K-Z,)-horyZ, + d(K'Zz)'XK-zl> ;
ie., »
(d(K-Z,)-horyZ,) = {({K-Z,, K-Z,})
and similarly
- (d(K-Z,)-horyZ,) ={{K-Z;, K-Z,}) .
Therefore

(Fip) = —{{K-Z,, K-Z,}) + (d(K-Z,)-horyZ,) — (d(K-Z,)-horyZ,)

~((KZy, KZy)) + ({KZy, KZy))+ ({KZ,, KZ,))
(K-Z,, KZ,}) . "



Symmetry, Reduction, and Phases in Mechanics 67

§7C Hamiltonian One-forms

From Theorem 7.1, it follows that the HB connection is uniquely determined by the one-
form on M given by Z e X(M) > K-Z € functions on E modulo fiber-Casimirs. This
function is in general not G-invariant since hor,. isn't. We shall call this one-form the

Hamiltonian one-form of the HB connection.

7.5 Theorem Ler n:E — M be a Poisson fiber bundle having a family of Hamiltonian G-
actions with parametrized momentum map 1:E — 8™ and Poisson-Ehresmann connection hor,,.
Assume that the curvature Q of hor, is Hamilionian, i.e., Q(Zl, Z,)= XK-(ZI,ZZ) for all Z,,

Z,e X(M). Ler L(g, (XE)) be the vector space of linear maps of the Lie algebra-8 of G to the
space (AE) of fiberwise Casimir functions. Then (Dyl) is the pull-back of a closed. 1(8, ((E))-

" valued one-form on the base M .

Proof We show that (DOI§) is a closed form for any & € g . First, we prove that (DOI§)
vanishes on vertical vectors u € ker Tpn: . Indeed, ‘

& pyu = ——| ®*D Ep)rudg = ——| di& P
D5 P)u |GIJG QDD dg = L jG A5, () Py (T, B, g . (7)

where Phoro is the horizontal projection defined by hor,, . Since u is vertical, so is Tpd>g(u)
because T o (Dg =7 . Therefore Phoro(Tp(i)g(u)) =0 . Thus the integrand in (7) is zero and hence
(D) p)u=0. | .

Second, we show that d{Dgl) vanishes on horizontal lifts. By 6.3vii, for Z,, Z, €
X(M) we have

(D )hor Z,, hor Z,) = (hor zl)[(noiﬁ)-hor Z,] ~ (hor Z,)[{D,1%)-hor zi]
— (DgI%)hor Z,, hor Z,) |

(hor Z,){DI>hor Z,] ~ (hor Z,)[DI>hor Z;]

Il

(hor Zl)[dI§~hor Z,} — (hor ZZ)[dlg-hor Z,]
&(di%)(hor Z,, hor Z,) — dI5Q(hor Z,, hor Z,)
{15, ({K-Z;, KZy)) — (K- Z,, Zp)))} =0

by G-invariance of the {({K-Z,, K-Z,}) ~ (K-(Z,, Z,)) and conservation of momentum maps.
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By step one, &D, I5) vanishes on any pair of vertical vector fields. Indeed, if V,V,
are vertical vector fields, then sois [V, V,] and thus

Ay YV, V) = VDIV ,] = VDgI®-V,1 = (DgIeH[Vy, Vo) = 0 .

Finally, let s show that d(Doig) vanishes on a pair formed by a horizontal and a vertical
vector field. Indeed, for Ze X(M) and V e X, (E; M),

d(D18)-(hor Z, V) = (hor Z)[(DI%)-V] - VI(D,I%)-hor Z] — (D yI5)-[hor Z, V]
"= - VIDE-hor Z] = — V[dI>hor Z]
By 6.4, X e hor Z
Casimir function on every fiber, i.e., as a function of E with values in ((E) , it is constant.
Consequently, as a ((E)-valued one-form d(D, 15) -(thor Z, V) = 0. :
These four steps prove that:
i d(DgI%) =0
il (DyI%) is a one-form on E vanishing on vectors that are tangent to the fibers and
(D% - hor Z = dI%- hor Z is constant as a - ((E)-valued function on E, ie.,
(DOIE) is the pull-back of a one-form o on M with valuesin (AE) .

Since w is a surjective submersion, ii implies that dot, = 0.=

= [hor Z, ?;E] =0 since hor Z is G-invariant. Therefore di hor Z isa

7.6 Corollary In a simply connected neighborhood U of any point mye M there is a
L(8, (XE))-valued function f on U such that T'= (I +fom) | n (V) satisfies (DI)=0.

Proof Let o denote the L(g, (XE))-valued one-form on M whose pull-back is (DyI) and
define

f(m).= fj:O «

where the integi‘al is taken over any path connecting ‘my, to an arbitrary point me U. By simple
connectivity of U, f is well defined, and so df =—o on U. Then Do(f of) = dr™f = n*df =
-a=-(D, 1‘5) : .

~In partlcula: if M is simply connectcd, the parametrized momentum map I can always be
chosen such that (D, I) = 0. Thus, for Poisson fiber bundles with simply connected base, the HB

connection preserves the level sets of a carefully chosen parametrized momentum map of the
Hamiltonian G-action. ' ' ' ’ ' -



§8 The ‘Hannay-Befry Connection in the Presence
of Additional Symmetry

~ In this section we use symmetry to simplify the computation of the HB connection. Letting
1:E->M I:E—> g*, and hor, be as in the previous sections, assume there is another Lie
group H acting on the left on E leaving I invariant, i.e., I(h-p)=1I(p) forall he H and p
e E. If ne B, the Lie algebra of H, the vertical projection Mg — hor Ng is a-vector field
tangent to the fibers of E; Phoro denotes, as usual, the horizontal projection relative to hory. We

say that the H-action is Hamiltonian if there is a function J : E — B*, called the momentum
mapping such that ' .
Me ~ Phor JE = Xm : , M)

where Tp) = JM)(p). In parﬂcular, the G-action is Hamiltonian. .
In the examples, H acts by bundle transformations on E. This means that the action

covers an action on M. In the examples, the group G is isomorphic to the isotropy subgroup of a
point m of M ie, G=H_.

In I5h P = Ep), let £ g, h = exp i1, and take the time derlvatlvc at t=0 to get

= A1) ME(p) = AIEEI X (@) + d15) Py M)

= dI5p) Py, @) + (157} )
By 7.3,

Kovg = "= (™, - @

where Vp = Tpfc(nE(p)) € Tn(p)M has horizontal lift relative to hor, equal to P hor, NeP). This

will determine the Hannay-Berry connection if T,,M = Tpn({nE(p) Ine a}). We have proved:

8.1 Pro/position Let m:E—->M be a Poisson fiber bundle with a family of Hamiltonian G-
dctions with parametrized momentum map 1:E — a* andwitha Poisson—Ehrésmann connection
hor,. Assume (Dgl) =0. Let another Lie group H act on E ina Hamiltoniqn fashion with
momentummap J:E — B*. Assume that H leaves 1 invariént and that the tangent spaces to the
H-orbits on E project by TR onto the corresponding tangent space of M. Then the HB
connection satisfies (2).

As in Montgomery [1988], formula (2) is useful for computing the HB connection for’
many interesting systems. We now set the stage to illustrate the usefulness of this idea; the results

69
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will be summarized in Proposition 8.2. Assume that E = P x OC , where O,; is an adjoint orbit
of a compact Lie group G and { is a regular element, so the adjoint isotropy subgroup G§ isa

maximal torusin G. Assume P is a Poisson manifold and endow E with the trivial connection
whose horizontal subbundle is 0 x OC c T(P x OC) . This connection is a Poisson-Ehresmann

connection on P x. OC Let {,) be a bi-invariant metric on g and use it to identify ¢* and g.
Assume that the G—actxon has an equivariant momentum map J:P — g* and define I:P x O;
— g by

(I(P, A = J), i,(W), 3

where A e 9 and L,‘ gg — g is given by an\,) Ad;A, where he Gq is chosen to satisfy
n=Ad,{. Such an he GC always exists since 1 € Og and the definition of 1“ is 1ndcpendcnt ‘
of h since GC is abelian. Since GC is a torus, the functions p— (I(p,n),£), £ g ¢ generate
a torus action on P, depending smoothly on 1. This action, together with the trivial action on
OC defines an action of Gg on P x 0;‘ with parametrized momentum map I. Since ig,,q(l) =
g-i.n(k) for any X_e 8¢ and ge G, the bi-invariance of the metric {,) and the equivariance of
J imply that I is invariant under the G-action on P x O,; ; the momentum map of this action is
PN -JpE)-n.

