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Abstract

We show that any bounded zero-angular-momentum solution of the Newtonian
three-body problem suffers infinitely many syzygies (collinearities) provided that it
does not suffer a triple collision. Our motivation comes from the dream of building
a symbolic dynamics for the three-body problem. The proof relies on the conformal
geometry of the shape sphere.

1. Introduction

1.1. Infinitely many syzygies

A solution to the Newtonian three-body problem suffers a syzygy, or eclipse,
when the three bodies, considered to be point masses, become collinear.The solution
is bounded if the distances between bodies remains bounded by a fixed constant
for all time.

Theorem 1. Every bounded solution of the Newtonian three-body problem with
zero angular momentum and no triple collision suffers infinitely many syzygies.

Three-body solutions with zero angular momentum are necessarily planar, so the
theorem is really about the the planar three-body problem. Mark Levi conjectured
the theorem during a conversation with Richard Montgomery in 1998.

Binary collisions are regarded as syzygies for the purposes of the theorem. We
recall that when a solution suffers a binary collision it can be analytically continued
through the collision by means of the Levi-Civita regularization process see Levi-
Civita [LeviCiv21]. The only obstruction to infinite time existence for a three-body
solution is triple collision (Sundman [Sun12]): as long as the solution suffers no
triple collision, it can be continued analytically in time.
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Theorem 1 is false for the planar three-body problem if we omit the zero-
angular-momentum hypothesis. The Lagrange solutions illustrate this. In these so-
lutions the three bodies form an equilateral triangle at every instant, and hence
they never suffer syzygies. Bounded Lagrange solutions with non-zero angular
momentum exist for all time, and all mass distributions.

Theorem 1 should be compared with the theorems of Diacu [Dia89,Dia92]. In
the first paper, Diacu proves that the set of planar initial conditions which lead to
syzygy is open within the set of all initial conditions. In the second paper, Diacu
considers the set of planar solutions which have the property that, if they suffer
one syzygy, then they suffer infinitely many syzygies. He shows that this set of
solutions has full measure within the set of all bounded solutions which suffer at
least one syzygy, provided that the masses m1,m2,m3 of the bodies lie within a
certain subset S of the three-dimensional space of mass distributions. This subset
S has positive measure and contains mass distributions in which one mass is much
greater than the other two.

The possibility remains that the set of solutions to which Theorem 1 applies
is empty! Numerical evidence suggests otherwise. In the particular case when the
masses are all equal we know that this set of solutions is nonempty, since it contains
the periodic figure-eight solution [Che00]. Because the eight is (numerically) KAM
stable, there will be an open set of near-equal masses for which this set of solutions
is nonempty.

1.2. Motivation

Syzygies come in three types, labelled 1, 2, and 3 according to which body is
in the middle. See Fig. 1.

1 2 3

3

1

1

2

2

3

Fig. 1. The three syzygy types.

We can associate a syzygy sequence with each three-body motion, provided
the solution is not collinear for all time, and provided it suffers no collisions. A
syzygy sequence is a sequence in the letters 1, 2, and 3, listing the syzygies of a
solution in order of occurrence. If the solution is periodic modulo rotations then its
syzygy sequence is periodic. The free-homotopy type of curve which is periodic
modulo rotation, whether it is a solution or not, is encoded by its (periodic) syzygy
sequence. Does every periodic syzygy sequence arise as the syzygy sequence of
some such solution? (Wu-Yi Hsiang asked this question in 1996. It helped lead to the
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rediscovery of the figure-eight solution of Chenciner & Montgomery [Che00].)
More generally, is every infinite syzygy sequence realized by a solution? For var-
ious reasons, some given in Montgomery [Mon98], it is advantageous to restrict
attention to zero-angular-momentum solutions. Is there a symbolic dynamics asso-
ciated with the zero-angular-momentum three-body problem? The symbols would
be 1, 2, 3 and perhaps the additional “halt symbols” 0 and ∞ to represent triple
collision and escape to infinity. To build a symbolic dynamics, we mark occurences
of syzygies in order. For this to work, we need some syzygies to occur. Theorem
1 asserts that syzygies occur infinitely often along bounded solutions with angular
momentum zero and without triple collision.

2. Shape-space intuition and the evolution of spherical height

Newton’s equations for the planar three-body problem are a system of six
second-order differential equations. They reduce to a system of three second-order
differential equations when we fix the values of the total linear and angular mo-
menta and then divide out by the group of translations and rotations. These three
equations describe evolution in shape space, this being the space of oriented con-
gruence classes of triangles. Oriented congruence is distinguished from regular
congruence in that two triangles related by a reflection are congruent but not ori-
ented congruent. For example, shape space contains two distinct pointsL+ andL−
for the equilateral triangles of a fixed side length. One is “right-handed”, and the
other is “left-handed’. (We call these the Lagrange points.) See Fig. 2.
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Fig. 2. The Lagrange configurations.

Shape space is homeomorphic to Euclidean three-space R
3. See Fig. 3 below,

and Section 4. The origin of this Euclidean space represents triple collision. Issuing
from the origin are three rays parametrizing the binary collision configurations, one
ray for each type of binary collision, mass 1 colliding with mass 2, mass 2 colliding
with mass 3, or mass 3 colliding with mass 1. These rays are coplanar. The plane
which they span is the syzygy plane, which parametrizes the space of collinear
configurations.

A motion of the three bodies projects to the motion of a single point in shape
space. If that motion is a zero-angular-momentum-solution to Newton’s equation,
then the motion of the point in shape space is governed by the system of three
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Fig. 3. Shape space.

second-order differential equation which comprise a system having the form of
Newton’s equations but now in shape space. These shape-space Newton’s equations
assert that each of the three binary collision rays exerts an attractive force on the
point in shape space, and that the total force is the sum of these three forces. Since
the three rays lie in the syzygy plane, this total force is always directed towards
this plane. Based on this picture, Levi conjectured that the shape point is obliged
to oscillate up and down forever, repeatedly crossing the syzygy plane, unless its
distance from the plane tends to infinity.

We will turn Levi’s intuition into a proof through the introduction of carefully
chosen spherical coordinates (R, φ, θ) on shape space. The radial coordinate R
measures distance from triple collision and is a measure of the overall size of a
triangle. It is the square root of the moment of inertia as defined in (4.2.8). (See
also (4.3.9), and (4.3.11).) SettingR = 1 defines a two-sphere in shape space which
we identify with the shape sphere. The shape sphere is defined to be the space of
oriented similarity classes of triangles. See Fig. 3 and Sections 4.3 and 4.4. The
sphere is coordinatized by φ and θ (see (5.3)). The function

z = sin(φ)

is a measure of the height above the equator on the shape sphere and represents a
normalized signed area of the triangle; see (5.4). The equator of the shape sphere
is defined by z = 0 and represents the set of syzygy configurations. The “north
and south poles”, z = 1 and z = −1, represent the two Lagrange points, L+
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and L− which is to say the right-handed and left-handed equilateral triangles.
The zero-angular-momentum Lagrange solutions, or Lagrange homothety solutions
[Lag1772,Pol76] play a central role in the proof of Theorem 1. For such a solution
z is constant, +1 or −1 throughout. The solution consists of an equilateral-triangle
configuration which shrinks by homothety to a point in finite time, ending in triple
collision.

Theorem 2. The normalized height coordinate z (see (5.4)) on shape space minus
triple collision, satisfies the following properties:

(i) −1 � z � 1;
(ii) z = ±1 if and only if the configuration is Lagrange (equilateral); the functions

1 − z and −1 + z measure the distance of a shape from the Lagrange shapes
L+, L−;

(iii) z = 0 if and only if the configuration is a syzygy configuration.

Along any zero-angular-momentum solution to the three-body the function z satis-
fies the differential equation

d

dt
(f ż) = −qz (∗)

away from triple collision. The functions f and q are non-negative and are given in
(6.5b) and (6.5c) below. The function f is a positive function on shape space. The
function q is a non-negative function on the tangent space to shape space whose
zero locus coincides with the set of tangent vectors to the Lagrange homothety
solutions.

The proof of Theorem 2 is deferred to Sections 6 and 7.

