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The Leggent equations, assumed io govern the magnetization for superfluid
’He, are proved 10 exhibit “deterministic chaos.” As o corollary, this explains
why Maki and Ebisawa (1976) were unable 10 find a complete set of integrals
of the motion for the B phase in the presence of a constant magnetic field.

L. INTRODUCTION

The magnetization vector M for superfluid ’He is described by
equations of motion, the Leggett equations, similar to those for a rigid
pendulum. A step change in an external magnetic field can “kick” the vector
M into a position of unstable equilibrium analogous 1o the 0 = w configur-
ation for the pendulum.' The present paper analyzes the dynamics near the
unstable equilibrium in order 10 say something about chaotic motion of the
magnetization.

Chaotic behavior in a rigid pendulum

6=p+e(do+asinwt)
p=-(g/Dsin o

with damping term e d6 and forcing torque £aw cos wt is fairly well under-
stood (see Marsden®). These cquations are very similar to the *He equations
of Leggent

0=yM/x-1lsin20 - yB(1)
yM/x =-2%sin 20

6= yM/x+{[(sin 0)(1+4cos 8)— yB(1)
M/ x = 4 (sin 0)(1 +4 cos 6)

which were recently investigated numerically by Yamaguchi® for chaotic
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behavior. Here 0 is an angle characterizing the order parameter, and M is
the projection of the magnetization vector M onto the axis of the external
forcing ac magnetic feld

B(1) = Bsin wt
The equations are usually written in terms of the spin vector S and its
projection S, which are relsted to0 M by

M=(y/x)S

where vy is the gyromagnetic ratio and y is the spin susceptibility. The
quantity I' is a temperature- and phase-dependent relaxation parameter.**
Finally, R isthe Leggen ot longitudinal ringing requency for the appropriate
phase.

al'? See Brinkman and Cross (Ref. 6, pp. 148-154), Leggett and Takagi,*
or Lee and Richardson’ for theoretical details. ,

In this paper we use an analytic method to prove Yamaguchi's findings
of chaotic dynamics in the *He equations. This analytic method was pion-
cered by Melnikov® and has been used on the pendulum and a variety of
other problems.>® Melnikov's criterion proves the existence of a type of
chaotic dynamics known as a Smale horseshoe. Its existence implies, for
instance, that if we mark a zero every time the pendulum bob goes 10 the
right at the bottom of a swing and a one every time it goes to the left, then,
for £ small enough, there are initial conditions for the pendulum such that
the subsequent motion ticks off the binary expansion of the fractiona! part
of any arbitrarily given number. )

These chaotic initial conditions are neas the infinite period orbit for
the ¢ =0 system. This orbit consists of an infinitesimal displacement of the
peadulum bob from its unstable cquilibrium with its subsequent infinite
period return. In the phase plane (see Fig. 1) such an orbit is called a
“separatrix” (it separates the ruaning modes from the oscillatory modes)
of “homoclinic orbit.” The chaotic behavior can be imagined by thinking
of the bob approaching the top of its orbit with a slow velocity and the
periodic forcing torgue turned oa.

Mmﬂummuchniquesmdhemdmndon e being
small. The proper choice for ¢ in the *He systems seems o be \

e=yB/0l ~ 0.0}

. where By is a fixed, small magnetic field strength (02/ y is about 10 G). Set
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Fig. 1. Phase portraits for the .m::::::dﬂ‘ ;ha:: Leggett equations. Top: A phase
and rescale time according to
1] q
Then the *He equations in these dimensionless units are®
0=p-e(}Dsin20+ A cos &t) @
p=-}sin20
0 = p + e[ Dtsin 0X1 + 4 cos 0) — A cos &1] @

p = S(sin 6)(1 +cos 0)

i their obser
*We compared (22°) 10 the data in Webb et al’ Ia this paper they com;:;l:‘;l'“h r obser
frequencies to the frequencies predicied by the n’dnuwmmeoq.n.:... rldlunieg
A“lqaue discrepancy was found mear mg theoretical zero (requ::c.y'.’ d:lmm g
numenically integrated (2a’) with no forcing (A=0)and various e o
For 0 < ¢ ) < 1.0 the frequencies predicied by (.Zu) were in dml flwitl ey el the e
mental data than the nondissipative theory, with the agreemen y . ‘
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In the next section we outline the proof of chaos for Eqs. (22°) and (2b').

