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Abstract

We show that any bounded zero-angular-momentum sol ution of the Newtonian
three-body problem suffersinfinitely many syzygies(collinearities) provided that it
does not suffer atriple collision. Our motivation comes from the dream of building
asymbolic dynamicsfor the three-body problem. The proof relies on the conformal
geometry of the shape sphere.

1. Introduction

1.1. Infinitely many syzygies

A solution to the Newtonian three-body problem suffers a syzygy, or eclipse,
whenthethreebodies, consi dered to be point masses, becomecollinear. Thesolution
is bounded if the distances between bodies remains bounded by a fixed constant
for al time.

Theorem 1. Every bounded solution of the Newtonian three-body problem with
zero angular momentum and no triple collision suffersinfinitely many syzygies.

Three-body solutionswith zero angular momentum arenecessarily planar, sothe
theorem isreally about the the planar three-body problem. Mark Levi conjectured
the theorem during a conversation with Richard Montgomery in 1998.

Binary collisions are regarded as syzygies for the purposes of the theorem. We
recall that when a solution suffersabinary collision it can be analytically continued
through the collision by means of the Levi-Civitaregularization process see LEVI-
Crivita [LeviCiv21]. Theonly obstruction toinfinitetime existence for athree-body
solution is triple collision (SunpmaN [Sunl2]): as long as the solution suffers no
triple collision, it can be continued analytically in time.
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Theorem 1 is false for the planar three-body problem if we omit the zero-
angular-momentum hypothesis. The Lagrange solutionsillustrate this. In these so-
[utions the three bodies form an equilateral triangle at every instant, and hence
they never suffer syzygies. Bounded Lagrange solutions with non-zero angular
momentum exist for al time, and all mass distributions.

Theorem 1 should be compared with the theorems of Diacu [Dia89, Dia92]. In
the first paper, Diacu proves that the set of planar initial conditions which lead to
Syzygy is open within the set of all initial conditions. In the second paper, Diacu
considers the set of planar solutions which have the property that, if they suffer
one syzygy, then they suffer infinitely many syzygies. He shows that this set of
solutions has full measure within the set of all bounded solutions which suffer at
least one syzygy, provided that the masses m1, mo, m3 of the bodies lie within a
certain subset S of the three-dimensional space of mass distributions. This subset
S has positive measure and contains mass distributions in which one massis much
greater than the other two.

The possihility remains that the set of solutions to which Theorem 1 applies
isempty! Numerical evidence suggests otherwise. In the particular case when the
massesareall equal we know that this set of solutionsisnonempty, sinceit contains
the periodic figure-eight solution [ Che00]. Becausetheeight is (numerically) KAM
stable, therewill be an open set of near-equal masses for which this set of solutions
IS nonempty.

1.2. Motivation

Syzygies come in three types, labelled 1, 2, and 3 according to which body is
inthe middle. See Fig. 1.

1 2 3
G © ©
3 1 2
G © ©
2 3 1
G © ©

Fig. 1. Thethree syzygy types.

We can associate a syzygy sequence with each three-body motion, provided
the solution is not collinear for al time, and provided it suffers no collisions. A
Syzygy sequence is a sequence in the letters 1, 2, and 3, listing the syzygies of a
solution in order of occurrence. If the solution is periodic modul o rotations then its
syzygy sequence is periodic. The free-homotopy type of curve which is periodic
modul o rotation, whether it isasolution or not, is encoded by its (periodic) syzygy
sequence. Does every periodic syzygy sequence arise as the syzygy sequence of
somesuch solution? (Wu-Yi Hsiang asked thisquestionin 1996. It helped lead tothe
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rediscovery of the figure-eight solution of CHENCINER & MoNTGOMERY [Che00].)
More generally, is every infinite syzygy sequence realized by a solution? For var-
ious reasons, some given in MoNTGOMERY [M0n98], it is advantageous to restrict
attention to zero-angular-momentum solutions. Is there a symbolic dynamics asso-
ciated with the zero-angular-momentum three-body problem? The symbols would
be 1, 2, 3 and perhaps the additional “halt symbols’ 0 and oo to represent triple
collision and escape to infinity. To build asymbolic dynamics, we mark occurences
of syzygiesin order. For this to work, we need some syzygies to occur. Theorem
1 asserts that syzygies occur infinitely often along bounded solutions with angular
momentum zero and without triple collision.

2. Shape-spaceintuition and the evolution of spherical height

Newton's equations for the planar three-body problem are a system of six
second-order differential equations. They reduce to a system of three second-order
differential equations when we fix the values of the total linear and angular mo-
menta and then divide out by the group of trandations and rotations. These three
equations describe evolution in shape space, this being the space of oriented con-
gruence classes of triangles. Oriented congruence is distinguished from regular
congruence in that two triangles related by a reflection are congruent but not ori-
ented congruent. For example, shape space containstwo distinct points L, and L —
for the equilateral triangles of afixed side length. One is “right-handed”, and the
other is“left-handed’ . (We call these the Lagrange points.) See Fig. 2.