3. Proof of Theorem 1.

We prove Theorem 1, assuming Theorem 2. We must prove that under the
hypothesis of Theorem 1 the function z of Theorem 2 has infinitely many zeros.
Equivalently, we show that z must have a zero on any infinite interval [a,∞).

Restrict attention to the case z(t) > 0. The argument for z(t) < 0 proceeds in
an identical manner except that the signs of z and its derivative ż are to be reversed.
We first show that if z(t1) > 0 and ż(t1) < 0, then at some later time t2 > t1 we
must have z(t2) = 0. Next we will show that if z(t) > 0, then eventually for some
later time t∗ > t we must have ż(t∗) < 0. Together, these facts show that z(t) has
a zero some finite time later, and complete the proof.

So suppose that that z(t1) > 0 and ż(t1) < 0. Write ż = 1
f
(f ż) and integrate

over the interval t1 � s � t to obtain

z(t) = z(t1)+
∫ t

t1

1

f (s)
(f (s)ż(s))ds.

Set
δ = −f (t1)ż(t1).
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Since f is positive, δ is positive. Differential equation (*) of Theorem 2, coupled
with the non-negativity of q says that that f (s)ż(s) is monotone decreasing over
any time interval on which z is positive. That is, f (s)ż(s) < f (t1)ż(t1) := −δ < 0
for s > t1, as long as z(s) is positive. The boundedness of our solution and the
continuity of f imply that f is bounded along the solution. So there is a positive
constant K such that 0 < f (t) < K along our solution. Then 1/f > 1/K and
−1/f < −1/K . Consequently ż = (f ż)/f < −δ/K over our interval of positivity
of z. Now suppose that z(t) remains positive over the interval t1 � s � t2. It follows
from our integral equation for z(t) and the inequality immediately above that

z(t2) < z(t1)− (δ/K)(t2 − t1).

This inequality together with z(t) � 1 forces z(t2) to be negative as soon as t2−t1 >
K/δ. Consequently z must have a zero within the time interval [t1, t1 +K/δ].

It remains to show that there must be a time at which ż is negative. This is
equivalent to showing that it is impossible for a collision-free bounded zero-angular-
momentum solution to simultaneously satisfy z(t) > 0 and ż � 0 over an infinite
time interval a � t < ∞. We argue by contradiction. Suppose we have such
a solution. Since ż � 0 for all t � a, the function z is positive and monotone
increasing over the whole infinite interval, and so tends to its supremum in infinite
positive time. But z is bounded by 1, so we must have ż → 0. It follows that the
limit of f ż as t → ∞ must be zero. (Again use the fact that f is bounded along the
solution.) We now show that the limit of limt→∞ z(t) = 1, which is to say, that the
limiting shape is a Lagrange’s equilateral triangle. For suppose this is not the case,
then z is everywhere positive and bounded away from the Lagrange shape, z = 1.
Recall that the coefficient function q of the differential equation (*) of Theorem
2 is non-negative and continuous, and is zero if and only if the shape is Lagrange
and the initial conditions are those of a Lagrange homothety solution. It follows
that if limt z(t) < 1, then q � c everywhere along our solution, for some positive
constant c. Now use the differential equation (*) of Theorem 2: d

dt
(f ż) = −qz.

Since q � c > 0 and z > z(a) > 0, the right-hand side −qz of this differential
equation is strictly negative and bounded away from zero by the negative constant
−cz(a). This contradicts limt→∞ f ż = 0.

Now we know that z → 1 monotonically as t → ∞ while f ż decreases
monotonically to zero. The first fact says the configuration approaches the Lagrange
equilateral shape. We will now show that there is a sequence of times tj tending
to infinity for which the corresponding velocities approach those of the Lagrange
homothety solution. Integrating the differential equation (*) of Theorem 2 from t =
a to ∞ and using limt→∞ f (t)ż(t) = 0 we obtain

∫∞
a
q(s)z(s)ds = −f (a)ż(a).

It follows that
∫∞
a
q(s)ds is finite. This implies that the lim inf of q as t → ∞ is 0.

Thus there are time intervals [tj , tj+1], tj → ∞ over which q(s) is as small as we
please. (We have not excluded the possibility that lim supt→∞ q(t) > 0.) During
these intervals of small q the solution is nearly tangent to the Lagrange homothety
configuration, since this is the only place in phase space where q is zero. In other
words, the ω-limit set of our solution curve contains points of phase space which
are initial conditions for the Lagrange homothety solution.
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Fig. 4. A near-collision orbit.

It follows that our collision-free solution contains arcs which follow the La-
grange homothety solution arbitrarily closely, and hence come arbitrarily close to
the Lagrange triple collision. We now use the results of Moeckel [Moe83] on
the linearization of the flow near Lagrange triple collision. Moeckel performs a
McGehee-type blow-up to add the triple collision states as a boundary to phase
space. The Lagrange triple-collision point becomes a hyperbolic rest point of sad-
dle type for the resulting vector field, and the Lagrange homothety solution lies in
its stable manifold. We have seen that our solution curve comes arbitrarily close
to this saddle point. The solution cannot lie on the stable manifold of the saddle
point, since if it did it would suffer a triple collision. It follows that the solution
curve has near-collision hyperbolic shaped arcs in which it closely follows the sta-
ble manifold of the saddle point, coming very close to that point, then veers away
to follow the unstable manifold in order to exit a small neighborhood of the point.
Consequently the distance in phase space of the solution from the saddle point first
decreases, then increases as it moves away along the unstable manifold. See Fig. 4.

We now show that the spherical distance 1 − z in configuration space from the
Lagrange point must also increase. Near triple collision the unstable manifold of the
Lagrange point is transverse to the fibers of the projection (configuration, velocity)
�→ (configuration). This transversality follows from the same transversality for
the negative eigenspace of the linearized flow at the Lagrange point (Moeckel
[Moe83], pp. 228–229). Consequently, 1 − z must be increasing, hence we must
have ż < 0, as desired. ��

The following is a corollary to the proof of Theorem 1.

Corollary 1. The normalized height function z(t) of a zero-angular-momentum so-
lution, bounded or not, has exactly one criticial point between any two consecutive
zeros (syzygies) and this critical point is nondegenerate. Specifically, if t1 < t2 are
consecutive zeros of z(t) and if tc is the critical point in between these zeros, then
z(t) is strictly monotonic on the subintervals t1 < t < tc and tc < t < t2.
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Proof of Corollary 1. Consider again the case z > 0. We saw in the proof of
Theorem 1 that once ż < 0 then z continues to decrease monotonically until it
crosses zero. Thus it can have only one local maximum, on one side of which it is
monotone increasing and the other side of which it is monotone decreasing. At the
maximum ż = 0, so (*) of Theorem 2 becomes f z̈ = −qz there. Since f , z and
q are all positive, we have z̈ < 0 at this maximum point. (The possibility q = 0 is
avoided as this implies that the solution is a Lagrange homothety solution.) When
z < 0 the argument runs in the same way, resulting in z̈ > 0 at the unique critical
point of z in an interval where z is negative. ��

4. Shape-space geometry

4.1. Shape space proper

In this (long) section we set up the geometric tools needed to derive Theorem 2,
and we explain the use of the variables z, φ, θ there. The reader may wish to consult
[Che00], or [Mon96,Mon98,Mon01] for more details.

We begin with a careful construction of shape space. We will identify the set
C of complex numbers with the Euclidean plane in which the bodies move. The
complex number xi specifies the location of the ith body, i = 1, 2 or 3. We write

Q = C × C × C = planar three-body configuration space

and we write points of Q as

x = (x1, x2, x3) ∈ Q xi ∈ C.

Write
SE(2) = group of rigid motions of the plane

for the group generated by translations and rotations of the Euclidean plane. This
group is the group of isometries of the plane which preserve orientations and it acts
on the ith plane according to xi �→ axi + b where a = eiθ ∈ C is a unit complex
number representing rotation and b ∈ C represents the translation.

Definition 1. Shape space is the topological quotient space Q/SE(2).