We can apply Proposition 8.1 to this situation, with H there replaced by G, and G by
GC‘ We begin by verifying the adiabatic condition (D,I) =0. Since any vector tangent to OC at
h is of the form [, n] for some & e g, thenfor Ae g and v, e TP, we get

(DyI(p, (v, [ﬁ, 1, A) = {dI(p,n)-(0, [§, N1, A) = {J(p), [E, LMD = (Ad,_,[J(p) €1, A),
whence ) )

Dl(p. M), 15, = Ady_PI(p), &) @

where Ad,{=m and Py :@— g, is the orthogonal projection relative to the metric (, ).
Taking the Gc-average of (4), we get

(DD(p, M)- (v, [€, 1D = (P LI®), &) - &)

Writing §=§ +&,, where £ € g and &€ gé , we conclude that” [J(p), €] = [J(p), &,] ,
since gC is abelian and both J(p) and &, belong to 9. Therefore, c[J(p) §2] =0 since
(9. @ C] c gg and we conclude that (DyI) = 0.
_ By (2), the Hamiltonian one-form of the HB connection for pe P, ne O; and Ae g,
is given by
K-Ao)P, M) = Hp, ) = (PHp.m) ®)

However
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1 1
<Jx<,n)—— (cD*Jl)(, )dg = — J*(‘,Ad )d
P G, p, M) dg Gy gp, Ad,n) dg
=L | Mepdg-n-= (J@),#J Ad 1>~dg> -n.
IGyl 7 Gy Gyl Gy &

A=k +A, whcre')»eg11 and A, e g}, then Ad, A =X\, and Ad, 1)\,2& a; = gé,

so that .
| M) = dE,A)-n . B Q)
Therefore, by (6) and (7),

(K Jo 1) = G, 2 o ®)

where ]PTJ": g — gTJl‘ is the orthogonal projection relative to the metric (, ). Therefore by 6.3

the horizontal lift of the HB connection has the expression

(hor Kog(ﬂ))(P, n = (ij,fa)’ Xog(n)) ®)

and the connection one-form is

Y - Ao M) = V= X phay® (10)

for all v, € TP and Ao, (n) eT Og The curvature is given by the Hamiltonian vector field
whose Hamiltonian is the average of {K- Xog(n), KA/ (n)} = {J]P"’~ JIP""'} = jlPmA , PTV]
(see Corollary 7.4), i.e.,

B0 AGMIE. W = (X et pbgy®:0)- D

Finally, let us compute the holonomy of a given closed path M(t) in OC’ where M(0) =

v N(1) =n, Itis a diffeomorphism of the fiber P in = : P x OC - Og obtained by parallel

transport along the path M(t). To compute it, consider the principal Gg-bundle_ 6:G— OC’ o(g)
= AdgC and endow it with the canonical connection y_ e QYG; g §) given by

Ye(8)vg = BTL ,(vy) . o 12)

where v e € TgG and ]P’,; i Al 14 is the orthogonal projection relative to the bi-invariant metric

{,). The horizontal lift of this connection is given by
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(horAg(M)(E) = TR,@rd),  for n=AdL . (13)

The curvature of this connection, thought of as a one-form on the base Og with values in g,; (the
adjoint bundle is trivial since GC is abelian), is therefore given by

curv (Mo, Ao M) = PAd[P7A, P] = Ad(ByiA, M- [P, A (14)

where n = Adgt_,.' According to Corollary 4.2 the holonomy of the standard connection Y. on
¢:Go OC is given by h_ = exp(—_'_” curv(yc)) € Gg , where the integral is taken over any two-

mainfold in OC whose boundary is given by the closed path 1(t) . Let us rephrase this'in terms
of horizontal lifts of curves. By (11), if g(t) is the horizontal lift of n(t) in G, then it must
satisfy

gO = T, RyyProh): 3

where M(t) is the solution of ’r] ® = [M1), n(®] , and the holonomy h_ e GC is characterized by
g(1) = hg(0) . 7 (16)

We shall use this to explicitly compute the holonomy of the closed path N(t) in ®: P x O;

- OC - By '(9).if (p@), n(®)), p(0) = P> h(0) =M, is the horizontal lift of the path 1(t) we

must have :
PO = X plao®®). PO = p -

But by (15), ]P’:]‘([)l(t) = Tg(t)Rg(t)_1 8(t), where g(t) is the horizontal lift of TN(t) in the canonical
bundle 6:G > OC .- Therefore, by definition of the momentum map, p(t) satisfies the

differential equation
p(t) = (Tg(:)Rg(:)-l é(t))‘, (@M, pO) = p, - an

Now consider the curve g(Og)1- Po» Where g(t) is the solution of (15). Note that at t=0
this curve passes through Po - Using the general formula Tg(d{(p))(vg): (TgRg—l(vg))P(g-p),

where @ : G xP — P is the given G-action, we see that
d ’ "
a E0EO Py = (TyRypng” ©), &0, g0)1-py) (18)

i.e., by (17) and (18), p(t) -and g(t)g(O)Tl-po. satisfy the same differential equation, so, by
uniqueness, p(t) = g(t)g(O)‘l-po and hence by (16), p(1) = g(l)g(O)‘l-po =h_p, - We have
proved the following:
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8.2 Proposition Let P be a Poisson manifold and G a compact Lie group acting on P

with equivariant momentummap J :P — @* . Let { € @ be a regular element and ¢onsider the
forus action on P whose momentum map for each v € OC is given by

where i : 8, — G _is given by in(?») =Ad;(A) for he GC satisfying n = Ad L. Ler G,; act
trivially on the adjoint orbit Og . Then the trivial connection on T : P x O,; - OC induces the HB

connection whose Hamiltonian one-form, horizontal lift and connection form are given respectively
by -
(K-2, D@, 1) = J(@), Prr)

(horfd, D@ ) = (X i@, D)
'Y(P, T\)'(Vpa [)"1 Tl]) = Vp - XJ]P;"‘(},)(p)

for he g, ne OC’ pe P, v, € Tp-P . The curvature of the Hannay-Berry connection, as a
two-form on the base with values in g g is given by

Q (L IV, D, m) = (— X w00, po0, P 0).

The Hannay-Berry connection preserves the level sets of 1. The holonomy of the closed path
N in OC is the diffeomorphism of P given by the action of the group element h ' representing

the holonomy of N\(t) in the canonical bundle o : G — 0.
Remark When the Gg—actlon is free, there is an alternative description of the bundle and the
HB connection on I'1() within P x OC Consider the two projections
p; P,
O ¢« T — I'/e.

By equivariance, p,(p3'(x)) = O foreach x e I‘l(p.)/G By freeness, p3l(x) = G. Thus,
restricting p, to p; 5!(x), we have the homogeneous bundle G - O; = G/Gg Consequently,

I—l — 1
w xe&;@ P

is a bundle of homogeneous bundles. In the case of the Foucault pendulum, I"Y(u)/G is a point,
so that I''(u) = G = 80(3).



§9 The Hannay-Berry Connection on Level Sets of the
Momentum Map

By property @ of Theorem 7.1, the HB connection induces a connection on any level set
of I Indeed,if pe a* is a (weakly) regular value, then TP(I‘I(u)) =ker dI(p), and property
a states that dI(p)j vanishes on horizontal vectors, i.e. the Hannary-Berry horizontal lift at a point
of I"1(n) is necessarily tangent to I-!(u) . The proof of Theorem 7.1 i shows that this
connection is unique with the properties b and ¢.

9.1 Propositioh The HB connection induces a unique connection on each submanifold
I-Y(w) (for w a weakly regular value) satisfying properties b and ¢ of Theorem 7.1.

There is another way to describe this connection. Fix a weakly regular value pe g* of I
and let m, : I}(u) > M be the restriction of ® to I")(u) . Let us assume that m, is surjective.

This is in g¢nera1 not the case. If G =T", Golin et al. [1989] prove that T, is surjective; see also
Proposition 10.6 where we sketch their proof. Let us assume throughout this section that T, is
surjective. It is'also a submersion : Tr restricted to any horizontal subspace is an isomorphism
onto the corresponding tangent space to M and, as we jhst argued, ker dI(p) contains the

horizontal space at p. The group G does notacton I () , but the coadjoint isotropy subgroup
Gu does. For Z € XM), define

1

horpZ = (horOZ)u = m
1}

k
J.Gp, (I)g (horyZ)dg , )

where IGul is the volume of Gu in the induced Haar measure dg on Gu from the one given on
G . As before, we assume that m: E — M is endowed with a Poisson-Ehresmann connection
hor, . A priori, it is not clear that horuZ is a vector field tangent to I"(i) . To show this, let
peIl'l(u), m=n@p),ve T M, and § e g,,, the Lie algebra at Gu . By equivariance of 1 (if
it is not équivariant, work with the induced affine action of G on g* — see Abraham and
Marsden [1978, Proposition 4.2.7] for this procedure), we have \ e

-1
@)

Ip) (Ad_I@)E = AdSp-E = &
Ip) (§) = ) = Bgp) = (@;190) ,

so that

1
by ) = 1o J 915 @} Corg(erig

74
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- J' dIE™4(p)- &} (horgv)(p)dg

1G, I
= f q>*(1) 15-hor,, v)(p)d
IG | 0 p)ag
-3 Ij (LD hor, N = (DI, o 0

Therefore, denoting by Du' the covariant derivative induced by hor,, we get the analog of

Proposition 6.3 vii,
DPI = (D(',I)u . ' - V)]

~ Thus (DyI), =0, iff D,I=0 and hor,v istangentto I"'(u).
0/p W i

The verification of properties b and ¢ is done as in Proposition 6.3 with G replaced
by Gu’ E by I'l(u), and G-averages by Gu—averages. Therefore by Proposition 9.1, (1)

defines the unique connection on I"(u) - M satisfying properties b and. ¢ of Theorem 7.1,
since if (K - Z)u = 0, by Fubini's theorem on bundles, it follows that (K-Z) =0. We have

proved the following:

9.2 Theorem In the hypotheses of Theorem 7.1, assume in addition that T-'(u) » M is
onto for all weakly regular values |\ and (DOI>)1 =0 forall pe€ g*. Then (1) defines the
induced HB connection on Y1) - M for all weakly regular values HofI.

Remark If I"''(u) > M is a principal G, -bundle, then the HB connection is a principal
connection, since the horizontal lift is manifestly Gu-invariant. Such a situation occurs for slowly

varying integrable systems discussed in the next section.



§10 Case I: Bundles with the Canonical
Connection; Integrable Systems and Hannay's Angle

In this section we treat a large class of Poisson fiber bundles which come equipped with a
Poisson-Ehresmann connection and study the induced HB connection.

A bundle of symplectic manifolds is a fiber bundle n : E - M all of whose fibers
are symplectic and whose transition functions are symplectic. Gotay et al. [1980] gave conditions
guaranteeing the existence of a presymplectic (i.e., closed) form ® on E whose pull—back to each
fiber is the given fiber symplectic form. We assume that such a closed two-form ® on E is
given and call = : (E, ®) > M a coherent bundle of symplectic manifolds.