1 2 2 1
Fig. 2. The Lagrange configurations.

Shape space is homeomorphic to Euclidean three-space R3. See Fig. 3 below,
and Section 4. The origin of this Euclidean space representstriple collision. Issuing
fromthe origin are threerays parametrizing the binary collision configurations, one
ray for each type of binary collision, mass 1 colliding with mass 2, mass 2 colliding
with mass 3, or mass 3 colliding with mass 1. These rays are coplanar. The plane
which they span is the syzygy plane, which parametrizes the space of collinear
configurations.

A motion of the three bodies projects to the motion of a single point in shape
space. |f that motion is a zero-angular-momentum-solution to Newton's equation,
then the motion of the point in shape space is governed by the system of three
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Fig. 3. Shape space.

second-order differential equation which comprise a system having the form of
Newton’s equations but now in shape space. These shape-space Newton’sequations
assert that each of the three binary collision rays exerts an attractive force on the
point in shape space, and that the total force is the sum of these three forces. Since
the three rays lie in the syzygy plane, this total force is aways directed towards
this plane. Based on this picture, Levi conjectured that the shape point is obliged
to oscillate up and down forever, repeatedly crossing the syzygy plane, unless its
distance from the plane tends to infinity.

We will turn Levi’sintuition into a proof through the introduction of carefully
chosen spherical coordinates (R, ¢, 0) on shape space. The radial coordinate R
mesasures distance from triple collision and is a measure of the overal size of a
triangle. It is the square root of the moment of inertia as defined in (4.2.8). (See
also (4.3.9), and (4.3.11).) Setting R = 1 definesatwo-spherein shape spacewhich
we identify with the shape sphere. The shape sphere is defined to be the space of
oriented similarity classes of triangles. See Fig. 3 and Sections 4.3 and 4.4. The
sphereis coordinatized by ¢ and 6 (see (5.3)). The function

z = Sin(¢)

is ameasure of the height above the equator on the shape sphere and represents a
normalized signed area of the triangle; see (5.4). The equator of the shape sphere
is defined by z = 0 and represents the set of syzygy configurations. The “north
and south poles’, z = 1 and z = —1, represent the two Lagrange points, L
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and L_ which is to say the right-handed and left-handed equilatera triangles.
Thezero-angular-momentum L agrange sol utions, or Lagrange homothety solutions
[Lagl772,Pol76] play acentral rolein the proof of Theorem 1. For such asolution
z isconstant, +1 or —1 throughout. The solution consists of an equilateral-triangle
configuration which shrinks by homothety to apoint in finite time, ending in triple
collision.

Theorem 2. The normalized height coordinate z (see (5.4)) on shape space minus
triple collision, satisfies the following properties:

() -1=z=1

(ii) z = +1ifand onlyif the configuration isLagrange (equilateral); thefunctions
1 — z and —1 + z measure the distance of a shape from the Lagrange shapes
L, L

(iif) z = 0 if and only if the configuration is a syzygy configuration.

Along any zero-angular-momentum sol ution to the three-body the function z satis-
fies the differential equation

d ... _
EUZ)_ qz ()

away fromtriple collision. Thefunctions f and ¢ are non-negative and aregivenin
(6.5b) and (6.5¢) below. The function f isa positive function on shape space. The
function ¢ is a non-negative function on the tangent space to shape space whose
zero locus coincides with the set of tangent vectors to the Lagrange homothety
solutions.

The proof of Theorem 2 is deferred to Sections 6 and 7.

3. Proof of Theorem 1.

We prove Theorem 1, assuming Theorem 2. We must prove that under the
hypothesis of Theorem 1 the function z of Theorem 2 has infinitely many zeros.
Equivalently, we show that z must have a zero on any infinite interval [a, co).

Restrict attention to the case z(¢) > 0. The argument for z(¢) < O proceedsin
an identical manner except that the signs of z and its derivative z areto be reversed.
We first show that if z(11) > 0 and z(#1) < O, then at some later timerx > 11 we
must have z(2) = 0. Next we will show that if z(¢) > 0, then eventually for some
later time ¢, > r we must have z(t,) < 0. Together, these facts show that z(¢) has
azero some finite time later, and complete the proof.

So suppose that that z(11) > 0 and 2(11) < 0. Write z = 4(f2) and integrate
over theinterval r1 < s <t to obtain

t

0 =+ | %(f(s)i(s))ds.