Continuous functions on shape space are identified withSE(2)-invariant continuous
functions on Q. The three distances

rij := |xi − xj | (4.1.1)

are such functions. So is the signed area of the triangular configuration x ∈ Q,

� = 1
2 (x2 − x1) ∧ (x3 − x1), (4.1.2)

where we write z∧w = Im(zw̄) = xv − yu where z = x + iy, w = u+ iv ∈ C.
If, when forming shape space, we had dividedQ instead by the full groupE(2)

of isometries of the plane which includes reflection, then the syzygy plane would
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have formed a boundary and�would not have been a function on this shape space.
By dividing by the smaller group SE(2) ⊂ E(2)we “desingularize” this boundary,
allowing smooth passage through syzygy. Any reflection of the Euclidean plane
acts on shape space by reflection across the syzygy plane. It acts on the invariant
functions (4.1.1), (4.1.2) by rij �→ rij , while � �→ −�.

4.2. Lagrangians

Newton’s equations for the planar three-body problem are the Euler-Lagrange
equations for the Lagrangian

L = 1
2K + U (4.2.1)

where
U = m1m2

r12
+ m1m2

r13
+ m2m3

r23
(4.2.2)

is the negative of the potential energy, and

K = m1|ẋ1|2 +m2|ẋ2|2 +m3|ẋ3|3
= 〈ẋ, ẋ〉m

(4.2.3)

is twice the kinetic energy. Here ẋi is the velocity of the ith body, and mi > 0 is
its mass. In the second line of (4.2.3) we have introduced the inner product

〈v,w〉m :=
3∑
a=1

mava · wa; m = (m1,m2,m3) (4.2.4)

on the configuration space Q. Here va · wa = Re(vaw̄a) denotes the standard
inner product of the two vectors va,wa in R

2 = C, and the subscript m indicates
parametric dependence on the mass distribution. The inner product (4.2.4) is called
the kinetic energy inner product.

We can decompose (4.2.3) according to

K = Kshape + |J |2/I + |P |2/M, (4.2.5)

where
P =

∑
maẋa = total linear momentum, (4.2.6)

J =
∑

maxa ∧ ẋa = 〈x, iẋ〉m = total angular momentum, (4.2.7)

M = m1 +m2 +m3 = total mass,

I = 1

M

∑
mimj r

2
ij = total moment of inertia,

= 〈x, x〉m when
∑

maxa = 0.
(4.2.8)

(The equality between the two lines of (4.2.8) is attributed to Lagrange [Lag1772];
see also [Pol76].) The P -term of K measures translational kinetic energy. The J -
term measures rotational kinetic energy. The remaining term, Kshape, measures
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kinetic energy due to “internal” shape changes and corresponds to a Riemannian
metric on shape space described in the next section.

Without loss of generality we may take P = 0 by going to a Galilean reference
frame moving at constant velocityP/M . If we hypothesize, as we do for Theorem 1,
that J = 0 also, then the Lagrangian (4.2.1) becomes

Lshape = 1
2Kshape + U, (4.2.9)

which is a Lagrangian on shape space. It is the Lagrangian whose Euler-Lagrange
equations govern the motion of the projection to shape space of a zero-angular-
momentum solution to Newton’s equations.

Remark. Fixing the value of J in the Lagrangian, pushing the result down to shape
space, and then forming the Euler-Lagrange equations on shape space will only yield
the correct reduced equations of motion when J = 0. When J �= 0 a “magnetic”
or Coriolis force term must be added to get the correct reduced equations. See
Marsden & Ratiu [Mar94] for example.

4.3. Geometry of shape space

The group SE(2) of rigid motions acts on a configuration x ∈ Q sweeping
out an orbit. A velocity vector ẋ ∈ Q at x is perpendicular to this orbit if and
only if P = 0 and J = 0. The subspace of such perpendicular vectors is natu-
rally identified with the tangent space to shape space at the shape [x]. (We write
x �→ [x] for the map Q → C := Q/SE(2) for the map sending a triangular con-
figuration to its shape.) The restriction of the kinetic energy inner product to this
perpendicular subspace defines a Riemannian metric on the shape space.

Riemannian quotients. The preceding construction is a special instance of the
following general construction. Suppose that a Lie group G acts on a Riemannian
manifoldQ by isometries and that this action is free near the point x, meaning that
gx = x if and only if g = Id . Then the quotient space Q/G is a manifold near
the corresponding “shape” [x] ∈ Q/G and its tangent space at [x] is canonically
identified with Tx(Gx)⊥ ⊂ TxQ, the orthogonal complement to the tangent space
to the group orbit Gx ⊂ Q. This identification yields a Riemannian metric on the
quotient space by restricting the inner product on TxQ to Tx(Gx)⊥. BecauseG acts
by isometries, this inner product does not depend on the representative point x of
the orbit [x]. We will refer to Q/G with this metric as the Riemannian reduction,
or the Riemannian quotient ofQ byG. This quotient metric satisfies the following
properties.

(i) Every geodesic on Q/G is obtained by taking a geodesic on Q which is or-
thogonal to the group action and projecting it to Q/G.

(ii) The distance function on Q/G associated with the Riemannian metric is the
orbital distance metric: the distance between two points ofQ/G is the distance
between the corresponding orbits in Q relative to the distance function on Q.
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We will realize the Riemannian reduction of the three-body configuration space
Q by the group G = SE(2) of rigid motions in two steps. First we divide by
translations. Then we divide by rotations. In between these two steps we will need
to discuss the notion of the cone over a Riemannian manifold.

Dividing by Translations. We use the Jacobi vectors:

ξ1 = x2 − x1, ξ2 = x3 − m1x1 +m2x2

m1 +m2
. (4.3.1)

These vectors are invariant under translation of the xi . See Fig. 5.

1

3

2

Fig. 5. The Jacobi vectors.

They diagonalize the kinetic energy, subject to the constraint that the total linear
momentum is zero:

K = µ1|ξ̇1|2 + µ2|ξ̇2|2 provided
∑

miẋi = 0.

Similarly

I = µ1|ξ1|2 + µ2|ξ2|2 provided
∑

mixi = 0.

The coefficients µi are given by

1

µ1
= 1

m1
+ 1

m2
,

1

µ2
= 1

m3
+ 1

m1 +m2
. (4.3.2)

Set
z1 = √

µ1ξ1, z2 = √
µ2z2. (4.3.3)

Then
K = |ż1|2 + |ż2|2 provided

∑
miẋi = 0, (4.3.4)

I = |z1|2 + |z2|2 provided
∑

mixi = 0. (4.3.5)

The zi coordinatize the quotient vector space Q/translations. We call the zi Jacobi
coordinates. They put the kinetic energy inner product (4.2.3) into standard form,
that of the real part of the standard Hermitian inner product ((z1, z2), (w1, w2) =
Re(z1w̄1 + z2w̄2) on C

2.
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We summarize the change of variables x → ξ → z with the mass-dependent
Jacobi map

J m : Q → C
2; Jm(x1, x2, x3) = (z1, z2). (4.3.6)

The range, C
2, of the Jacobi map realizes the quotient space of the configuration

space by translations.