As remarked in Gotay et al. [1983], any coherent bundle of symplectic manifolds comes
equipped with an Ehresmann connection. Indeed, if V = ker Tx is the vertical:bundle of TE ,
then each fiber V, of V, where pe E, isa Symplectic vector space. Define the subbundle H
to be the w-orthogonal complement to V

H,=V®={ue T,E| (), v)=0 forall ve V};

H= U H,, is a subbundle of TE since the rank of @ is constant on connected components of
pcE

M. Weclaim that TE =H@® V. To prove this, note thatif ue HNV then w(u;v)=0 forall
veV, sothat u=0 by non-degeneracy of @ on V and thus HAV = {0}. Now consider the
map TpE - T:E - V;‘ ;the first arrow being u w(u, -) and the second, the restriction of a
linear functional on TPE on the subspace Vp‘ Since \A is symplectic, this linear rﬁap TpE - V;
isonto. The kernel of this map equals Vz =H, and thus dim T,E —dim H = dim V: = dim VI;.
This proves the claim. Thus, H is the horizontal subbundle of an Ehresmann connection on E .

Let hor, denote its horizontal lift: (horyw)(p) = (Tpn)‘lw for we Tn(p)M. We denote by D,
the covariant differentiation defined by hor,, .

A function f:E — R, defines a vertical Hamiltonian vector field X; by
imdf = iy iy o, ‘ _ ()

where n(p) =m and j  is the fiber inclusion ®~!(m) — E. We note that this is not the usual

Hamiltonian vector field corresponding to the presymplectic form ®. The vertical Poisson
bracket is defined by (f,h} = (X, X, ). One easily checks that:
10.1 Proposition A projectable vector field Y € X(E) is a Poisson bracket derivation if

and only if the Lie derivative £Y(o vanishes on any pair of vertical vectors.

76
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Now let us assume that Y =horyZ for some Z e X(M) . By Proposition 10.1, horgZ
is a Poisson bracket derivation if and only if (;i':hoI ozm)(XP X)) =0 forany f,h:E —»R. Since

o is closed we have

Eporgz DK Xp) = (digy, 7 O)Xp Xy)
XJo(horyZ, X1 - X, [ooryZ, X)] - o(horyZ, [Xp X)) =0 (2)

since ® vanishes on every pair of horizontal and vertical vector fields; the last term is also zero
since [XqX,l=- X[f n} is vertical. Thus we have proved the following: ‘ :

10.2 Proposition The canonical connection hor of the coherent bundle of symplectic
manifolds = : (E, ®) = M is a Poisson-Ehresmann connection. ‘

- 10.3 Proposition Ler Q denote the curvature of the canonical connection. hor, . Then for
any Z,,Z, € X(M) we have

0,(Z,, Z,) = — a(horgZ,, horgZ,) . | 3)

Proof For Z;,Z,e X(M) and Ve X, (E'M),

(5,2, 2,0V = 0@(Z,,Z,), V)
= w(horylZ,, Z,], V) — @([horyZ,, horyZ,], V)
= — o([horyZ,, horgZ,1, V) .

Now we use the formula:

(do)(A, B,O) = Al(B, O)] - Blo(A, O)] + Clo(A, B)] | :
- 0([A, B], O) + o([A, C], B) - o([B, C], A) )

‘with A= horyZ,, B =horyZ,, C=V . In (4), the first and second summands vanish. Also, since

the bracket of a vertical with a horizontally lifted vector field is again vertical, the fifth and sixth
. terms also vanish. Since dw =0 by hypothesis, we get

Viw(horyZ;, horgZ,)l = w[horyZ,, horyZ,1, V),
ie., . '

i3z, 2p®V) = d(@(horeZ;, horZy) - V. |

If G is a compact Lie group defining a family of Hamiltonian G-actions on xn: (E, ®) =
M, then the action @ restricted to every fiber n-'(m) preserves o) pulled back to 7l(m) . If
we denote by @™ : G x t-(m) — x}(m) the restriction of the G-action @ to 7w !(m), then this
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says that ((D';‘)*m =® on wtl(m). In general, (D:a) #® on E. Let hor, denote the horizontal
lift of the connection induced by @. Let hor denote the horizontal lift of the induced Hannay-
Berry connection.

10.4 Theorem Assume that there is an equivariant momentum map 1 in the presymplectic
sense for the averaged form {(®) on E ,i.e.,

dI® = ig (o) ®)

forall &€ g. Then the following hold.
i I:E>5g*isa parametrized momentum map for the family of Hamilronian G-
actionson E .
il There is a unique decomposition () = ® + do, where G is a one-form on E
annihilating all vertical vectors.

iti The Hamiltonian one-form Z 1+ K-Z of the HB connection is & o hor, .

iV The horizontal distribution of the HB connection is the {®w)-orthogonal complement of
the vertical subbundle.

v Let (X, Y) =-— ((D)(Xh YY), where X,Y € X(E) and X, Y denote their
horizontal parts relative to hor. The horizontal distribution of the HB connection
equals the characteristic subbundle of (®)+ Q , i.e. avector ve TPE is horizontal

 ifandonly if (@)v, w)+Q(v,u)=0 forall u € T,E.

Vi The HB connection preserves the level sets of I,ie., DI=0.
Vil The adiabatic condition (DyI) =0 holds.
Vil The curvature of the HB connection is a Hamiltonian vector field with Hamiltonian
function equal 1o Q(hor Z,hor Z,) for Z,,Z,€ X(M), i.e.,

QZ,,Z,) = X—(a))(hor Zy, hor Zy) *

Remarks 1 Properties ii, iv, v, and vi were obtained for the case of a trivial bundle with fiber
an exact symplectic manifold and hor,, the trivial connection by Golin, Knauf, and Marmi [1989].

2 If the G-action preserves , then D = D, for then ® ={w).

Proof | We begin by showing that @ and (®) coincide on vertical vectors. Indeed, if u,v
€ Vp = ker Tp1r are vertical vectors, then TPCI)g(u) = TPCID‘g“(u) and similarly for v, so that

@@ = 2 = @lomE s = L j (@(p))(T, 0w, T,O7() dg
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I GIJ' (@D*0)P)©, v) dg = o@E)u, V) .

Thus, if I is the momentum map defined by (w) on E (in the presymplectic sense), then for any
Eeg,ve Vp we have

dEE)W) = (OP)EP) V) = OEELP), v)

since both &(p) and v are vertical. But this says that on the fiber through p, 5 is gtmomentum

map of the G-action, i.c. I is a parametrized momentum map of the action.
il Since G is compact, the exponential map is onto. Soif ge G, write g=exp & and

hence

Djo-o = I i Pop 2@ dt = J‘ Oy, @dt = J. D, edig, © dt _

= d“ 7, e, (@ - (@) dt+J xp télgE (w) dt:I = do, ,
since

J q)exp l§l§ (0)) dt = J exp I§ dIg dt = dIE >

where we have written

1 .
68 = -[0 (D:xp 13 ié];(m - ((A))) dte QI(E) ' : (6)

Since ® and . {w) coincide on vertical vector fields, O, annihilates all Vertical vectors; hence 0=
(o) will also annihilate all vertical vectors. Averaging we obtain- (W) -w=do.
iii In the proof of Proposition 6.3, we gave an explicit formula for K-Z', namely

KZ = {t,), i ' @)

. where

f,(e) = j @;,, ¢(d15horyZ) dt ' 8)
for g =exp& . However, since
ig (@ — (@)yhorgZ = —iy_(@)(horyZ) = —dIé-horOZ ,

we see that (6) and (8) imply that K-Z = o(horyZ) .
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iv. We have seen in i that the presymplectic form (®) when restricted to each fiber
coincides with ©, and hence is symplectic in each fiber. Therefore, (E, {®)) is a coherent bundle
of symplectic manifolds and hence defines a canonical connection whose horizontal subbundle is
V(@ | the (w)-orthogonal complement of V. On the other hand, if Y is a vertical vector field, by
iii, the fact that G(W) 0 for any vertical vector field W, and hor Z = hor Z+ Xk.z» We get

(ipor ZON(Y)

(@)hor Z, Y) = ahorgZ + Xothor,zy Y) + dotbor Z, Y)
X gher, 7y Y) + (h0r Z)[S(V)] — Y(o(hor Z)] - o([hor Z, Y])

d(o(horgZ))Y - Y[o(hotgZ + X, )]

Y[o(horyZ)] - Y(o(horgZ)] = 0,

which says that the horizontal subbundle of the HB connection is included in V{®. Since its
complement is V, it equals - V{®,
Vietuve TPE and write u = u +u,v=v, +v, . Using iv, write

(@)u, v) - O, v) = a,, v,)

which shows that the left hand side vanishes for all u e T,E ifand only if v, =0,ie., vis
horizontal.
vi The statement is equivalent to

diShor Z = 0
forall £e g, Ze X(M). By vi and the definition of I we get
diShorZ = (@)(&g, hor Z) =0 .

vii By Proposition 6.3 vil, DI =0 is equlvalent to (DOI) 0. The result now follows
from vi. _

viii The curvature formula is a direct consequence of Theorem 7.1, Corollary 7.4, and
Proposition 10.3 provided we show

(w)hor Z;, hor Z,) = ({K-Zy, K-Z,}) + (w(horyZ,, horgZ,)) .
By G-invariance of horZ, and hor Z, we have

(w)hor Z,, hor Z,) = 1 J' @; (ex(hor Z,, hor Zz))dg

IGIJ DHKZ), KZ,)dg + *J' D (@(horyZ;, horyZ,))dg



Symmetry, Reduction, and Phases in Mechanics 81

= ({KZ,, KZ,}) + {@(horyZ,, horyZ,)) .
There are important cases in which the hypothesis of this theorem is always satisfied.