8§ = —f(t)zi(ty).
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Since f is positive, § is positive. Differential equation (*) of Theorem 2, coupled
with the non-negativity of g saysthat that f(s)z(s) is monotone decreasing over
any timeinterval on which z ispositive. That is, f(s)z(s) < f(t1)z2(t1) :== -8 <0
for s > 11, aslong as z(s) is positive. The boundedness of our solution and the
continuity of f imply that f is bounded along the solution. So there is a positive
constant K suchthat 0 < f(r) < K aong our solution. Then 1/f > 1/K and
—1/f < —=1/K.Consequently z = (fz)/f < —&/K overour interval of positivity
of z. Now supposethat z(#) remainspositiveover theinterval 11 < s < 1o. Itfollows
from our integral equation for z(¢) and the inequality immediately above that

z(t2) < z(t1) — (§/K) (12 — 11).

Thisinequality together withz(r) < 1forcesz(z2) tobenegativeassoonasry —11 >
K /§. Consequently z must have a zero within the time interval [¢1, 11 + K /§].

It remains to show that there must be a time at which z is negative. This is
equivalent to showingthat itisimpossiblefor acollision-freebounded zero-angul ar-
momentum solution to simultaneously satisfy z(1) > 0 and z = 0 over an infinite
timeinterval a < t < oo. We argue by contradiction. Suppose we have such
a solution. Since z = 0 for al ¢+ = a, the function z is positive and monotone
increasing over the wholeinfinite interval, and so tends to its supremum in infinite
positive time. But z is bounded by 1, so we must have z — 0. It follows that the
limit of fzast — oo must bezero. (Again usethefact that f isbounded along the
solution.) We now show that thelimit of lim,_ » z(¢) = 1, whichisto say, that the
limiting shapeisaLagrange's equilateral triangle. For suppose thisis not the case,
then z is everywhere positive and bounded away from the Lagrange shape, z = 1.
Recall that the coefficient function ¢ of the differential equation (*) of Theorem
2 is non-negative and continuous, and is zero if and only if the shapeis Lagrange
and the initial conditions are those of a Lagrange homothety solution. It follows
that if lim; z(r) < 1, then ¢ = ¢ everywhere along our solution, for some positive
constant ¢c. Now use the differential equation (*) of Theorem 2: %(fi) = —qz.
Sinceg 2 ¢ > 0and z > z(a) > 0, theright-hand side —gz of this differential
equation is strictly negative and bounded away from zero by the negative constant
—cz(a). Thiscontradictslim;_, o fz = 0.

Now we know that z — 1 monotonicaly ast — oo while fz decreases
monotonically to zero. Thefirst fact saysthe configuration approachesthe L agrange
equilateral shape. We will now show that there is a sequence of times #; tending
to infinity for which the corresponding velocities approach those of the Lagrange
homothety solution. Integrating the differential equation (*) of Theorem2from¢ =
ato oo and using lim; .o f(1)z() = Oweobtain [ g(s)z(s)ds = — f(a)z(a).
It follows that faooq(s)ds isfinite. Thisimpliesthat theliminf of ¢ ast — o0 isO.
Thusthere aretime intervals [z;, #; 1], t; — oo over which g(s) isassmall aswe
please. (We have not excluded the possibility that limsup,_, ., ¢(¢) > 0.) During
these intervals of small ¢ the solution is nearly tangent to the L agrange homothety
configuration, since thisis the only place in phase space where ¢ is zero. In other
words, the w-limit set of our solution curve contains points of phase space which
areinitial conditions for the Lagrange homothety solution.
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Fig. 4. A near-collision orbit.

It follows that our collision-free solution contains arcs which follow the La-
grange homothety solution arbitrarily closely, and hence come arbitrarily close to
the Lagrange triple collision. We now use the results of MoeckeL [Moe83] on
the linearization of the flow near Lagrange triple collision. Moeckel performs a
M cGehee-type blow-up to add the triple collision states as a boundary to phase
space. The Lagrange triple-collision point becomes a hyperbolic rest point of sad-
dle type for the resulting vector field, and the Lagrange homothety solution liesin
its stable manifold. We have seen that our solution curve comes arbitrarily close
to this saddle point. The solution cannot lie on the stable manifold of the saddle
point, since if it did it would suffer a triple collision. It follows that the solution
curve has near-collision hyperbolic shaped arcsin which it closely followsthe sta-
ble manifold of the saddle point, coming very close to that point, then veers away
to follow the unstable manifold in order to exit a small neighborhood of the point.
Consequently the distance in phase space of the solution from the saddle point first
decreases, then increases as it moves away along the unstable manifold. See Fig. 4.

We now show that the spherical distance 1 — z in configuration space from the
L agrange point must alsoincrease. Near triple collision the unstable manifold of the
Lagrange point istransverse to the fibers of the projection (configuration, velocity)
— (configuration). This transversality follows from the same transversality for
the negative eigenspace of the linearized flow at the Lagrange point (MOECKEL
[M0e83], pp. 228-229). Consequently, 1 — z must be increasing, hence we must
have; < 0, asdesired. O

The following is a corollary to the proof of Theorem 1.