Dividing by Rotations. We proceed to the second step in the process of con-
structing shape space, which is to divide Q/translations = C

2 by the action of
rotations. Rotation by the angle θ acts on the Jacobi coordinates by complex scalar
multiplication by eiθ : (z1, z2) �→ (eiθ z1, e

iθ z2). Thus shape space is isometric to
the Riemannian quotient C

2/S1 where C
2 is endowed with its standard Euclidean

structure, the real part of the standard Hermitian form, and where the circle group
S1 acts by scalar multiplication on C

2.
Following Hopf, we realize the quotient by this circle action by packaging the

quadratic invariants for the circle action, namely |z1|2, |z2|2,Re(z1z̄2), Im(z1z̄2),
into a single real vector

w = (w1, w2, w3) = H(z1, z2) (4.3.7a)

according to
w1 = 1

2 (|z1|2 − |z2|2), (4.3.7b)

w2 + iw3 = z1z̄2. (4.3.7c)

The componentsw1, w2, w3 of w form a global coordinate system for shape space.
To summarize:

w(x) := H(Jm(x)) (4.3.7d)

is invariant under the action of the group SE(2) of rigid motions on Q, and so
induces a map from Q/SE(2) to R

3. This induced map is a homeomorphism of
the quotient space onto R

3.
Recall the signed area,� (equation (4.1.2)) and the moment of inertia I (equa-

tions (4.2.8)). We compute that

w3 = 4

√
m1m2m3

m1 +m2 +m3
�. (4.3.8)

and that
‖w‖2 := w2

1 + w2
2 + w2

3 = 1
4I

2. (4.3.9)

Fixing I = 1 defines a three-sphere S3 in the space Q/translations = C
2. The

restriction of H to this three-sphere is the Hopf fibration, S3 → S2, from the sphere
of radius 1 in C

2 onto the sphere of radius 1/2 in R
3. We call this two-sphere the

shape sphere. Its points represent oriented similarity classes of triangles.
Introduce spherical coordinates (χ, ψ) according to

(w1, w2, w3)

‖w‖ := (cos(ψ) cos(χ), sin(ψ) cos(χ), sin(χ)). (4.3.10)

And set
R = √

I so that R = √
2
√‖w‖. (4.3.11)
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Lemma 1. The metric on shape space is

ds2
shape = dR2 + R2

4
d2sm where d2sm = dχ2 + cos2(χ)dψ2 (4.3.12)

so that twice the kinetic energy on shape space is

Kshape = Ṙ2 + R2

4
(χ̇2 + cos2(χ)ψ̇2). (4.3.13)

The variable χ is a normalized (signed ) spherical distance from the syzygy plane
in the shape sphere. It is zero if and only if we are at syzygy.

The metric d2sm in Lemma 1 is the standard metric on the two-sphere of radius
1 in Euclidean space, so that the metric d2sm/4 is the standard metric of radius
1/2 on the two-sphere. The metric ds2

shape on shape space (see (4.3.11),(4.3.12))
is that of the cone over the two-sphere of radius 1/2, according to the following
definition.

LetX be a Riemannian manifold. Write the typical point in the product [0,∞)×
X of a ray withX as (R, x), whereR is a non-negative real number and x is a point
inX. The topological cone overX is the quotient space C(X) = ([0,∞)×X)/ ∼
where the identification “∼” identifies all points having R = 0 to a single point,
called the cone point and denoted 0. The cone has the structure of a smooth manifold
away from the cone point.

Definition (The Cone over a Riemannian manifold). (See [Bur01] for the definition
of a cone over a general metric space.) Let d2sX be the Riemannian metric on X.
Put the Riemannian metric ds2 = dR2 + R2d2sX on the cone C(X) over X.
This is a smooth Riemannian metric away from the cone point. Its corresponding
distance function extends continuously to the cone point, endowing the cone with
the structure of a metric space.

The distance from the cone point is measured by R. The subset {R = 1} is
isometric to (X, d2sX).

Example 1. A Euclidean vector space E
n+1 of dimension n+ 1 is isometric to the

cone over the n-sphere Sn(1) ⊂ E
n+1 of radius 1. The isometryC(Sn(1)) → E

n+1

sends (R, ω) to Rω ∈ E
n+1.

Example 2. Suppose that the Lie groupG acts on the Euclidean space E
n+1 of E.1

by linear isometries. Then G also acts on the sphere Sn and so we can form the
metric quotient Sn/G. Since the action ofG commutes with the action of dilations,
the radial coordinates mapC(Sn(1)) → E

n+1 of Example 1 is aG-equivariant map.
It follows that E

n+1/G is isometric to the cone C(Sn(1)/G) over Sn(1)/G. The
coordinate R on the cone is the Euclidean distance form the origin in E

n+1. IfK is
another Lie group which acts linearly on E

n+1 and which commutes with the action
of G, then this action descends to an action on the cone C(Sn(1)/G) ∼= E

n+1/G

as an action by isometries which preserves the coordinate R.
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Proof of Lemma 1. Our situation here fits squarely within Example 2. Take E
4 =

C
2, G = S1, and K = SU(2). We have seen that the quotient of S3(1) is the two-

sphere and that the quotient map is realized by the Hopf fibration S3(1) → S2, so
that C

2/S1 = C(S2). It remains to figure out the metric on S2. The Hopf fibration,
viewed as a map C

2 → R
3 is equivariant, where SU(2) acts on R

3 by the adjoint
action, which is to say, via the 2 : 1 cover SU(2) → SO(3). It follows that the
metric on the image sphere S2 of the Hopf fibration is homogeneous under SO(3),
and hence is a multiple of the standard metric on S2 = S2(1). To see that the
multiple gives the sphere a radius of 1/2, note that points (z1, z2) and (−z1,−z2)

are antipodal on S3(1) and hence every minimizing geodesic connnecting them
has length π . However, −1 ∈ S1 represents rotation by 180 degrees and hence
(z1, z2) and (−z1,−z2) represent the same point in shape space. It follows that the
projection to the shape space of a horizontal geodesic connecting these antipodal
points is a full great circle whose circumference is π . But the circumference of a
circle is 2πr where r is the radius of the circle. Hence r = 1/2, accounting for the
factor of 1/2. ��

We will need a formula expressing the distance rij between bodies i and j in
terms of the Hopf vector w. Each type of binary collision defines a ray in w-space.
Let b1,b2,b3 be the corresponding unit vectors, labelled so that b1 represents the
collision r23 = 0 etc. These three vectors lie in the syzygy plane, w3 = 0. In the
formula below, and from now on, ijk is any permutation of 123. The dot product and
norm on the right-hand side of this equation (4.3.14) are the standard dot product
and norm on R

3.

Lemma 2 (Distance formula). The distance between body i and body j is given by

r2
ij = mi +mj

mimj
(‖w‖ − w · bk)

= mi +mj

2mimj
I (1 − cos(χ)γk(ψ)),

(4.3.14)

where w · bk = ‖w‖ cos(χ)γk(ψ) so that γk(ψ) is the cosine of the angle between
the projection of w onto the syzygy plane and the unit vector bk .

Proof of Lemma 2. Let x = (x1, x2, x3) ∈ Q be a given configuration whose
projection to shape space is w. Move xi, xj together along the line segment joining
them in C = R

2 while keeping xk fixed, thus obtaining a straight line segment
x(t) in Q and corresponding curve w(t) in shape space. We parametrize x(t) so
that the motion is linear in t , and choose the velocities so that the total linear and
angular momenta of the motion is zero, and so that the curve ends with i and j
colliding. The resulting line segment is a minimizing geodesic in Q everywhere
perpendicular to the SE(2) orbits. It follows from properties (i) and (ii) of the
paragraph “Riemannian quotients” above that w(t) is a minimizing geodesic in
shape space which connects the given shape w to the binary collision ray. We
caculate that the line segmentx(t)hits the ij binary collision subspace, {x : xi = xj }
of Q orthogonally, and hence minimizes the distance to this subspace. It follows
that the curve w(t) realizes the distance dij between the shape w and the binary
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collision ray. Back up on Q, we compute the kinetic energy length of x(t) to be√
µij rij where µij = mimj/(mi +mj). It follows that

dij = µij rij . (4.3.15a)

We now use the conical structure of the metric. Return to the cone over a general
Riemannian manifold X. Let c ⊂ X be a smooth curve having length θ∗ < π/2
and endpoints c0, c1. Then C(c) ⊂ C(X) is the cone over a closed line segment
of length θ∗. Such a cone is isometric to the closed sector of the Euclidean plane
defined by the inequalities 0 � θ � θ∗ in polar coordinates. Let p ∈ C(c1) be the
point on the bounding ray through c1 which is a distance R from the cone point.
In other words, p is the point represented as (R, c1). Then the distance d from p

to the other bounding ray C(c0) is, from high-school geometry, R sin(θ∗). Apply
these considerations to the spherical projection of c(t) = w(t)/|w(t)| of w(t) to
obtain

dij = R sin(θij ), (4.3.15b)

where θij is the distance in S2(1/2) between bk and the spherical projection of w.
Due to the radius of 1/2, we have cos(2θij ) = w ·bk/|w|. Combine this with |w| =
R2/2 (equation (4.3.9)) and the double-angle formula cos(2θ) = 1 − 2 sin2(θ) to
arrive at

|w| − w · bk = R2 sin2(θij ), (4.3.16)

which combined with (4.3.15) yields the desired result, the first equation of (4.3.14).
Writing the vector w in terms of the spherical coordinates (R, χ,ψ) and using
I = R2 yields the second equality of (4.3.14). ��

4.4. Conformal geometry of the shape sphere

We identified the shape sphere as the subspace {I = 1} of the shape space. At
a more fundamental level the shape sphere is the set of oriented similarity classes
of triangles.