10.5 Proposition Assume that the coherent bundle of symplectic manifolds = (E, w)-M
is'exact, i.e., there is a one-form © on E such that ® = - d0 . Then any family of symplectic
G-actions is Hamiltonian and its parametrized momentum map is given by

I(p)-§ = (6)Ep) .

Proof (6) is G-invariant and hence £§E {0) = 0. This says that
e, i ()=0.m

The sitnation described in this section for E =P x M, where (P, ®) is a given sympletic |
manifold, T:PxM > M the canonical prOJectlon using the presymplectic form on E obtained
by pulling back @ by the projection of E to P, and hor,, the trivial connection, has been treated
in detail by Montgomcry [1988] -and by Golin, Knauf, and Marmi.[1989]. The following
proposition appears in these papers.

10.6 Proposition Suppose that the parameter dep’endent Hamiltonian H:PxM > R
defines a completely integrable system for each value of the parameter me M andthat 1: P xM
— R is a parametrized set of global action variables, diimP =2n . Assume that the adiabatic
condition {dyI) =0 holds. Then the HB connection on P xM .preserves the level sets of 1. If
W € R" is a regular value of (- ,m) for a fixed mye M, if I-l(u), IFi(u) A (P x {m}) and
M are connected, and if the sets T-1(u) N (P x {m}) are compactforall me M, then I‘1 W -
M ls a principal torus bundle and the HB connection is a principal connection.

For loops c in M based at my (small enough in general, or arbztrary, if we guarantee
that T'(u) = M is a principal torus bundle), the holonomy of the HB connection coincides with
Hannay’s angle [1985), namely : V

= jc (dy0),

where (0, ..., 8,) is the parameter dependent set of angle variables defined by 1.
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Proof Assume for the moment (as in §9) that the restriction of = to I"!(L) covers M. We
first prove the theorem under this additional hypothesis. The first part is a direct consequence of
the general theory if we prove that I-}(u) > M is a principal torus bundle. Since I-'(u) is
compact, parallel translation in I-}(u) is complete. Parallel translation along a path connecting
my to an arbitrary m € M defines a diffeomorphism of the fiber o @x {m,}) with the
fiber i‘l(u) N (P x {m}) . - Both fibers are orbits of the torus action on P x M defined by the

integrability assumption of H and this diffeomorphism intertwines the torus action. Thus
Ii(u) = M is a principal torus bundle.

Next we compute the horizontal lift of the HB connection induced by the trivial connection
(horyZ)(p, m) = (0, Z(m)) . Since hor is the horizontal lift for the averaged connection,

(hor Z)([f](p) = LI (horyZ)[f o @ _ 1(g-p) dg | ©®
IGl /g g

for Ze x(M) .f:E—R,peE,and ge G. Apply (9) to our case taking f to be each of o,
I,x* and Z=9/9x® where I are the coordinate representations of the action I:PxM — g*
for each fixed value of the parameter, and 6! are the corresponding canonically conjugate
variables, i.e., the angle variables defined by 1. We get
(hor i) w1 - (35). (hor i’—) ©1 = (22, ana (hor i) ("] = 8%,
ox* ox®? 2 ox? ox?
ie., ‘

aI‘> 39‘ 39‘ 7]
hor——- = + —
. ox? aI‘ ox? 80’ ox?

By hypothcsis (9T/ax?) = 0, so that ,
d aei 89‘ d 0

hor— = — .
ox? ox2/ dx? 89‘ ox?
Therefore, if ¢ isacurvein M and if (8'(r), Fi(t), x*(1)).is the horizontal lift of ¢ given in
coordinates by (x*(t)), te [0, 1], then the differential equations defining the horizontal lift are
del  /90'\ dx* dIi

@ T\ge/ @ &=0-

Integrate the first equation over the path ¢ with initial condition 6'(0) = 0} and get

8(1) = 6, + L (dy®) .
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Thus, if ¢ is a loop based at m,, the holonomy of this path is 6(1) - 6, = _[c (d;0) , whichis

the formula for Hannay's angles.

To complete the proof of the theorem, we address the issue of why I7}(u)/T™ is diffeo-
morphic to the parameter space M. The projection % : P XM — M induces a map I"l(u)/T" —
M which is smooth and injective since I"!(u) N (P % {m)) consists of exactly one torus, as we
have seen at the beginning of the proof, using parallei translation. This argument also shows that it
is a local diffeomorphism, so all that remains to be shown is that it is surjective. This is equivalent
to proving that the set of values of T is parameter independent. We begin by remarking that by
the generalization of Poincaré's last geometric theorem, the tori for nearby values of the parameters
intérseét (see Arnold [1‘978], Appendix 3). To prove the theorem, we need the global version of
this result, for our case, i.e., if as assumed, W is a regular value of I(-, mp) = Imo then we need
to show that forall me M the tori I;l})(u) and I_)(u) intersect. If this is shown, then clearly
is in the range of I and thus the range of the parametrized momentum map is parameter
independent.

An ingenious proof of this fact was given by Golin, Knauf, and Marmi [1989]. We
reproduce here their proof for the sake of completeness. Let c(t),t € [0, 1] be a smooth path in
M connecting m;, to m. Then the Hamiltonian one-form of the HB connection given by ¢’(t) ,
namely K-c’(t) = o(c(t)) defines a time dependent Hamiltonian on P. Its evolution operator
(flow) gives hence a parameter dependent symplectic transformation Yy, :P > P. Itis this
transformation, which by horizontal ‘1ift, maps the tori of different values of the parameters to each
other, as we saw at the beginning of the proof. So, what one has to exclude is the situation that an
orbit starting at a point on the torus Ir‘n})(u) is undefined for a time t;<1.

Let us argue by contradiction and assume that such an orbit and t; do exist. Then there is

a smaller t, <ty such that the torus I

(1) does not intersect I;llo(pi) for otherwise, by
compactness there would be an accumulation point p € I;.t(”) with I(p, c(t;)) = p. By openness
of regular values, there is an open neighborhood U of y and t € It to[ such that Ic‘({)(v) %)
forall ve U and te [0, t,] . By Jost's theorem, P fibers locally as a torus bundle, i.e., locally
P is of the foorm B xT", for B an open ballin R". By the Lagrangian embedding theorem,
 there is an embedding A of this piece of P into' T*T™, which sends the torus I;llo () tothe
zero section. Since the set S = {p € P| I;({)(p) € U forsome te [0, )]} iscompact with non-
empty interior, define a time dependent Hamiltonian H, on T wifh t-independent ‘cornpact
support A(S) by H,(A(p)) = o(c’(t))(p) for all p in some open subset of S given by shrinking
U to a smaller neighborhood of . Let ¢, be the time dependent flow in T*T* generated by
H,. So ¢, is a family of Hamiltonian isotopies. The other tori IC‘({)(}L) are Lagrangian
submanifolds of - T*T™ via the embedding A . So, we reduced the problem to the study'of the
intersection of the Lagrangian manifolds T" and ¢(T") in T*T“. Hofer [1985] has shown that
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the number of intersections of @,(N) with N in T*N for N compact is at least CL(N) + 1,
where CL(N) is the cup-length of the homology ring of N; for generalizations see Laudenbach
and Sikorav [1985]. This result implies for our case that I;,},(H) N Iczt 7)(;1) contains at least n+ 1

points, a contradiction. m

Remarks ,

1 For the non-integrable case, we suspect that the image of the momentum map can be
parameter dependent. 7 ; :

2 Connectivity of the fibers I"1() N (P x {m)) is automatic if P is compact. This was
proved by Atiyah [1982]> and Guillemin and Sternberg [1984] in the course of the proof of the
convexity theorem for images of momentum maps given by toral actions. Moreover; the image of
I(-,m) up to translation, depends only on the cohomology class of P. (V. Guillemin, private

conversation.) We can fix the image by insisting that its center of mass is the origin: J'P I¢,m) =

0. Since the image is independent of the parameter, I-1(n) automatically projects onto all of M.

3 The adiabatic condition {dy,I) =0 is not always satisfied. For example, if I defines
global action variables on. P and f: M — R", then I+ fo n generates the same toral action as
I but (dp(X+fom))=(dy D+dyf.

4 If we deal with slowly varying one degree of freedom systems, (dyI) =0 implies that
I is an adiabatic invariant (Arnold [1978], [1983]). This means that for a time scale of order 1/€,
the actions vary by O(g) as € — 0; € measures how slowly the system varies.* The proof of
adiabatic invariance depends on the averaging method, and fails for higher degree of freedom
systems. Instead, an almost adiabatic invariance holds. This means that for all initial conditions
except for a set of measure O(g), adiabatic invariance holds. See Golin and Marmi [1989] or
Armold [1978] and especially references to Neistadt therein. ¢

Let us address this last question in more detail. By the Liouville-Arnold and Jost theorems
for completely infcgrable systems whose level sets for the action are compact, we have generically
a locally trivial fibration of phase space as a torus bundle. Now consider a parameter dependent
family of Hamiltonian systems with parametrized actions I: P xM — R%. Restrict I-to the open
subsetof P where P is B x T, for B an open ball in R™. Considér\ a basis (¢, ...,c) of
the first homology of T" (T™ thought of as being the torus at the point '(po, my)), and choose
them to depend smoothly by on (p, m), in a neighborhood of (pp-my) . Let O bea one form on
the neighborhood of (py, mg) such that & =—d8, i.e., in the identification of this neighborhood

* 1t is a classical result of Kruskal, Littlewood and others, that for one degree of freedom systems, the variation of
the action is actually O(e™) for any integer n. In fact, it is believed to be exponentially small. See §51 of Landau

and Lifschitz [1976] and references in Holmes, Marsden, and Scheurle [1988).
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with B x T", 0 is the canonical one-form. Then I! =J. 0 define the standard action
C;

variables (Amold and Avez [1968], Arnold [1978], Abraham and Marsden [1978], Chapter 5).
They are smooth in (p, m) . The angle variables are constructed by integrating the flows of the
actions I' . Note that the standard actions I' equal iypq: (8), where a/aei‘ is the infinitesimal
generator of the i-th standard basis vector in R", thought of as the Lie algebra of T".. Combining
Theorem 10.4vi and Proposition 10.5 gives a simple proof of the following result announced in
Montgomery [1988] and proved by topological arguments in Weinstein [1989b]. ‘

10.7 Proposition For standard actions 1, the adiabatic condition (dMI) =0 holds. Any
two actions 1 and I’ §atisfying this adiabatic condition are related by ' = Al + v, where Ae
SL(n,Z) and ve R® are constant. '

~ The second part of 10.7 1s a consequence of the Arnold-Liouville theorem. .