Corollary 1. Thenormalized height function z(¢) of a zero-angular-momentum so-
lution, bounded or not, has exactly one criticial point between any two consecutive
zeros (syzygies) and this critical point is nondegenerate. Specifically, if 1, < > are
consecutive zeros of z(z) and if z. isthe critical point in between these zeros, then
z(t) isstrictly monotonic on the subintervals <t <z, andt, <t < to.
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Proof of Corollary 1. Consider again the case z > 0. We saw in the proof of
Theorem 1 that once z < 0 then z continues to decrease monotonically until it
crosses zero. Thusit can have only one local maximum, on one side of which it is
monotone increasing and the other side of which it is monotone decreasing. At the
maximum z = 0, so (*) of Theorem 2 becomes fZ = —qz there. Since f, z and
q are all positive, we have 7 < 0 at this maximum point. (The possibility g = Ois
avoided as thisimplies that the solution is a Lagrange homothety solution.) When
z < 0the argument runs in the same way, resulting in 7 > 0 at the unique critical
point of z in an interval where z isnegative. O

4. Shape-space geometry
4.1. Shape space proper

Inthis (long) section we set up the geometric tools needed to derive Theorem 2,
and weexplaintheuse of thevariablesz, ¢, 6 there. The reader may wish to consult
[Che0Q], or [Mon96, Mon98,Mon01] for more details.

We begin with a careful construction of shape space. We will identify the set
C of complex numbers with the Euclidean plane in which the bodies move. The
complex number x; specifiesthe location of the ith body, i = 1, 2 or 3. We write

0 = C x C x C = planar three-body configuration space
and we write points of Q as
x=(x1,x2,x3) € 0 x;€C.

Write
SE(2) = group of rigid motions of the plane

for the group generated by translations and rotations of the Euclidean plane. This
group isthe group of isometries of the plane which preserve orientations and it acts
on the ith plane according to x; — ax; + b wherea = ¢ e C isaunit complex
number representing rotation and b € C represents the tranglation.

Definition 1. Shape space is the topological quotient space Q/SE (2).

Continuousfunctionson shape spaceareidentified with S E (2)-invariant continuous
functionson Q. The three distances

rij = |x,~ —)Cj| (4.1.1)
are such functions. So is the signed area of the triangular configuration x € Q,
A = (o — x1) A (x3 — x1), (4.1.2)

wherewewritez A w = Im(zw) = xv — yu wherez = x + iy, w =u +iv € C.
If, when forming shape space, we had divided Q instead by thefull group E (2)
of isometries of the plane which includes reflection, then the syzygy plane would
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haveformed aboundary and A would not have been afunction on this shape space.
By dividing by the smaller group SE(2) C E(2) we“desingularize” thisboundary,
allowing smooth passage through syzygy. Any reflection of the Euclidean plane
acts on shape space by reflection across the syzygy plane. It acts on the invariant
functions (4.1.1), (4.1.2) by r;; = r;j, while A > —A.

4.2. Lagrangians

Newton’s equations for the planar three-body problem are the Euler-Lagrange
equations for the Lagrangian
L=3K+U (4.2.1)
where mimp  mimp = mMpm3
U= + + (4.2.2)
r12 r13 r23

is the negative of the potentia energy, and

K= m.1|3.'c1I2 + malial? + malis|® 623
= (X, X)m
is twice the kinetic energy. Here x; is the velocity of the ith body, and m; > Ois
its mass. In the second line of (4.2.3) we have introduced the inner product

3
(0, W) =D MaVa - Wa; M = (m1, m2, m3) (4.2.4)

a=1

on the configuration space Q. Here v, - w, = Re(v,w,) denotes the standard
inner product of the two vectors v,, w, in R? = C, and the subscript m indicates
parametric dependence on the mass distribution. The inner product (4.2.4) iscalled
the kinetic energy inner product.

We can decompose (4.2.3) according to

K = Kshape + |JI?/1 + | P12/ M, (4.2.5)

where
P =Y "muk, = total linear momentum, (4.2.6)
J = Zmaxa A Xg = {(x,ix), = total angular momentum, (4.2.7)

M = m1 + m> + m3 = total mass,

1 , o
1= > mimjrf = total moment of inertia, 428

= (x, x),» when Zmaxa =0.

(Theequality betweenthetwolinesof (4.2.8) isattributed to LAGRANGE [Lagl772];
see also [Pol 76].) The P-term of K measures translational kinetic energy. The J-
term measures rotational kinetic energy. The remaining term, Kgnape, Measures
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kinetic energy due to “internal” shape changes and corresponds to a Riemannian
metric on shape space described in the next section.

Without loss of generality we may take P = 0 by going to aGalilean reference
framemoving at constant velocity P /M. If wehypothesize, aswedofor Theorem 1,
that J = 0 aso, then the Lagrangian (4.2.1) becomes

Lhape = 3 Kshape + U, (4.2.9)

which is aLagrangian on shape space. It isthe Lagrangian whose Euler-Lagrange
equations govern the motion of the projection to shape space of a zero-angular-
momentum solution to Newton's equations.