Definition. The shape sphere is the quotient space Q∗/G̃ where Q∗ = Q \
{triple collisions} ⊂ Q and where G̃ ⊃ SE(2) is the group of all orientation
preserving similarity transformations of the Euclidean plane.

We perform the quotient ofQ∗ by G̃ in two steps. First, we divide by translations
so as to form

Q∗/translations ∼= C
2 \ {0}.

Next, we divide by the group of orientation-preserving similarities. The latter group
acts on C

2 \ {0} as the group C
∗ of nonzero complex numbers acting by scalar

multiplication. Thus

shape sphere ∼= (C2 \ {0})/C∗ = CP
1,

where CP
1 is the complex projective line, the space of all complex lines in C

2.
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The metric we have put on the shape sphere depends on the choice m of mass
distributions. We wrote this metric as d2sm in Lemma 1 to indicate its mass de-
pendence. A different mass distribution m′ will yield a different metric d2sm′ on
the same space, different despite the fact that the two metrics are isometric to
each other. These two metrics are conformally related. We will need the precise
conformal factor which relates them. This factor is given by Proposition 2 below.

To properly understand the situation, replace C
2 by an abstract two-dimensional

complex vector space V , where V corresponds to our Q/translations. The shape
sphere corresponds to the projectivization PV ∼= CP

1 of V . A Hermitian inner
product on V determines a Riemannian metric on PV . If I : V → R denotes
the square of the norm associated with this Hermitian inner product, we will write
d2sI for the corresponding Riemannian metric on PV . This Riemannian metric is
defined by endowing the three-sphere {I = 1} ⊂ V with the induced metric coming
from the real part of the Hermitian inner product, and then identifying PV with
the Riemannian quotient {I = 1}/S1. If (z1, z2) are I -orthonormal complex linear
coordinates on V , so that I = |z1|2 + |z2|2, and if z = z1/z2 is the corresponding
affine coordinate on PV , then

dsI = |dz|/(1 + |z|2). (4.4.1)

Proposition 1. Let I : V → R and I ′ : V → R be the squared norms for two dif-
ferent Hermitian structures 〈· , ·〉 and 〈· , ·〉′ on the same complex two-dimensional
vector space V . Let CP

1 = P(V ) be the projectivization of this vector space, and
let d2sI and d2sI ′ be the two metrics on this complex projective line induced by our
two Hermitian inner products. Let L : V → V be a linear operator intertwining
the two norms: 〈Lv,Lw〉 = 〈v,w, 〉′. Then the two metrics are conformally related
by

dsI ′ = |det (L)|(I/I ′)dsI . (4.4.2)

Proof of Proposition 1. Choose complex linear coordinates z1, z2 which are I -
orthonormal and which diagonalize I ′. Then

I = |z1|2 + |z2|2

while

I ′ = λ2
1|z1|2 + λ2

2|z2|2.
The linear map L = diag(λ1, λ2) intertwines the two Hermitian structures. We
know that

w1 = λ1z1; w2 = λ2z2

are orthonormal for I ′. Set w = w1/w2 and z = z1/z2. Then, according to (4.4.1)
we have dsI = |dz|/(1 + |z|2) and dsI ′ = |dw|/(1 + |w|2). We also have

dw = αdz where α = λ1/λ2.
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Then

dsI ′ = |dw|
|w|2 + 1

= α|dz|
α2|z|2 + 1

= |z|2 + 1

α2|z|2 + 1

α|dz|
|z|2 + 1

= |z1|2 + |z2|2
α2|z1|2 + |z2|2

α|dz|
|z|2 + 1

= |z1|2 + |z2|2
λ2

1|z1|2 + λ2
2|z2|2

λ1λ2|dz|
|z|2 + 1

= I

I ′ det(L)dsI

as desired. ��

Remark. The intertwining operator L is not unique, but it can easily be checked
that if F is another intertwining operator then det(F ) = det(L) so that the formula
(4.4.2) is independent of the choice of intertwining operator, as it must be.

As a corollary to Proposition 1 we have

Proposition 2. Let m and m′ be two different mass distributions. Then the cor-
responding metrics d2sm and d2sm′ on the shape sphere are conformally related
according to the formula

m1 +m2 +m3

m1m2m3
I 2
md

2sm = m′
1 +m′

2 +m′
3

m′
1m

′
2m

′
3

I 2
m′d2sm′ . (4.4.3)

Proof of Proposition 2. Proposition 1 tells us that d2sm′ = C(I 2
m/I

2
m′)d2sm and

that the constant C is given by C = | det(L)|2 where L is an intertwining operator
taking Im to Im′ . We find such an L and compute its determinant.

Fix a triangular configuration x = (x1, x2, x3) ∈ Q. It has two images, written
z andw, in C

2 according to the Jacobi maps for the two different mass distributions
m, and m′. Write z = Jm(x) and w = Jm′(x).

We look for a linear map L : C
2 → C

2 such that w = Lz. Make the upper
triangular anzatz L(z1, z2) = (αz1, βz1 + γ z2). Using expressions (4.3.1)–(4.3.3)
for the Jacobi map, the ansatz leads to the two linear equations αz1 = w1 and
βz1 + γ z2 = w2, or

α
√
µ1(x2 − x1) =

√
µ′

1(x2 − x1),

and

β
√
µ1(x2 − x1)+ γ

√
µ2(x3 − (m1x1 +m2x2)/(m1 +m2))

=
√
µ′

2(x3 − (m′
1x1 +m′

2x2)/(m
′
1 +m′

2)).
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The first equation has α =
√
µ′

1/µ1 for a solution. Expanding the second equa-
tion in x1, x2, x3 and equating coefficients yields a system of three homogeneous
equations, in the two unknowns β and γ . The equation arising from the x3 co-

efficient has γ =
√
µ′

2/µ2 as a solution. Using this γ , the x1 equation has β =
−
√
µ′

2/µ1(m1/(m1 +m2)−m′
1/(m

′
1 +m′

2)) for a solution, while the x2 equation

has β =
√
µ′

2/µ1(m2/(m1 +m2)−m′
2/(m

′
1 +m′

2)) for a solution. These two β’s
are checked to be equal, and so we get our invertible linear operator

L =
(
α 0

β γ

)
.

We have det(L) = αγ =
√
µ′

1µ
′
2/µ1µ2. Inserting in the formulae for theµ in terms

of the masses leads to µ1µ2 = m1m2m3/(m1 +m2 +m3) := c(m). Consequently
det (L) = √

c(m′)/c(m), the claimed result. ��
The set of orientation-preserving conformal transformations of the two-sphere

coincides with the group of orientation-preserving diffeomorphisms of the two-
sphere which map circles to circles. We have just seen that the conformal structure
of the shape sphere is independent of the mass distribution. It follows that the set of
circles on the shape sphere can be specified in a manner independent of the choice
of masses.

Proposition 3. Every circle in the shape sphere is specified by a linear equation

Ar2
12 + Br2

23 + Cr2
31 +D� = 0

in the variables r2
12, r

2
23, r

2
31,� (see (4.1.1), (4.1.2)). Such a circle passes through

two triangles (points in the shape sphere) which are related by reflection if and
only ifD = 0. Such a circle passes through the two Lagrange configurations – the
equilateral triangles L+, L− – if and only if D = 0 and A+ B + C = 0.

Minkowskian model of the conformal sphere. To prove Proposition 3 we will
use the Minkowsian model for the conformal structure of the two-sphere. Let R

3,1

be a four-dimensional real vector space with a Minkowski inner product β(·, ·) of
signature (3, 1). Choose linear coordinates so thatβ(w,w) = −w2

0+w2
1+w2

2+w2
3.