Many integrable systems are not integrable by virtue of a global torus aétion i.e., they do
not admit global action variables. For example, the spherical péndulum does not—see Duistermaat
[ 1‘9801. We cannot apply 10.6 to compute, or even guaraﬁtee the existence, of the HB connection
for families of such integrable systems.

This situation is salvagéablc:, however, since every integraible system aﬂmits a local torus

action, provided we delete separatrices. This means that the phase space, after deletion, is covered
by an atlas of charts y, : W, — U xT", where U_ is an open subset of R",T" -is the n-

torus, and the overlap maps have the form (y, o B‘) (x, 9) = (f(x), q)uB(x) - 0), where (paB(x)
is an affine automorphism of the torus. (An affine automorphism is one induced by an affine
transformation of R™: (puﬁ(x) -0 = Faﬁ(x) - 0 + A, where l"aB(x) € 8L(n,Z) and 6,A e T
=R"/Z"). Since affine automorphisms are measure preserving, averaging over the torus is well-
defined. ' '

Families of integrable systems also admit local torus actions provided we delete, in addition
to the separatrices, certain "bad" parameter values. These are values at which there do not exist
any integrals in involution which are continuous in the parameters. (The "bad” parameter values
. for a family of linear oscillators are the ones for which there is a 1:1 resonance.) The charts ¢,
on the remaining open dense set are parameter dependent action-angle variables. "Averaging" is
implemented by averaging over the angles in such a chart, and is globally well-defined. Since the
HB connection is constructed purely through averaging, it also is well-defined. It satisfies all the
properties of Proposition 10.6, provided one makes obvious notational changes (e.g., the actions
I are now local). For details see Montgomery [1988].
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Remarks

Perhaps the most interesting feature of these connections is their holonomy around the set
T of 'bad' parameter values. The set I is in a fairly strict sense, a monopole source for the
connection.

In the simplest case, alluded to above, the parameter space S is the space of real
symmetric matrices. In this case, X is the set of matrices with double eigenvalues,_ which has
codimension 2. Taking M to be a circle surrounding £, the holonomy associated with going
once around M is —1. This can be viewed as either a classical or a quantum effect—the quantum
effect is called the Jahn-Teller effect. The relevant bundle is the frame bundle associated to the
canonical real line bundle over M =RPL. This frame bundle is the boundary of the Mobius strip.

We get interesting and important examples by replacing § with the set So of Hermitian
matrices, or with the set §; of quaternionic symmcﬁic matrices. The case of S is in Berry's -
original paper (Berry [1984]). Here X has codimension 3, and represents a Dirac monopole. The
case Sy was recently discussed by Avron, Sadun, Segert, and Simon [1989]. Here, X has
codimension 5 and represents an instanton. '

In the quantum case, Z alWays represents a set of parameter values where eigenvalues
collide. Kiritsis [1987] performed a general analysis of the bundles resulting from X 's of
various dodimensions, d. His methods are those of Steenrod obstruction theory and cohomology.
His base space M is always a small sphere §%! surrounding X.



§11 Case II: Cartan Connections and Moving Systems

The set-up of the previous section is not adequate to treat moving systems in the following
sense. Consider, for instance the ball in the hoop. If one wants to apply the previous theory, one
can do so using a limiting process, starting from the premise that there is a two dimensional
confining potential field, then moving this potential field, computing a phase, and then taking the
limit as the potential becomes an infinitely sharp, confining the particle to the one -dimensional
hoop However, ;his method does not obviously give a technique that enables one to handle the
one dimensional system directly. Indeed, if one attempts to do this directly as a one dimernsional
integrable system according to the integrable prescription, then the phase is zero. (See §12C). In
this section we introduce another class of connections based on Carran’s theo}'y of classical
spacetimes that enables one to handle examples like the ball in the hoop in a direct manner.

§11A Cartan Connections

‘ Let (S, g) be a Riemannian manifold and M a space of embeddings of a given manifold
Q into 5. We think of Q as a given body and of .§ as space. Below we define a connection on
the trivial bundle T : Q xM — M. The vertical subbundle of T(Q x M) is the pull-back of TQ
over Q x M, i.e., the vector bundle TQxM - QxM: (vq, m) (g, m) for ge Q. me M,
and Ve € TqQ. A tangent vector to M’ at m is a vector field over m ,ie., amap u_ : Q—-TS
such that u_(q) = Tm(q).S. Relative to the metric g on S, orthogonally project. u (q) to

T (q)rn(Q) € Y(Tqm)(TqQ) and denote this vector u;fl(q). In this way, we have defined another

m

_element of T, M. Pull back u] (@) by Tm™ to T,Q:
U@ = Tmrlul(q)

which defines a vector field U e X(Q). For Z e X(M), define Z"™(q) = Tm1(Z(m)T(q)). The
- association m > Z(m)" defines a vector field on M denoted by ZT and so foreach me M,

2P =T o ZTm) e X(Q).. , | ‘ ¢y

For moving systems, we usually take the embeddings to be restrictions of isometries of S to .
However, in the general theory, this need not be the case. For instance, consider the embeddings
corresponding to blowing up a sphere by rescaling.

11.1 Definition The Cartan connectionon ©:QxM — M is given by the one-form Y,
e QI(Q xM ; ker Tn) defined by

87
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Y@, m)(vg, uy) = (v + (Tm o uT)@, 0) , (0))

where unT1 is the pointwise g-orthogonal projection of v, € T,M on T(m(Q)) .

- The horizontal subspace at (g, m) of this connection is given by
‘ H(q,m) = kcr Yc(qa m) = {(—(Tm_l ° ug;)(‘l), um) I um € TmM}

and so T(Q x M) =H @ V. Thus the Cartan connection defines an Ehresmann connection on n:
QxM — M. By (1) and the expression of the horizontal subspace, we see that the horizontal lift
of a vector field Z e X(M) is given by

(hor Z)(q, m) = (<(Tm™ o ZT(m))(@), Z,,)) - &)
The Cartan connection induces a connection Y, on p: T*QxM — M as follows: If p:

T*Q xM—->M i_s the trivial bundle, then the fiber of the vertical subbundle kerTp at (aq, m) is
Taq(T*Q) x 0., . Define the induced Cartan connection Y, QUT*Q x M ; ker Tp) by

To(® MU, 1) = Uy + X, (@),0,) )

where Pu_ is the momentum function of Tm1o u;,rl e X(Q),ie.,
(P, )e) = o (Tm o uh)@) .. 5)

The horizontal liftof Z 3é(M) relative to the Cartan connection is thus

(horgZ)(© M) = (= X pzy(01), Z(m)) . | ©)

11.2 Proposition The induced Cartan connection on p : T*Q x M —» M is a Poisson-

Ehresmann connection.

Proof This is immediate, since the first component of hory Z is given by a Hamiltonian vector

field and the Poisson bracket on T*Q XM is taken fiberwise. =
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§11B The Cartan-Hannay-Berry Connection

11.3 Theorem Assume that a Lie group G acts on T*Q on the left with equivariant
momentum map 1:T*Q — g*. Then G defines a family of Hamiltonian actions on T*Qx M
by letting G act rivially on M. Its parametrized momentum map is simply 1 thought of as a

Junction of two variables, independent of M .
i The adiabatic condition (DyI) =0 holds.

ii The induced Cartan connection on T*Q x M defines the Hannay-Berry connection

given by the connection one- -form

y(aq, m)-(an, um) = (an+ X{mum)(“q)’ 0).

Its horizontal lift for Z € X(M) has the expression

 (hor Z)(0t, m) = (X pzimyyr Z(m),

and the Hamiltonian one-form is given by

(K-2) (0, m) = PZ(m)(0t,) ~(PZ(m)Ner,) -

Parallel transport of the Hannay-Berry connection preserves the level sets of 1.

. *
Proof i For {e g, o, € TqQ, me M, an

€ Taq(T *Q) and u_ e TmM , we have
(D150, m) (U, uy) = dIor,, m)Pyy (U, )

A1 (o, m)(= X (@), )

~ {5 (Pu, }

so that, since the G-action is symplectic on T*Q, we get

DD (0, My (U, uy) = Dglo)(g ety m):(gUg, )
—{I% (Puy))(g-a)

-g* {8, Pu )

where (I)g denotes the G-action on T*Q x M and g0y, g-an, the corresponding actions on

T*Q and T(T*Q). Thus,
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DY@y (U 1) = j 2Dy, ™) (U, v,,) dg

1 * '
- EIG @315, Pu, ) (o) ag

— ({15 Pu, Iy

Part i of the proposition now follows from the following.