Remark. Fixingthevalueof J intheLagrangian, pushing theresult down to shape
space, and then forming the Eul er-L agrange equations on shape spacewill only yield
the correct reduced equations of motion when J = 0. When J # 0 a“magnetic’
or Coriolis force term must be added to get the correct reduced equations. See
MARSDEN & RaTiu [Mar94] for example.

4.3. Geometry of shape space

The group SE(2) of rigid motions acts on a configuration x € Q sweeping
out an orbit. A velocity vector x € Q at x is perpendicular to this orbit if and
only if P = 0and J = 0. The subspace of such perpendicular vectors is natu-
rally identified with the tangent space to shape space at the shape [x]. (We write
x +— [x]forthemap Q — C := Q/SE(2) for the map sending atriangular con-
figuration to its shape.) The restriction of the kinetic energy inner product to this
perpendicular subspace defines a Riemannian metric on the shape space.

Riemannian quotients. The preceding construction is a specia instance of the
following general construction. Suppose that aLie group G acts on a Riemannian
manifold Q by isometries and that this action isfree near the point x, meaning that
gx = x if and only if g = Id. Then the quotient space Q/G is a manifold near
the corresponding “shape” [x] € Q/G and its tangent space at [x] is canonically
identified with T (Gx)* C T Q, the orthogonal complement to the tangent space
to the group orbit Gx C Q. Thisidentification yields a Riemannian metric on the
quotient space by restricting theinner product on 7, Q to Ty (Gx)*. Because G acts
by isometries, this inner product does not depend on the representative point x of
the orbit [x]. We will refer to Q/G with this metric as the Riemannian reduction,
or the Riemannian quotient of Q by G. This quotient metric satisfies the following
properties.

(i) Every geodesic on Q/G is obtained by taking a geodesic on Q which is or-
thogonal to the group action and projecting itto Q/G.

(ii) The distance function on Q/G associated with the Riemannian metric is the
orbital distance metric: thedistance between two pointsof Q /G isthedistance
between the corresponding orbitsin Q relative to the distance function on Q.
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Wewill realize the Riemannian reduction of the three-body configuration space
Q by the group G = SE(2) of rigid motions in two steps. First we divide by
tranglations. Then we divide by rotations. In between these two steps we will need
to discuss the notion of the cone over a Riemannian manifold.

Dividing by Trandations. We use the Jacobi vectors:

mixy + moxo

43.1
mj1 + m2 ( )

§1=x2—x1, &2=2x3—

These vectors are invariant under trandlation of the x;. See Fig. 5.

Fig. 5. The Jacobi vectors.

They diagonalize the kinetic energy, subject to the constraint that the total linear
momentum is zero:

K = ualé1| + paléol?  provided ) mi; = 0.
Similarly
1= palgaf? + palgol”  provided Y mix; = 0.

The coefficients u; are given by

1 1 1 1 1 1

— =t = 4.3.2)

M1 mi m2 M2 m3z  mip+mp
Set

1= /g1, 72 = /ueze. (4.3.3)

Then

K =|z1/> + 122> provided Zm,-)'ci =0, (4.3.4)

I =|z11%+ |z2/> provided Zm,-x,- =0. (4.3.5)

The z; coordinatize the quotient vector space Q/trandations. We call the z; Jacobi
coordinates. They put the kinetic energy inner product (4.2.3) into standard form,
that of the real part of the standard Hermitian inner product ((z1, z2), (w1, w2) =
Re(z11 + z2w2) on C2,
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We summarize the change of variablesx — & — z with the mass-dependent
Jacobi map
Tm:Q— C%  Julx1,x2,x3) = (21, 22). (4.36)
The range, C?, of the Jacobi map realizes the quotient space of the configuration
space by trandations.

Dividing by Rotations. We proceed to the second step in the process of con-
structing shape space, which is to divide Q/translations = C? by the action of
rotations. Rotation by the angle 6 acts on the Jacobi coordinates by complex scalar
multiplication by e'?: (z1, z2) — (€'?z1, €z2). Thus shape space is isometric to
the Riemannian quotient C2/S* where C? is endowed with its standard Euclidean
structure, the real part of the standard Hermitian form, and where the circle group
ST acts by scalar multiplication on C2.

Following Hopf, we realize the quotient by this circle action by packaging the
quadratic invariants for the circle action, namely |z1/2, |z2|2, Re(z122), Im(z1Z2),
into asingle real vector

W = (w1, w2, w3) = H(z1, 22) (4.3.79)

according to
wy = 5(|z2f® — |z21?), (4.3.7b)
w2 +iw3 = 7122. (4.3.7¢)

The components ws, wo, ws of w form aglobal coordinate system for shape space.
To summarize:
W(x) 1= H(Tn(x)) (4.3.7d)

is invariant under the action of the group SE(2) of rigid motions on Q, and so
induces a map from Q/SE(2) to R3. This induced map is a homeomorphism of
the quotient space onto R3.