The subset {β(w,w) = 0, w0 � 0} is called the positive light cone. Its real pro-
jectivization PC ⊂ P(R3,1) is the set of all forward-pointing light rays through the
origin. It is topologically a two-sphere. The group of all invertible linear transfor-
mations of R

3,1 which map C to itself coincides with the group of time-oriented
conformal Lorentz transformations – the group of linear transformations which
preserve β up to scale and which preserve the “sense of time” (sign of w0). The
identity component of this group will be denotedCSO(3, 1)+. It acts by projective
transformations on the sphere PC. The circles on the sphere are the intersections
of planes in P(R3,1) (projectivized three-dimensional linear subspaces) with the
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sphere PC. If x0, x1, x2, x3 are any linear coordinates on R
3,1 then such a circle is

described by a linear equation:

Ax0 + Bx1 + Cx2 +Dx3 = 0 (4.4.4)

on the projectivized cone.
To see the isomorphism between the Minkowskian and complex Hermitian

points of view regarding the conformal structure of the sphere, it helps to return
to our abstract situation of a two-dimensional complex vector space V . The group
S1 of unit complex numbers acts on V by complex scalar multiplication. We have
seen that the quotient V/S1 of V by this group corresponds to shape space, and is
homeomorphic to the cone over a two-sphere. Here is an alternative way to identify
this same cone. Write P for the space of all real quadratic polynomials on V which
are invariant under the action of S1. This is a four-dimensional vector space. If
z1, z2 are linear coordinates on V , then a basis for P is formed by the polynomials
w0 = 1

2 (|z1|2 +|z2|2),w1 = 1
2 (|z1|2 −|z2|2) w2 = Re(z1z̄2), andw3 = Im(z1z̄2).

Write P∗ for the real linear dual of P . Define the map

ev : V → P∗

(“ev” for “evaluation”) by

(ev(v))(Q) = Q(v) for v ∈ V,Q ∈ P.
Since each functionQ ∈ P is invariant under the circle action the map ev descends
to the quotient by S1, defining a map V/S1 → P∗. This map from the quotient
space is one-to-one and so its image is a faithful realization of the quotient space
V/S1. This image is the “postive light cone” C = ev(V ). In terms of our basis
{w0, w1, w2, w3} it is given by −w2

0 +w2
1 +w2

2 +w2
3 = 0 and w0 � 0. The cone

is well defined independent of the choice of basis for P , and itself defines on P∗ a
Lorentzian inner product (β) up to scale, and a time-orientation on P∗, where P∗
is our R

3,1.
The map ev isGL(V,C) = GL(2,C) equivariant, whereGL(V,C) acts on the

quadratic polynomials by pushforward: g(Q)(v) = Q(g−1v) and on P∗ by the dual
action. By construction, this action ofGL(V,C) on P∗ preserves the quadratic cone
C, and so is an action by conformal Lorentz transformations. Write CSO(3, 1)+
for the group of conformal Lorentz transformations which are time-oriented and so
send C to itself. Thus the map ev defines a homomorphism

GL(V,C) = GL(2,C) → CSO(3, 1)+.

The kernel of this homomorphism is ±I . Dimensional and connectivity consider-
ations show that this homomorphism maps GL(2,C) onto CSO(3, 1)+.

To form the shape sphere we must divide by the action of dilations as well as
rotations. These two actions commute. We have identified the quotient by rotations
as the positive light cone C ⊂ P∗. Dilation by λ on V acts by dilation by λ2 on P∗.
Consequently, the shape sphere is identified with the real projectivized light cone,
PC ⊂ P(R3,1). Then by (4.4.4) we know the circles on the shape sphere: they are
given by any linear equation in P∗ in the wi .
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Proof of Proposition 3. A basis for P is a linear coordinate system on P∗. Instead
of taking w0, w1, w2, w3 as basis we take the quadratic invariants

s1 = r2
23, s2 = r2

31, s3 = r2
12, and �. (4.4.6)

A circle on the shape sphere is then described, as in (4.4.4) above, by a linear
equation As1 + Bs2 + Cs3 + D� = 0 in the si and �. This proves the first
statement of the proposition. A triangle and its reflection have the same values
for the invariants si but their signed areas � are negatives of each other. So if a
circle in the shape sphere passes through both a triangle and its reflection, then
As1 + Bs2 + Cs3 + D� = 0 = As1 + Bs2 + Cs3 + −D�. Thus D = 0. This
proves the second statement of the proposition. Finally, the two equilateral triangles
L+ and L− are related by reflection and satisfy s1 = s2 = s3, which implies that
D = 0 and that A+ B + C = 0 for any circle passing through both. ��

Remark on Heron’s formula. The cone C = ev(V ) can also be expressed in
terms of the invariants si,� ∈ P . This expression is essentially Heron’s formula
for the area of a triangle:

�2 = p(p − r12)(p − r23)(p − r31), with p = 1
2 (r12 + r23 + r31).

After a bit of algebra, Heron’s formula becomes the quadratic relation

16�2 = 2s1s2 + 2s3s1 + 2s2s3 − (s2
1 + s2

2 + s2
3 ),

which is the expression of the conformal Minkowskian inner product β on P∗ in the
{si,�} basis. The time-orientation, or positive half C of the light cone, is specified
by adding the inequalities si � 0, i = 1, 2, 3.

5. Good coordinates

We introduce the coordinates (R, φ, θ) used for the proof of Theorem 2. Here
R is the usual square-root of the moment of inertia I = Im for our mass distribution
m = (m1,m2,m3). The variables φ, θ then coordinatize the shape sphere, but they
are the metric spherical coordinates appropriate for the equal mass distribution
m′ = (1, 1, 1) metric. Specifically, define the equal-mass Hopf coordinates

w = H(J(1,1,1)(x)) (5.1)

(equations (4.3.7a–d)). Then

‖w‖ = 1
2I(1,1,1) = 1

2
1
3 (r

2
12 + r3

23 + r2
31) (5.2)

(equations (4.2.8) and (4.3.9)). The coordinates φ, θ on shape space are defined by

1

‖w‖w = (cos(φ) cos(θ), cos(φ) sin(θ), sin(φ)). (5.3)
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The variable z in Theorem 2 is

z = sin(φ). (5.4a)

From (4.3.8) we know that

z = 4√
3

�

I(1,1,1)
(5.4b)

The variables (φ, θ) are the earlier spherical coordinates (χ, ψ) of (4.3.10),
(4.3.12) and (4.3.13), except that we have “artificially” set all masses equal to 1 in
the formulae surrounding (4.3.10)–(4.3.13). According to Proposition 2,

d2s(1,1,1) = dφ2 + cos(φ)2dθ2 (5.5)

while
d2sm = λ(φ, θ)2(dφ2 + cos(φ)2dθ2) (5.6)

with

λ =
√

3m1m2m3

M

I(1,1,1)

I
. (5.7)

Then, the kinetic energy on shape space for the mass distribution m is

Kshape = Ṙ2 + R2

4
λ(φ, θ)2(φ̇2 + cos2(φ)θ̇2). (5.8)

For future use we set

Ksphere = λ(φ, θ)2(φ̇2 + cos2(φ)θ̇2). (5.9)

We have used the fact that λ, being a homogeneous SE(2)-invariant function of
degree 0 can be expressed as a function of the spherical coordinates alone. The
Lagrangian for the zero-angular-momentum three-body problem in our coordinates
is

Lshape = 1
2Kshape + U(R, φ, θ). (5.10)

6. Proof of Theorem 2

It follows directly from the definition z = sin(φ), (5.4a), that the normalized
height variable satisfies properties (i) and (iii) of the theorem. When the masses are
all equal, then the north and south poles of the sphere coincide with the Lagrange
points, consequently z satisfies property (ii) as well.