11.4 Lemma Ler n:E > M be a Poisson fiber bundle endowed with a family of

Hamiltonian G-actions with equivariant parametrized momentum map 1:E — g* . Then for any
f:E—R wehave {{I5,f})=0 forall £c g. )

Proof of lemma For ge G, denoteby g- & = Ad,& the adjoint actionof G on g . We
prove the lemma first if G is abelian. Then g-£=§ forall ge G, £ € g so that

-1 1 .
B, f) = —J D8, f) dg = —J' D*1E, 0*f) d
(15, £)) Gllo 2 (15 ) dg Gl G{ 1% @, f} dg

oo (@5 @0 0 = [ 0]
088, 0%t} dg = — | {5, @0¥} dg = (&, ()} =
= 1G] {025, @ f) dg IGIG{ o) dg f)
by G-invariance of (f) and conservation of momentum maps.
Next we prove the general case. Fix £e g and let T denote the maximal torus
containing exp & ; this is always possible since G is assumcd to be compact. By Fubini's
theorem we get forany ¢ :E - R

@@ = - | owp az = éITgein([EL(h-p)dh Jacrg
- L [ ( [eenap Jarg

|Gl
TgeG/T teT

where we denote by dt dh, d(Tg) the induced Haar measures on T, Tg and G/T respectively.
Now apply this formula to ¢ = {I5, f} . Then

o(tgp) = (@FDF(E, ))(p)
and hence

|G|
Tge G/T

(15, )p) = —j oM@ dg = | [ [our, f}(p)dt}d(’rg)
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The interior fiber integral is zero by the first step so that the entire integral vanishes. ¥
il For Ze XM),

(hor Z)(a m) = ((horOZ)(a m)) = E G g( PZ(m) (a) Z(m)) g

= (—X(T.Z(m»(aq)s Z(m)))

and hence
(hor Z — horOZ)(aq, m) = (X?-Z(m) — (PZ(m)y 0)

In view of i, the Hannay-Berry connection has parallel transport preserving the level setsof 1. M



§12 The Cartan Angles; the Ball in the Hoop and the
Foucault Pendulum

In this section we compute the holonomy of the Hannay-Berry connection induced by a
Cartan connection. We shall treat two examples in detail: the ball in the hoop and the Foucault

pendulum. For the ball in the hoop example we will show that the Hannay angle formula J-c (dy©)

does not give the correct phase shift if we take the parameter space to be the space of frequencies.

§12A Cartan Angles

Recall that the hoiénomy of a closed loop relative to an Ehresmann connection is the
diffeomorphism of the fiber given by parallél translation. In the case of the Hannay-Berry
connection induced by a Cartan connection, the fiber is T*Q . Thus if c(t) is a closed loop of
embeddings of Q in .S the differential equations for the horizontal lift of c¢(t) in T*Q are
Hamilton's equations for the Hamiltonian {(A(Tc(t) o ¢’(t)T)) ; see Theorem 11.3.

Marsden [1981] proved that there is a neighborhood V of Gu in T*Gu X (T"‘Q)u X Ou
and a neighborhood U of Gu-aq in T*Q and a symplectic diffeomorphism F:V — U. Here
Gu is the coadjoint isotropy subgroup at U = I((xq), Ou is the coadjoint orbit through p in g@*,
and G- is the'Gu—orbit of a, in T*Q. The composition of the momentum map with this
diffeomorphism is a g *-valued function whose level set at p is diffeomorphic to Gu X (T*Q)u.
Thus the holonomy will have Gu—components which we call the Cartan angles.

These considerations become very explicit in the case of a completely integrable system, for
then Oll = {u} and (T*Q)p is a point. In this case I:T*Q —» R® ié the momentum map of a
torus action for a completely integrable system. Assume, as in §10, that I represent global action
variables with (8%, ..., 6") the conjugate angle variables. If this is not the case, the theory must
be reformulated in terms of local group actions as outlined at the end of §10 and treated in detail by
Montgomery [1988]. By linearity of the momentum function, we have for é given crﬁbedding m,

ail (BT o ul)y = (Tt o a1, M

where Tm™! o ul = (Tt o uT)i /081 (sum over .

92
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Now let c(t),.t € [0, 1] be a closed loop based at m, € M. By the formula for the

" ‘horizontal lift of the induced Hannay-Berry connection given in Proposition 10.3ii and 1, it
follows that (8(t), c(t)) € I"}(u) is the horizontal lift of the loop c(t) if and only if

dei
o =(Te®? o c'®D,

whence the holonomy of this loop is

A = 8(1) — 8(0) = jo (Te(®) o (0Tt . o @)

This formula is analogous in spirit to the expression of the Hannay angles discussed in §10 for
integrable systems. This is why we shall call the holonomy in (2) the Cartan angles .

§12B The Ball in the Hoop

Let us apply formula (2) to the ball in the hoop discussed in the introduction. Consider a
not necessarily circular hoop of length L in the plane, enclosing an area ‘A .“On the hoop we
consider a bead sliding without friction. As in Figure 1B-1, let s denote the arc length along the
hoop measured from a reference point on the hoop and let the shape of the hoop be described by a
function q(s) in a given inertial frame in space. No external forces are acting on the bead, so that
its total energy equals its kinetic energy %m la’ ) s 2 = % m §t)? since Jlg’O)Z=1.

Thus the Hamiltonian of this system H: T* S! - R is givenby -
=1 2.
H(s, p) = 5-P55

the solution of the corresponding Hamiltonian system is s(t) = Elrﬁ Rt +-s; , where the conserved
momentum is p(t) = L € R . The system is integrable and we choose global action angle
~ coordinates given by (0, 1) = (s, p,) ; we consider the S!-action on the hoop being given by the
flow of tl;is system. (Strictly speaking, we should take 6 =i—“ s and 1 .=2L_n ps,‘so that © ranges

from O to 21, but we shall take 8 ranging from 0 to L to simplify notation.) -
Assume the hoop rotates in the plane with prescribed angular velocity @(t). Consider the
space M of embeddings of the given hoop into .§=R? given by the possible rotated config-

urations of the hoop relative to a given point, say, the origin. Thus the convective velocity is
Te()Loc’(t) = o) k X q = ®(-y, x). Therefore Tc(t)Loc’(t)T represents its orthogonal
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projection at (x, y) onto the tangent space of the hoop, i.e., Tc(t)oc’ ()T = a(-y, x)-q'(s) =
o=y, x)/(x’, ¥) = @xy - yx) . Therefore, its average over the dynamics is
L

(Te(y o COT) = ‘Ej'o DOXEYE - yOXE)s = %2 [ (dy -y = w2
. hoop

by Green's theorem. Therefbre the Cartan angle equals
1 : 1 1
A® = j (T oc’0Tdt = 22| a(dt = %AJ' dat) dr = 22 (a(1) - a(0))
0 . 0 0

where ol(t) is the angular variable whose time derivative is ®(t) . Since o(1) — o(0)  is the
length of the circle of radius 1, a(1) — o(0) =27 and so

4nA
AB = T 3)

the phase shift fdund by the elementary methods given in the introduction.

Treating the ball in the hoop example as a family of completely integrable systems
depending on a parameter and computing the associated Hannay angle yields zero. Thus, the
geometric phase relative to the Hannay-Berry connection induced by the trivial connection from §9
is zero and the entire phase is a purely dynamic phase obtained by reconstruction, as in §2 and §3.
As in §1, the Lagrangian of the rotating system with angular velocity ® is given by

Ls, § @ = ;m il g9+ x ) I . @
. dL . , . -
The Legendre transformation p, = ‘—9— = ms+ (0 x q(s))-q’(s)] gives the Hamiltonian
- o8

HGs, g @) = 5 [p, - m@x ge)-¢®) - jmllox g I? . ®)

For each fixed - @ , the Hamiltonian system on T*S! given by H is completely integrable since it
is one degree of freedom. Thus H defines a completely integrable system depending on the
frequency parameter . The space of @'s form areal line R. The holdﬁomy of any bundle over
R is necessarily trivial. (This is because any loop in R comes back on itself.)bHe'ncer the
Hannay angle is zero.
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8§12C The Foucault Pendulum

As in §10, we cannot litterally apply the formula for the Cartan angles since, in this
example, it is known that global action-angle variables do not exist (Duistermaat [1980]). This is
not really a serious problem, since we can restrict to the part of the phase space corresponding to
. stable oscillations. The Foucault pendulum is a spherical pendulum at co-latitude o on the surface
of the Earth. Denote by q the position of the pendulum on the sphere of radius P = liqll, the
length of the pendulum arm (see Figure 12C-1).

Figure 12C-1

Let r, denote the vector from the center of the Earth to the point of suspension of the
pendulum. The position of the tip of the pendulum in space is R(r,+ q), where R, is the
rotation about the Oz-axis. Let o =T/2n denote the angular velocity of the Earth's rotation. The
potential energy of the pendulum is V(q) = mglq-T,, where Fy=ry/liryll. The velocity of the
pendulum’s tip in space is o

Rg+Rfox(T,+q)]

where we identify @ with the vector @k. The Lagrangian is therefore given by '
1 - - '
L = mllox@E +@+ql?-V(Q
so the Legendre transformation gives

p = m@+ox@,+q)T = mlg+@x@F, +q)7
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by identifying T*$? with TS? via the Euclidean metric, where (@ X (t, +q)T is the tangential
component of ®x (r, +q). Then
q = Lp-lox@F+ol
and so.

q+ox(Fy+q) = #p+[mX(f‘0+tI)]l,

where (@ X (ry+ Q)" denotes the normal component of © X (ty+ q) to the sphere. Therefore

the Hamiltonian is »
H=pq-L = LipR-Lp@x G+ q)T
e I+ 2 @x G+ ) I2- V@)
= ol IP+ V(@) - P~ 2l (@x Gy + Q) I,
where

P = L1p(@x@y+ )T = Lp(oxry+q)
since p is tangential. -
Let M be the space of embeddings of the sphere of radius £ in R3 tangent to the Earth at
co-latitude o, as in Figure 12C-1. We recognize in P the Hamiltonian defining the induced
Cartan connection on T*$2 x $2 (formula (4) of §11).