Recall the signed area, A (equation (4.1.2)) and the moment of inertia  (equa-
tions (4.2.8)). We compute that

S e N (4.3.8)
mi+mo +m3

Iw||? := w? + w? + w3 = 112 (4.3.9)

Fixing I = 1 defines a three-sphere $° in the space Q/transations = C2. The

restriction of 7 to thisthree-sphereisthe Hopf fibration, $3 — 52, from the sphere

of radius 1 in C? onto the sphere of radius 1/2 in R3. We call this two-sphere the

shape sphere. Its points represent oriented similarity classes of triangles.
Introduce spherical coordinates (x, ¥) according to

and that

—(w1’|m Y3 . (cos(iy) cos(x), SN(y) cos(x), Sin(x)). (4.3.10)

And set
R=+1 sotha R=+2/|w]. (4.3.11)
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Lemma 1. The metric on shape spaceis

RZ
d55ape = dR? + szsm where  dZs,, = dx? + co?(x)dy?  (4.3.12)

so that twice the kinetic energy on shape spaceis

2
Kshape = R? + RT(XZ + coS2(x)V2). (4.3.13)

Thevariable x isa normalized (signed) spherical distance from the syzygy plane
in the shape sphere. It is zero if and only if we are at syzygy.

Themetric d2s,, in Lemma 1 isthe standard metric on the two-sphere of radius
1 in Euclidean space, so that the metric d2s,, /4 is the standard metric of radius
1/2 on the two-sphere. The metric dséqape on shape space (see (4.3.11),(4.3.12))
is that of the cone over the two-sphere of radius 1/2, according to the following
definition.

Let X beaRiemannian manifold. Writethetypical pointintheproduct [0, co) x
X of aray with X as (R, x), where R isanon-negative real number and x isapoint
in X. Thetopological coneover X isthe quotient space C(X) = ([0, o0) x X)/ ~
where the identification “~" identifies al points having R = 0 to a single point,
called the cone point and denoted 0. The cone hasthe structure of asmooth manifold
away from the cone point.

Definition (TheConeover aRiemannian manifold). (See[Bur01] for thedefinition
of acone over ageneral metric space.) Let d2sx be the Riemannian metric on X.
Put the Riemannian metric ds? = dR? + R?%d%sx on the cone C(X) over X.
Thisis a smooth Riemannian metric away from the cone point. Its corresponding
distance function extends continuously to the cone point, endowing the cone with
the structure of a metric space.

The distance from the cone point is measured by R. The subset {R = 1} is
isometric to (X, d2sx).

Example 1. A Euclidean vector space E"*+1 of dimension n + 1 isisometric to the
coneover then-sphere S (1) ¢ E"+1 of radius 1. Theisometry C (5" (1)) — E*+1
sends (R, w) to Rw € E"H1,

Example 2. Suppose that the Lie group G acts on the Euclidean space E"*+1 of E.1
by linear isometries. Then G aso acts on the sphere S" and so we can form the
metric quotient $” /G. Sincethe action of G commuteswith the action of dilations,
theradial coordinatesmap C (5" (1)) — E"*1 of Example 1isaG-equivariant map.
It follows that E"+1/G is isometric to the cone C(5"(1)/G) over §"(1)/G. The
coordinate R on the coneisthe Euclidean distance form theoriginin E"+1. If K is
another Liegroup which actslinearly on E*+1 and which commuteswith the action
of G, then this action descends to an action on the cone C (5" (1)/G) = E"*1/G
as an action by isometries which preserves the coordinate R.
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Proof of Lemma 1. Our situation here fits squarely within Example 2. Take E* =
C2,G = S, and K = SU(2). We have seen that the quotient of $3(1) is the two-
sphere and that the quotient map is realized by the Hopf fibration S3(1) — $2, so
that C2/St = C(5?). It remainsto figure out the metric on S2. The Hopf fibration,
viewed asamap C2 — R3 is equivariant, where SU (2) acts on R3 by the adjoint
action, which isto say, viathe 2 : 1 cover SU(2) — SO(3). It follows that the
metric on the image sphere S2 of the Hopf fibration is homogeneous under SO (3),
and hence is a multiple of the standard metric on $2 = $2(1). To see that the
multiple gives the sphere aradius of 1/2, note that points (z1, z2) and (—z1, —z2)
are antipodal on $3(1) and hence every minimizing geodesic connnecting them
has length 7. However, —1 € S represents rotation by 180 degrees and hence
(z1, z2) and (—z1, —z2) represent the same point in shape space. It follows that the
projection to the shape space of a horizontal geodesic connecting these antipodal
pointsisafull great circle whose circumference is . But the circumference of a
circleis 2z r where r isthe radius of the circle. Hencer = 1/2, accounting for the
factorof 1/2. O