We proceed to derive the differential equation (*) of Theorem 2. We do this by
computing the Euler-Lagrange equation for the evolution of the variable φ from
the expression for the Lagrangian in the (R, φ, θ) variables. The Euler-Lagrange
equation for φ is d

dt
∂L

∂φ̇
= ∂L

∂φ
. Referring to (5.7)–(5.10) we see that

∂L

∂φ̇
= R2

4
λ2φ̇ (6.1)
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while

∂L

∂φ
= R2

4

[
λ
∂λ

∂φ
(φ̇2 + cos(φ)2θ̇2)− λ2 cos(φ) sin(φ)θ̇2

]
+ ∂U

∂φ
, (6.2)

so that the Euler-Lagrange equation for φ is

d

dt

(
R2

4
λ2φ̇

)
= R2

4
λ
∂λ

∂φ
(φ̇2+cos(φ)2θ̇2)−R

2

4
λ2 cos(φ) sin(φ)θ̇2+ ∂U

∂φ
. (6.3)

Now ż = cos(φ)φ̇, so that

d

dt

(
R2

4
λ2ż

)
= cos(φ)

d

dt

(
R2

4
λ2φ̇

)
+
(
R2

4
λ2φ̇

)
d cos(φ)

dt

= cos(φ)
d

dt

(
R2

4
λ2φ̇

)
− R2

4
λ2 sin(φ)φ̇2.

(6.4)

Substituting (6.3) into the first term of (6.4), using the expression (5.9) forKsphere,
the definition of z, and multiplying both sides of (6.4) by 4 we obtain:

d

dt
(f ż) = −qz, (6.5a)

where
f = R2λ2 = Iλ2, (6.5b)

and

q =
(

1 − cos(φ)

sin(φ)

1

λ

∂λ

∂φ

)
R2Ksphere − 4

cos(φ)

sin(φ)

∂U

∂φ
. (6.5c)

This is the desired equation (*) of Theorem 2.
It is clear that f > 0 everywhere. It remains to establish the claimed positivity

of q. This follows immediately from the following lemmas.

Lemma 3. The following equality holds:

(
1 − cos(φ)

sin(φ)

1

λ

∂λ

∂φ

)
= c/λ, (6.6)

where c is the constant 1
M
(m1m2 +m3m1 +m2m3)/

√
3m1m2m3

M
, and where λ is the

conformal factor (5.7).

Lemma 4. The following inequality holds:

−cos(φ)

sin(φ)

∂U

∂φ
> 0 (6.7)

as long as φ �= ±π/2, and U is finite; i.e., everywhere except at the two Lagrange
points and the three binary collision points of the shape sphere.
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This concludes the proof of Theorem 2, apart from the proofs of these two
lemmas. ��
Remark on Lemma 4 at the equator. It is not obvious at first glance that the
functions appearing in lemmas 3 and 4 are smooth and well defined through the
equator φ = 0. Any function which is invariant under the full isometry groupE(2),
including reflections, defines a function on shape space which is invariant under
the reflection φ → −φ about the equator, and consequently is an even function of
φ when R, θ are fixed. The functions U and λ, being functions of the rij alone, are
such functions. Being even functions of φ their first partial derivative with respect
to φ is an odd function of φ, and these partial derivatives vanish at the equator
φ = 0. The function cot(φ) = cos(φ)/ sin(φ) is also an odd function of φ, so both
cot(φ)∂λ/∂φ and cot(φ)∂U/∂φ are even functions of φ. A Taylor series analysis
shows that at the equator φ = 0 we have cot(φ)∂f /∂φ = ∂2f /∂φ2 for any smooth
function f = f (φ, θ, R) which is an even function of φ. Thus Lemma 4 for φ = 0
says that −∂2U/∂φ2 > 0.

7. Proof of the final lemmas

7.1. Proof of Lemma 3

We introduce some simplifying notation for the purposes of this proof. Set

Î := I/I(1,1,1); ŝk = r2
ij /I(1,1,1); pk = mimj/M (7.1.1)

for ijk a permutation of 123. Then

Î = �pkŝk, (7.1.2)

while from (5.7)

λ =
√

3m1m2m3

M

1

Î
. (7.1.3)

Thus

−1

λ

∂λ

∂φ
= + ∂

∂φ
log Î . (7.1.4)

In this notation the claimed equality (6.6) is

1 + cos(φ)

sin(φ)

∂

∂φ
log Î =

∑
pk/Î . (7.1.5)

We begin the verification of (7.1.5) by using formula (4.3.14):

r2
ij = I(1,1,1)(1 − γk(θ) cos(φ)).

(We have used mi = mj = 1 in (4.3.14), so that (mi + mj)/2mimj = 1 there.
Recall that our φ, θ correspond to the χ,ψ of (4.3.10)–(4.3.14), but with all masses
there set equal to 1.) It follows that

ŝk = 1 − γk(θ) cos(φ). (7.1.7)
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From now on, write γk for γk(θ). Then, from (7.1.7),

∂ŝk

∂φ
= sin(φ)γk

which, when substituted into the logarithmic derivative of (7.1.2), yields

∂

∂φ
log Î =

∑
pk sin(φ)γk/

∑
pkŝk.

Thus
cos(φ)

sin(φ)

∂

∂φ
log Î =

∑
pk cos(φ)γk/

∑
pk(1 − γk cos(φ)).

Finally

1 + cos(φ)

sin(φ)

∂

∂φ
log Î

= 1∑
pk(1 − γk cos(φ))

[∑
pk(1 − γk cos(φ))+

∑
pkγk cos(φ)

]

=
∑

pk/
∑

pk(1 − γk cos(φ))

=
∑

pk/Î .

(7.1.8)

��

7.2. Proof of Lemma 4

Set
sk = r2

ij (7.2.1)

for ijk any permutation of 123. Then

U = m1m2/s
1/2
3 +m3m1/s

1/2
2 +m2m3/s

1/2
1 (7.2.2)

while
I = (m1m2s3 +m3m1s2 +m2m3s1)/M. (7.2.3)

Fixing the value of R is the same as fixing that of I , since I = R2. According to
Proposition 3, fixing the value of θ is the same as imposing a linear constraint on
the si :

As1 + Bs2 + Cs3 = 0 with A+ B + C = 0. (7.2.4)

Thus, freezing R and θ and varying φ is equivalent to imposing the two linear
constraints (7.2.3) and (7.2.4) on the coordinates sk and varying the sk along the
resulting line in the three-dimensional s-space. Since 1/s1/2 is convex for s > 0, and
sincemi > 0, the potential function U is a strictly convex function when restricted
to the positive coordinate orthant sk > 0 of s1s2s3-space. A strictly convex function
restricted to a line segment remains strictly convex.A strictly convex function has at
most one local minimum, which is a global minimum when it exists. Our function
U has such a minimum when constraint (7.2.3) alone is imposed, and this minimum
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is the Lagrange point s1 = s2 = s3, as is well known. The Lagrange point also
satisfies constraint (7.2.4) according to Proposition 3, and so the Lagrange point
remains the unique global minimum of U when both the constraints (7.2.3) and
(7.2.4) are imposed. Consequently, U is strictly increasing as we move away from
the Lagrange point on any of the circles θ = const of the shape sphere R = const.
Nowφmonotonically decreases as we move away from the positive Lagrange point
toward the equator. This proves that

∂U

∂φ
< 0

for all φ with 0 < φ < π/2. Consequently, inequality of Lemma 3 holds in the
upper hemisphere. It also holds in the lower hemisphere by reflectional symmetry.

Along the equator, we need a separate argument to establish the inequality. It
is rather lengthy and is not used in the proof of Theorem 1, but we have decided to
include it for the sake of completeness.