Remark Since (@ x q)' =0, we have [0 X (ryx @)]* = (@ xrg)t = constant. In the
equations of motion one can drop this constant. Had we considered a Foucault pendulum on an
ellipsoid, this term would not be constant, but it would be of order @?, which is the general case.

As explained in the introduction, applying the averaging principle, one would ignore this term.

Lei S! act on the phase space of the pendulum by rotation about the r, axis. We want to

compute the part of the holonomy corresponding to this $!-action. According to Prbposition

11.4, the horizontal lift of the induced Hannay-Berry connection is given by the Hamiltonian
vector field of P, i.e., by {p-[wx (ryxq)]). If v is any constant vector,

(pv) = (p-g)(v-i) ®

since the S'-action over which we average has I, as its axis of rotation. Setting v = X r, this
implies that

(p-(oxry) =0,
and hence

(plox Ty+ @l = (p(wxq) .
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Let I=p(ryxq) be the momentum map of the S-action (rotation about ry). By (8)
(p-(0 x @) = {0(qxp)) = [(qxp)ry]{wFy) = Incoso

since ©-F, is constant. Thus,
{P) =1wcosa

and so the horizontal lift of ® is given by (- X ey W)= ( ® cos o ;’e , m) »  where % is the

infinitesimal generator of the S-action corresponding to I. Therefore the horizontal lift of a curve
in @ is given by the differential equation

0 =-wcosa

so that if this curve is a loop parametﬁzed on [0, T/2r] we get

: T
6(T) - 0(0) = —Iomcosadt = —-wTcosa = —2ncos o

which is the deviation of the plane of oscillation in the laboratory frame (i.e., a frame fixed on the
Earth) of the Foucault pendulum during 24 hours,

For example, if we are at the equator, where o = /2, there is no dev1at10n If we are at
the North Pole, where a =0, the plane rotates in the opposite direction to that of the Earth's
rotation, performing a full circular motion. This is the usual Foucault result for a lab frame
attached to the Earth. The laboratory and inertial frames are related by q,., ..,= R, (ro+ qpp)- AS
long as we regard angles as taking values in the circle, where 0 is identified with 2w, then the
answer is the same in the inertial frame as in the lab frame. (It seems that there is no way of
keeping track of the full angular change in the inertial frame,-since this would require a reference
line in each tangent space to the Earth relative to which we measure the angle. Since there are no
nonvanishing vector fields on S, this is not posmble )




§13 Induced Connections

Assume that T:E— M, p:E—F, and ¢:F— M are surjective submersions such
that n=cop and p_ :E —F  defined by p,, =p|E,, isasurjective submersion for all m
€ M. Let E_ =n"(m) and F_ =0"!(m) denote the fibers of © and G respectively. Assume
there is a connection Y e Q'(E; VM) with horizontal lift ho: TM — X, _(E; M) for n: E —
M, where VM =ker Tr is the vertical subbundle given by m. Denote by HM = ker yYM the
horizontal subbundle of TE defined by YM In addition, assume that for each m e M the
bundles p_:E - F,, have connections Y™ € Ql(Em; V™) with horizontal lifts hor™ : TF —
Xpo B V™), where V™ =ker Tp, is the vertical subbundle of TE_, givenby p_. Let H™ = ‘
ker Y™ be the horizontal subbundle of TE_, defined by ¥" and assume that the connections y™

depend smoothly on m in the sense thatif Z: M xF — TF is a smooth map satisfying Z(m, -)
€ X(F,) forall me M, then the mapping

ee E > (hor™Z(m, p,(e)))e) € TE , for m=mn(e),

is a smooth vector field on E . Equivalently, in terms of the connection forms y™, smoothness

means that
e€ E Y(Z(m, p,(e)) € V7, for m=m(e),

is a smooth vector field on E; its value ateach e is vertical relative to p,. Let Vp=ker Tp be

the vertical subbundle of TE relative to p . The maps involved are summarized in the following

diagram
E, —E
Pm p
F, —=F [=

me M

whose horizontal arrows are inclusions.

98
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13.1 Theorem The map (e) = Y"(e) o Y(e) defines a connection form ¥ e QUE; VF) for
- the bundle p :E — F. The pull-back of Y to each E_ coincides with ¥*. If HF = ker yF
denotes the horizontal subbundle of TE defined by ¥, then

e *

Hf =H?OHM, VE=vrcVM gnd HFAVM = HT

Figure 13-1

Proof By definition, YM(e)(v) € VM =ker T,n = T,E_ for m = n(e). Thus ym(e)' o M(e)
defines a map Y(e) : TE — VT. Since E_ cE and p,=p|E_, we obtain Vi =ker T p, C

ker T,p = VE. Conversely, if ve VE, then T,p(v) =0, sothat 0= (Ty0 © TP)V) = TR(v),
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ie, vekerTn=TE_ . On E_,p and p_, coincide, so T,p,,V)=0; ie, ve V. This
shows that V™= VF and hence ¥(e) : T,E — VE is the identity on VE. Since cop =1, we
see that VE < VM and hence if Z is any smooth vector field on E defined on a neighborhood of
e, then Y(Z) is a smooth vertical vector field (on this neighborhood) relative to 7 and e
Y(Z)(e) = Y©OW(Z)(e)) is smooth by the smoothness condition on the Y™. Thus ¥ € Q!(E; VF)
is a connection one-form. Note that TE=HM® VM =HM® TE_=HM & H™ ® VI, whence
HF = HM ® H™. Intersect this relation with VM to get Hf A VM =H® since HRc VM =TE .
Finally, if ve TeEm =VM, then YM(e)(v) =v and thus Y(e)v) = ¥ (e)(v), i.e., the pull-back

e’

of ¥ to E_ equals Y". m

We compute the curvature QF of ¥ e QI(E; VF) in terms of the curvatures QM of M
€ QI(E; VM) and Q™ of y" e QUE_; V™). If X € X(E), denote by XF and XM the
horizontal projections of X given by ¥ and YM. By the previous theorem, XF splits into two
components: one in H™, the other in HM. Note that X := (™, X)|E_, defines a vector field
on E_. Writing - ‘

XF(e) = X1(e) + XXe) € HP® HM | 6))

we get TR(XF(e) = Tu(X2(e)) since T,u(X'(e)) =0 ie, X'(e) € H? c VM = ker T 1.
Since T,p(X(e)) = T,p(XF(e)) and =00 p, we conclude that

THXFE)) = (Ty)0 0 TPIXF(E) = (Tpey0 0 TPX(E) = TaX(e)) = T X)),
i, X(e) and X%(e) have the same horizontal component in the splitting T.E = Mo VM.

Since X%(e) € H™, we conclude that X2(e) = XM(e). Applying Y 1o (1) we get

(M, XPye) = (M, X)) )

since YM(e)(XM(e)) = 0. However, (M, XF) = (yM, X) since M is the identity on VM and VF
< VM, On the other hand, since X!(e) € H™ < VM, we have (M, X')(e) = X'(¢) and so by (2),
Xe) = (Y, X)(e). We conclude that

| XF = (M X)+ XM ' 3)
orif m = n(e), " ' o
XFe) = X&) + XM(e) . ' @

By formula (6) of §4, the curvature of ¥ equals

QFCX, YY) = - O, IXE, YFIN®) == (0F, (M, X) + XM, (M, Y) + YMI)Ge)

= (¥™(e) o MMM, X), (™M, Y)l(e)
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+ (M, XD, YM](e) + [XM, (M, Y)Ice) + [XM, YMI(e))
= = (@) o PN, X), (M, Y)(e)
= (") o MM, X), YMI(e) + XM, (™M, Y)l(e))
~ (&) o MEN(XM, YMI(e)) . )

where X,Y € X(@E). Since (™, X) and (W Y) restricted to each E  are tangentto E_, it
follows that their bracket is again tangent to each E_,i.e., [(YM, X), (yM e)e T,E, =VM

the first term.in (5) becomes

QM. X), (M, Y))e) , for m=m(e) . ©

. Thelast term in (5) is

PHHMX, Y)(©)) - S 0

_ The second term in (5) can be simplified if there is an additional compatibility condition between
W and the family {y™}. Note that (Y, X) is a vector field on E whose value at e isin H™.

There are two obvious bracket conditions one can request: for any vector field X on E whose
value at e is in»H‘;‘ and any Y e X, (E; M), the bracket [X, Y] is ‘

i eitherin X, (E;M), or

i its value at ¢ isin H].
In case i the second term vanishes since M(e) has kernel HL: In case ii, since HT c VM,
yM(e) is the 1dent1ty on HY, and then y"(e) kills the second term, so in both cases the second

term in (5) vanishes. We have proved the following:

13.2 Proposition Assume either condition i or ii holds. Then the curvature QF e QX(E; VF)
is given by

X, V)E) = QM X), (M DO+ PE@IK YXE)  ®)

forany X, Y e X(E).
To compute the induced map QF: X(F) x X(F) » X, (E; F) on the base, we use (8)
and the horizontal lift. Let ho™ : X(M) — Xpor(E; M), hor™ : X(F_) — X, (E_; F ), and

hor™: X(F) - %,,,(E; F) be the horizontal lifts given by Y™, ¥, and ¥ respectlvely If Ue
X(P), then hor'U e X, . (E; F) sothatby (3) .

horfU = (M, horFU) + (horFUM ,

with (hor"UM(e) € HY and (Y™, horPU)e) € H®® c VM. Thus, if W e X(F), we get



102 ‘ - - Marsden, Montgomery, and Ratiu

QF(U, W)(e) = QF(horFU, horFW)(e)
= Q™e)((PM, horFU), (M, horFW))(e) + ¥™(e)(QM((horFUM, (horFW)M)(e)). (9)

This expression can be simplified in the following way. We show that

- (hoFUM(e) = hor™(T,,,0-U(e)) - (10)

p(e

Since both sides are in HM, it suffices to show that T, n((horFUM(e)) = TP(C)G-U(e), which is
proved as follows. Since T=06o0p and Tp((horFU(e)) = U(e), we get T n((horFUYM(e)) =
(TyeO o T p)((horfU)(e)) = Tp(e)O'QU(e). By (10), the last term in (9) equals

PHEE@MENT 0 - U(e), Ty0 - Wee)) - Coan .