We will need aformula expressing the distance r;; between bodiesi and j in
terms of the Hopf vector w. Each type of binary collision definesaray in w-space.
Let b1, by, b3 be the corresponding unit vectors, labelled so that bs represents the
collision ro3 = 0 etc. These three vectors lie in the syzygy plane, wsz = 0. In the
formulabel ow, and fromnow on, i j k isany permutation of 123. Thedot product and
norm on the right-hand side of this equation (4.3.14) are the standard dot product
and norm on R3,

Lemma 2 (Distance formula). The distance between body i and body j is given by

2 _Mmi+m

P2 = (Iw] —w - by)
mimj
N (4.3.14)
= L1(1— cos(0) vk ().
m,-mj

wherew - by = ||w|| cos(x)yx () sothat y, () isthe cosine of the angle between
the projection of w onto the syzygy plane and the unit vector by.

Proof of Lemma 2. Let x = (x1,x2, x3) € Q be a given configuration whose
projection to shape spaceisw. Move x;, x; together along the line ssgment joining
them in C = R? while keeping x; fixed, thus obtaining a straight line segment
x(¢) in Q and corresponding curve w(z) in shape space. We parametrize x(¢) so
that the motion is linear in ¢, and choose the velocities so that the total linear and
angular momenta of the motion is zero, and so that the curve ends with i and j
colliding. The resulting line segment is a minimizing geodesic in Q everywhere
perpendicular to the SE(2) orbits. It follows from properties (i) and (ii) of the
paragraph “Riemannian quotients’ above that w(z) is a minimizing geodesic in
shape space which connects the given shape w to the binary collision ray. We
caculatethat thelinesegment x (¢) hitsthei j binary collision subspace, {x : x; = x;}
of Q orthogonally, and hence minimizes the distance to this subspace. It follows
that the curve w(r) redlizes the distance d;; between the shape w and the binary
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collision ray. Back up on Q, we compute the kinetic energy length of x () to be
[Wijtij where Hij = m,-mj/(m,- + mj). It follows that

d,'j = WijFij- (4.3.15a)

We now usethe conical structure of the metric. Returnto the cone over ageneral
Riemannian manifold X. Let ¢ C X be a smooth curve having length 6, < /2
and endpoints co, ¢1. Then C(c¢) C C(X) isthe cone over a closed line segment
of length 6. Such a cone isisometric to the closed sector of the Euclidean plane
defined by theinequalities0 < 6 < 0, in polar coordinates. Let p € C(c1) bethe
point on the bounding ray through ¢1 which is a distance R from the cone point.
In other words, p is the point represented as (R, c¢1). Then the distance d from p
to the other bounding ray C(co) is, from high-school geometry, R sin(6.). Apply
these considerations to the spherical projection of c¢(r) = w(zr)/|w(#)| of w(z) to
obtain

dij = Rsin(6;;), (4.3.15b)

where 6;; isthe distance in $2(1/2) between by, and the spherical projection of w.
Duetotheradiusof 1/2, we have cos(26;;) = w - by /|w|. Combinethiswith |w| =
R?/2 (equation (4.3.9)) and the double-angle formula cos(20) = 1 — 2sin?(0) to
arrive at

W] —w - by = RZsin?(6;)), (4.3.16)

which combined with (4.3.15) yiel dsthedesired result, thefirst equation of (4.3.14).
Writing the vector w in terms of the spherical coordinates (R, x, ¥) and using
I = R? yieldsthe second equality of (4.3.14). O

4.4. Conformal geometry of the shape sphere

We identified the shape sphere as the subspace {I/ = 1} of the shape space. At
amore fundamental level the shape sphere is the set of oriented similarity classes
of triangles.

Definition. The shape sphere is the quotient space Q*/G where 0* = Q \
{triple collisions} C Q and where G O SE(2) is the group of al orientation
preserving similarity transformations of the Euclidean plane.

We performthequotient of Q* by G intwo steps. First, wedivideby translations
so asto form
Q* /translations = C? \ {0}.

Next, wedivide by the group of orientation-preserving similarities. Thelatter group
acts on C? \ {0} as the group C* of nonzero complex numbers acting by scalar
multiplication. Thus

shape sphere = (C? \ {0})/C* = CP?,

where CP? is the complex projective line, the space of all complex linesin C2.



326 RICHARD MONTGOMERY

The metric we have put on the shape sphere depends on the choice m of mass
distributions. We wrote this metric as d2s,, in Lemma 1 to indicate its mass de-
pendence. A different mass distribution m’ will yield a different metric d2s,,, on
the same space, different despite the fact that the two metrics are isometric to
each other. These two metrics are conformally related. We will need the precise
conformal factor which relates them. This factor is given by Proposition 2 below.