We have also proved the existence of chaos in the full three-dimensional
B-phase equations as investigated by Maki and Ebisawa.'® This is the case
of constant nonzero magnetic field with the order parameter's rotation axis
& not pasalic] 10 the magnetic ficld (to get Eqs. (2b), n paraliel is assumed].
As a consequence of the chaotic behavior it can casily be scen that there
is no other analytic integral of the motion besides the energy and Maki and
Ebisawa’s p,. The proof consists in adapting the Melnikov method to this
situation and is along the lines of Holmes and Marsden." However, the
details are complicated and so will be included in another publication.

2. MELNIKOV'S CRITERION AND THE PROOF OF CHAOS

For both the helium and the pendulum equations the unperturbed
equations are in Hamiltonian form: :

6=3H,/op, p=-3H,/30 )
with
Hol 8, p) = 1p* + U(0)
and
-cos 0 for the pendulum
U@)={ ~icos’ @ for *He-A
35(1+4c0s0)°  for’He-B

The potential U(#) is graphed in Fig. 2.

)

S
#
-1
~
o f

cos“(ov.) t cos” ey) )

Fig. 2. Potentials for the Leggett equations. A phase,
top. B phase, bottom.
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To use the Melnikov method, one must have separatrices for ($). These
are found by first finding saddle points, i.c., unstable equilibria for H,.

* These can be read off the graphs of the U. The saddle points are given by

» for the pendulum
0=0,,.={-w/2,%/2 for’He-A
0, for *He-B

and p =0. Then one solves the differential equation
H(0,p)= H(0,..,0)
Upon using the first of Eqs. (5), 6 = p, this becomes
6 = +{AU(S...) - U(O)'?
m solutions are

2tan"'(sinh 1) for the pendulum
0(1)={2wan"'(e* )z /2 . for *He-A (6)
2tan"'[+V}cosh (#/V5)]  for’He-B

Recall that the time has been made dimensionless to 27 here [see Eq. (3)).
In the A phase the plus and minus forms can be specified independently.
In the B phase we have only solved for the separatrices containing the
stable equilibrium 8 = +cos™'(}), p=0. These are the separatrices through
0 ==, p=0. Sce Fig. | for the phase diagrams.

The Melnikov method reduces the proof of chaos to the computation
of the integral '

a®©

-aH/e0 X,
along the separatrix. Here X, and X, are the perturbing terms on the

right-hand side of the 6 and p equations, respectively. In our examples
X,=0and X,=-DaU/a0 -~ A cos @t Thus

M(:.)-I det‘ l(o(t-l.).p('-t.))dc

-

E au 2 ® au . | 1
MU.,)=DI"(-;.-) d'+AI_..a_0-sm.'d' o .

where aU/a0 is evaluated at 6(1-4,). This function M of the retardation
time 1, is called the Melnikov function. We now state:

The Melnikov criterion: If M has a simple zero, then chaos (in the
sense of Smale horseshoes) exists in the perturbed system, for £ small. (For
more details, sce Guckenheimer and Holmes® or Marsden.’)
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) To calculate the Melnikov function (6), set
s .
F(') = ‘—:-1 [ _1]] (8)
Then

M(I.)ODI F(s)? dl+Alln“‘. F(1-1) ¢“"dl]

WMum-hammmlmmbemﬁnm

Alm [c"’o I B F(1) e* dl] ’ » 9)

d_t.onﬂulia' that it is oscillatory. The Melnikov criterion that this have
w{cmhmmmem:mummm«duam

DI F(1)* i< A|F(w)] (10)

where F(w) i.s the intcgral in (9). In more physical terms this criterion says
that the forcing must be sufficiently greater than the damping to ensure
chaos. Lengthy calculations involving residues yield
ﬁ(é)-{ *x(in/8)e sech (jwe) for the A phase :
289 sech (V5 ») sin[Jg log (2 -Ji)a] for the B phase

::am the plus and minus refer to the separatrix over which one is traveling.
S0,

; for the A phase
fe '
Faydi={(4Y o i 25 1+4f3
-— <4108 - — — log =
J- (IS) 5 12“'("36'“1-445)
(#2.505  forthe B phase

The Melnikov criterion then guarantees the existence of chaos provided

r2

-’--3-< l-:gsech(::) in the A phase

r »
S 2508< Bltﬁsiu [Ji log (2-6)5] sech (J§ ,5)

in the B phase
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These criteria agree very roughly with the regions of the (&, YB/Q)
parameter plane in which Yamaguchi (Ref. 2, Fig. 2) numerically found
chaotic behavior. Any better than a rough agreement is aot (0 be expected,
for the quantitative relationships between the Melnikow criterion and the
various numerical measures of chaos are complicated and poordy under-
stood. '
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