7.3. Positivity of −∂2U/∂φ2 along the equator

According to the remark following the statement of Lemma 4, the positivity
of −∂2U/∂φ2 along the equator φ = 0 is equivalent to the claimed positivity
− cot(φ)∂U/∂φ > 0 at φ = 0 (excepting the three binary collision points). To
prove this positivity, we continue to use the notation of the proof of Lemma 3.
There we used the notation pi = mjmk so that

U = M

{
p1

s
1/2
1

+ p2

s
1/2
2

+ p3

s
1/2
3

}
(7.3.1)

and
∂U

∂φ
= −M

2

{
p1

s
3/2
1

∂s1

∂φ
+ p2

s
3/2
2

∂s2

∂φ
+ p3

s
3/2
3

∂s3

∂φ

}
. (7.3.2)

The functions si = r2
jk are even in φ so that ∂s1/∂φ = 0 along the equator. It

follows that, at the equator,

−∂
2U

∂φ2 = +M
2

{
p1

s
3/2
1

∂2s1

∂φ2 + p2

s
3/2
2

∂2s2

∂φ2 + p3

s
3/2
3

∂2s3

∂φ2

}
. (7.3.3)

We want to show that (7.3.3) is always positive along the equator, except at the
binary collision points si = 0, the poles of U . We claim that it is enough to show
that

Lemma 5. Along the equator φ = 0,

si � sj < sk implies
∂2si

∂φ2 > 0 >
∂2sk

∂φ2 . (7.3.4)
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We purposely wrote sj < sk and not sj � sk . For if ij is the longest side, then, along
the equator where the triangle is collinear, we have rij = rik + rkj from which it
follows that sk := r2

ij is strictly greater than both si and sj .

To see that Lemma 5 yields −∂2U/∂φ2 > 0 along the equator, recall our
coordinates R, φ, θ . Now

R2 = I = p1s1 + p2s2 + p3s3 (7.3.5)

so the partial derivative of I with respect to φ is zero, as is its second derivative.
Thus:

0 = p1
∂2s1

∂φ2 + p2
∂2s2

∂φ2 + p3
∂2s3

∂φ2 . (7.3.6)

Let us focus on the middle length which we suppose to be r13 = √
s2 without loss

of generality. We will also suppose that the ordering is

s1 � s2 < s3. (7.3.7)

Then, according to (7.3.4)

∂2s1

∂φ2 > 0 >
∂2s3

∂φ2 . (7.3.8)

Divide (7.3.6) by s3/2
2 to obtain:

0 = p1

s
3/2
2

∂2s1

∂φ2 + p2

s
3/2
2

∂2s2

∂φ2 + p3

s
3/2
2

∂2s3

∂φ2 . (7.3.9)

Now, from (7.3.7) we have p1

s
3/2
1

� p1

s
3/2
2

and, since ∂2s1
∂φ2 is positive, we have

p1

s
3/2
1

∂2s1

∂φ2 � p1

s
3/2
2

∂2s1

∂φ2 > 0. (7.3.10a)

Again from (7.3.7) we have p1

s
3/2
2

>
p1

s
3/2
3

and, since ∂2s3
∂φ2 is negative, we have

p1

s
3/2
2

∂2s3

∂φ2 <
p1

s
3/2
3

∂2s3

∂φ2 < 0. (7.3.10b)

Combining (7.3.9), with (7.3.10a,b) we see that indeed,

0 <
p1

s
3/2
1

∂2s1

∂φ2 + p2

s
3/2
2

∂2s2

∂φ2 + p3

s
3/2
3

∂2s3

∂φ2

which, according to (7.3.3), asserts that −∂2U/∂φ2 > 0 as desired.
It remains to establish Lemma 5.
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Proof of Lemma 5. We continue to use the notation of Lemma 3:

sk = I(1,1,1)ŝk

= I
I(1,1,1)

I
ŝk

= I
1

Î
ŝk

and
ŝk = 1 − γk cos(φ). (7.3.11)

Recall that I = R2 and γk = γk(θ) are constant as we vary φ, and recall that Î and
ŝk are even functions of φ so that ∂Î/∂φ = ∂ŝk/∂φ = 0 when φ = 0. It follows
that along the equator φ = 0 we have:

∂2sk

∂φ2 = I

{
− 1

Î 2

∂2Î

∂φ2 ŝk + 1

Î

∂2ŝk

∂φ2

}

= I

Î 2

[
− ∂2Î

∂φ2 ŝk + Î
∂2ŝk

∂φ2

]
.

(7.3.12)

Since I and Î are both positive, it follows that the positivity or negativity of
∂2sk/∂φ

2 agrees with that of −(∂2Î /∂φ2)ŝk + Î (∂2ŝk/∂φ
2). Now, from (7.3.11)

we see that
∂2ŝk

∂φ2 = γk (7.3.13)

along the equator. Here, and from now on, all partial derivatives are evaluated along
the equator φ = 0. Recalling (7.1.2), Î = �pkŝk , we see that

∂2Î

∂φ2 =
∑

pjγj .

Thus

− ∂
2Î

∂φ2 ŝk + Î
∂2ŝk

∂φ2 = −(
∑

pjγj )ŝk + (
∑

pj ŝj )γ̂k.

The terms pkŝkγk cancel, leaving us with

− ∂
2Î

∂φ2 ŝk + Î
∂2ŝk

∂φ2 = pi(ŝiγk − γi ŝk)+ pj (ŝj γk − γj ŝk) (7.3.14)

for ijk a permutation of 123.
Without loss of generality, we may assume that the ordering is

s1 � s2 < s3. (7.3.15)

Then, according to (7.3.4), (7.3.12), and (7.3.14), ∂2s1/∂φ
2 > 0 is equivalent to

p2(ŝ2γ1 − γ2ŝ1)+ p3(ŝ3γ1 − γ3ŝ1) > 0 (7.3.16a)
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b
1

b
3

b
2

Fig. 6. The arrangement of binary collision configurations on the shape equator.

while ∂2s3/∂φ
2 < 0 is equivalent to

p1(ŝ1γ3 − γ1ŝ3)+ p2(ŝ2γ3 − γ2ŝ3) < 0. (7.3.16b)

Now, at φ = 0,
sk = I(1,1,1)ŝk = I(1,1,1)(1 − γk),

so that
0 < ŝ1 � ŝ2 < ŝ3 and γ1 � γ2 > γ3. (7.3.17)

Then we see in particular that

γ1 − γ2 � 0 and γ1 − γ3 > 0. (7.3.18)

We also need to know
γ3 < 0 < γ1. (7.3.19)

This follows directly from (7.3.17) and the fact that

γ1 + γ2 + γ3 = 0. (7.3.20)

To verify (7.3.20) we use the definition of our spherical coordinates in terms of
the vector w = H(J(1,1,1)(x)). In these coordinates the locations of the binary
collision points bi on the shape sphere I(1,1,1) = 1 are the vertices of an equilateral
triangle inscribed in the equator. See Fig. 6.
In particular b1 + b2 + b3 = 0. Taking dot products with the shape vector w yields
(7.3.20), since cos(φ)γi = w · bi .

Combining (7.3.17) with (7.3.19), we see that

ŝ3γ1 > ŝ2γ1 � ŝ1γ1 > 0 (7.3.21)

while
ŝ3γ3 < ŝ2γ3 � ŝ1γ3 < 0. (7.3.22)
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Combining (7.3.17), (7.3.18), and (7.3.21) we see that

p2(ŝ2γ1 − γ2ŝ1)+ p3(ŝ3γ1 − γ3ŝ1) > p2(ŝ1γ1 − γ2ŝ1)+ p3(ŝ1γ1 − γ3ŝ1)

= p2ŝ1(γ1 − γ2)+ p3ŝ1(γ1 − γ3)

> 0

which is the desired result, (7.3.16a), implying ∂2s1/∂φ
2 > 0. A similar sequence

of manipulations leads to (7.3.16b) and hence to ∂2s3/∂φ
2 > 0 . (The sign of

∂2s2/∂φ
2 can be either positive or negative.) ��

8. Conclusion and open problems

We have shown (Theorem 1) that any bounded solution with zero angular mo-
mentum and no triple collision suffers infinitely many eclipses. But the set of such
solutions may be empty!

Open problem. Show that for any mass distribution there exists a bounded solution
with no triple collision and zero angular momentum.

The figure-eight solution ([Che00]) demonstrates that this set of solutions is non-
empty when all three masses are equal.

The computations involved in the proof of Theorem 2 demonstrate that for
certain applications our spherical three-body coordinatesR, φ, θ are optimal. They
have also illustrated the power of theAlbouy & Chenciner [Alb98] squared length
coordinates sk = r2

ij for shape space computations. We believe these coordinates
will be of use in obtaining future results, including those with non-zero angular
momentum.
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