For the first term in (9), write (Y, hor*U)(e) as hor™ of the vector T p({™, horfU)e)) in F_
=0"1(m). But ‘

TP(TE) = Tp(V; ®HY) = Tp@EE) = T,p(HT @ HY) = T pH™ @ Tp(HM) = Ty e)F-

Note that T p(HT) = ker Tp(e)o. Indeed (Tp(e)c o T,p)HY) = T,(HT) = 0 since V’g o
HY, sothat T,p(H™) < ker Tyey0- Also ker Ty6 N TpHY) = {0}, forif ve HM and
(Tpey@ 0 Tep)(v) =0, then T m(v) =0, whence ve VM AHM = {0}.

Since Tp(HM) is a smooth subbundle of TF, being the image of a subbundle by a vector

bundle map, it follows that
TF = ker To @ Tp(HM) , 12)

i.e., there is an induced connection YM’F e QI(F; ker To). In addition, since T,p(HY) = ker T.o,

we get

T UM, horfUNe)) = YMF(e)(Ute)) 13)

Thus the first term in (9) equals

Q™ (e)(MF(e)- Ute), YMF(e) - W(e)) (14)
and so by (11) and (13),
QF(U, W)(e) = Q™(e)(YMF(e)-Ute), YMF(e)- W(e))
+ ¥ QM(E)(T )0 Ule), Ty )0 Wie))). (15)

We have proved the following.
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13.3 Theorem Assuming the hypotheses of Theorem 13.1, there is an induced connection
MF ¢ QI(F; ker To) on F whose horizontal subbundle is given by Tp(HM). Under the

hybotheses of 13.2, the curvature of the connection ¥ induces a map QF on the base F of the
surjective submersion p:E —F given by (15) for any U, V € X(F).

13.4 Corollary Denote by hor™F : X(M) — X, (F; ker To) the horizontal lift of the
connection YMF € QU(F; ker 6). Then ho™ = horF o horMF .

Proof Fix ee E and v e Ty M. By the proof of 13.3, the YF-horizontal lift of v at p(e)
equals horp(v) = Tp-u for some u e HM = ker YM(e). But then its yF-hrizontal lift at e is
horf(horgg(v)) = (horf o T,p)(u) = u since ue HM c HE, by Theorem 13.1. Therefore
(M(e), (hot® o ho™F) (v)) = (YM(e), u) = 0, i.e., (hor® o horF) (v) e HY. From m=0op,
one gets T m-(horf o horMF) (v) =v which proves the corollary. m



§14 The Hannanyerry Connection for General Systems

To start with, let ©: P xM — M be a trivial bundle where P is a symplectic manifold.
Endow this bundle with the trivial connection. Let H be a Hamiltonian on P XM defining a
completely integrable system for which global action variables exist; thus there isa parametrized
torus action on P X M. Let ¢ bealoop at m;, in M. The holonomy of ¢ relative to the
Hannay-Berry connection is called the geometric phase. We will compare the angular variables
in the torus over my, once a complete circuit around the loop ¢ has been performed. Since the

dynamics in the fiber varies as we move in ¢, we call the dynamic phase the total angular shift
‘due to the frequencies @' = dH/JT' of the integrable system, namely

1
dynamic phase = fo oi(I(c(t), c(r))dt . 6}

In writing this, we either assume that the loop is contained in a neighborhood whose standard
action coordinates are defined, or we postulate the existence of global action variables, which is not
always possible due to monodromy (Duistermaat [1980]). In any of these two cases, in
completing the circuit ¢, we return to the same torus, so a comparison between the angles makes
sense. Since the geometric phase is given in such a situation by Hannay's angles as we saw in
§10, the total angular shift going once around ¢ is given by

AB = dynamic phases + Hannay's angles . 2)

If we are dealing with a non-integrable system or with a moving system, the fiber dynamics
is not so easily accounted for. The general set-up is a Poisson fiber bundle ®: E — M with a
Poisson Ehresmann connection with horizontal lift hor, and a family of Hamiltonian group

actions given by a compact Lie group G defining a parametrized momentum map I:E — g*.
We form, for regular values u € g, the parametrized reduced spaces I“I(LL)/GM —> M whose
fibers are the reduced spaces (symplectic if the fiber of 7 : E — M were symplectic--Marsden and
Weinstein [1974], or Poisson in general--Marsden and Ratiu [1986]). The dynamics on these

fibers will, in general, be non-integrable. In the integrable case, these fibers are points and the
action of the torus is given by the frequencies ®,, ..., ®, for each frozen value of the parameter.

Our goal, as stated at the beginning of the paper, is to determine the geometric (or kinematic) pan‘ '
of the phase shift in the level sets I-1(it). To do so, consider the tower of bundles

T, - — E, = I—l(u)lG}l , OB > M. %))
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‘Assume that (DgI) = 0, which guarantees, by the theorems in Sections 6 and 7, the existence and
, - uniqueness of the Hannay-Berfy connection on the bundle nt:' E — M which preserves the level
sets of I. Thus we get an induced Hannay-Berry connection with horizontal lift hor on the
bundle ©, o1, =m|I7'(u) : I"}(u) - M. This, however, is not enough to study the original ‘
dynamics on I-l(u) since it ignores the family of reduced dynamics. What we need is a
‘consistent way of lifting curves from the family of reduced spaces Eu to I"l(u). If there was nio

. parameter involved here, this would be exactly the situation studied in Sections 2 and 3. To put
ourselves in this case, we use Sections 2 and 3 to construct on the fiberwise bundles n’ﬂ :
| RET(TH LS E‘E a connection. We assume this family of connections depends smoothly on m e
M. In this way, using §2 and §3 we know how ‘to reconstruct the dynamics for each frozen value
of m. Of course, we want to reconstruct it, as m varies.

The situation described in the previous section deals with such a case: from a connection
on a big bundle and fiberwise connections, it gives two connections on the remaining bundles.
Theorem 13.1 gives a generalized Hannay-Berry connection on the bundle T, I -
E,; we will denote its horizontal lift by hor*. We also get a base Hannay-Berry connection
on the fiber bundle o,: Eu — M by Theorem 13.3; its horizontal lift will be denoted by hor™,
If the G“-actions restricted to each fiber of Oyom,: Il(u) > M define principal bundles, we
conclude that LA ) —» E, is.a principal Gu-bundle and therefore the generalized Hannay-

Berry connection is a principal connection. _Consequently, its holonomy can be computed by the
method of Proposition 4.1, or if G, is abelian, one can give an explicit formula in terms of its

curvature, as in Corollary 4.2 (see equation (11)).

For connections induced by Cartan éonncctions, the generalized Hannay-Berry connection
can be explicitly computed as follows. Let E = T*QxM, G bealLie group acting on Q, whose
lifted action defines an equivariant momentum map regarded as a parametrized momentum map I :
T*QxM - g¥, depending trivially on M. Then we get the bundles

T, WX M > P @/G, xM and o, : (WG, xM - M,

the first one being a principal G,-bundle and the second a trivial b‘ﬁndle. Let vy denote the
connection one-form of the induced Hannay-Berry connection given by the Cartan connection Yo
on xw: T*Q XM — M (see Corollary 6.5). We have ' ' - o
’y(aqa m)‘(any um). = YO(aqv m)'(an7 um) - XK'Tﬂ(an,Um)(aq’ m)
= (an + XTllm (aq), 0) - (XK\Jm)(aq)’ 0)
= Uy, *+ Xy, (01, 0) @

by (4) of §11 and Proposition 11.4 ii.
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Now let ke QLQ: gu) be a principal connection on the bundle Q — Q/Gu and let x* ‘ '
be the induced connection on Il(u) — I (W/G,, (Corollary 2.3). Denote by t: T*Q > Q the
cotangent bundle projection and extend k* trivially to the bundle I"'()) x M — I‘l(u)/Gu x M.

Think of k" as a family of connection parametrized (in a trivial way) by M. Then Theorem
13.1 defines the connection one-form of the generalized Hannay-Berry connection : x(aq, m) =
K”((xq, m) o y(aq, m), i.e., by (4)

x(etg, m) (Ug , uy) = K (0tg, m)-(V(etg, m)-(Ug, )
K“((Xq, m)'(an + X(T-um)(aq)’ 0)
KQTg Wy + Xipy 5(@)) 5 )

where ©:T*Q — Q is the projection. We proved the following

14.1 Theorem The generalized HB-connection on T, I‘l(p) XM - I‘l(u)/Gu x M

induced by a principal connection x € Q1(Q; g,) and the Cartan connection on T*OQxM >M
is a principal connection Y € QUI™1(u) x M; 8,) given by (5).

. In summary, we have connections on all levels of the tower of bundles

Fl x M
{
F'W/G, x M
d
M .

We expéct this general context is important for systems like coupled rigid bodies that have
joint controls and are subject to overall motions, such as the space telescope. The joint controls
can prescribe a motion in I‘l(u)/Gu, while the overall motion might be the system in orbit about

the Earth. The reconstruction of the dynamics on I-(j) x M then involves both the cotangent
bundle connection on I"1(n) — I‘l(u)/G,yL (either by Section 2B or 2C) andon I"}(L) x M —

M by the Cartan-Hannay-Berry connection.
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