To properly understand the situation, replace C2 by an abstract two-dimensional
complex vector space V, where V corresponds to our Q/trandations. The shape
sphere corresponds to the projectivization PV = CP! of V. A Hermitian inner
product on V determines a Riemannian metricon PV. If I : V — R denotes
the square of the norm associated with this Hermitian inner product, we will write
d?s; for the corresponding Riemannian metric on PV . This Riemannian metric is
defined by endowing thethree-sphere{/ = 1} ¢ V withtheinduced metric coming
from the real part of the Hermitian inner product, and then identifying PV with
the Riemannian quotient {1 = 1}/S™. If (z1, z») are I-orthonormal complex linear
coordinateson V, sothat I = |z1|2 + |z2|%, and if z = z1/z2 isthe corresponding
affine coordinate on PV, then

ds; = |dz|/(1L+ |z]%). (4.4.1)

Proposition 1. Let 7 : V — Rand I’ : V — R bethe squared norms for two dif-
ferent Hermitian structures (-, -) and (-, -)’ on the same complex two-dimensional
vector space V. Let CP! = P(V) be the projectivization of this vector space, and
let d%s; and d2s;: be the two metrics on this complex projective lineinduced by our
two Hermitian inner products. Let L : V — V bealinear operator intertwining
thetwo norms: (Lv, Lw) = (v, w, )’. Thenthetwo metrics are conformally related
by

dsp = |det (L)|(1/1)ds;. (4.4.2)

Proof of Proposition 1. Choose complex linear coordinates z1, z2 which are I-
orthonormal and which diagonalize I’. Then

I =|z1* + |z2/?
while
I =33z + 232212

The linear map L = diag(A1, A2) intertwines the two Hermitian structures. We
know that

w1 = A121;, w2 =A222

are orthonormal for I’. Set w = w1/wy and z = z1/z2. Then, according to (4.4.1)
we haveds; = |dz|/(1 + |z|?) and ds; = |dw|/(1 + |w|?). We also have

dw = adz wherea = A1/A2.
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Then dw|

b= rr
aldz|
a?lz|2+1
_ RP+1 alds]
Ca?z24+1)z12+1
_JzlPHlz2l? aldz]
|z + |z 2P+ 1
a1z Ahaldz
2212112 + A31z20? 122+ 1

= %det(L)dsl

asdesired. O

Remark. The intertwining operator L is not unique, but it can easily be checked
that if F isanother intertwining operator then det(F) = det(L) so that theformula
(4.4.2) isindependent of the choice of intertwining operator, as it must be.

Asacorollary to Proposition 1 we have

Proposition 2. Let m and m’ be two different mass distributions. Then the cor-
responding metrics d2s,, and d°s,, on the shape sphere are conformally related
according to the formula

mfy 4+ mf + mj

mi1+my+m
TAT e T8 242, =

2 42
1, ds,y . (4.4.3)
mimoms3 mimomsy

Proof of Proposition 2. Proposition 1 tells us that d2s,, = C(I2/12,)d?s,, and
that the constant C isgiven by C = | det(L)| where L is an intertwining operator
taking I,, to I,,,. We find such an L and compute its determinant.

Fix atriangular configuration x = (x1, x2, x3) € Q. It hastwo images, written
z and w, in C2 according to the Jacobi maps for the two different mass distributions
m,andm’. Writez = J,,(x) and w = 7,/ (x).

We look for alinear map L : C2 — C2 such that w = Lz. Make the upper
triangular anzatz L(z1, z2) = («ez1, Bz1 + yz2). Using expressions (4.3.1)—4.3.3)
for the Jacobi map, the ansatz leads to the two linear equations wz; = w1 and
Bz1+ yzo = wp, 0f

a/pui(x2 —x1) = \/,171()62 - x1),
and
B/ 1(x2 — x1) + y/m2(x3 — (m1x1 + max2)/(my + my))
= Jih(xa — (mipxs + miyxa) [(my + m)).
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The first equation has o = /% /1 for a solution. Expanding the second equa-

tion in x1, x2, x3 and equating coefficients yields a system of three homogeneous
equations, in the two unknowns 8 and y. The equation arising from the x3 co-

efficient has y = W as a solution. Using this y, the x1 equation has g =
—\/ o/ ma(my/(my +mp) —m} /(m’) +mb)) for asolution, while the x2 equation

has B = ,/ub5/a(ma/(my + m2) — mb/(m} + mb)) for asolution. Thesetwo B's
are checked to be equal, and so we get our invertible linear operator

L= .
By
Wehavedet(L) = ay = ,/uyus/mipe. Insertingintheformulaefor the . interms

of themassesleadsto w2 = mimoms/(m1 + mo +m3) := c¢(m). Consequently
det(L) = \/c(m’)/c(m), theclaimed result. O

The set of orientation-preserving conformal transformations of the two-sphere
coincides with the group of orientation-preserving diffeomorphisms of the two-
sphere which map circlesto circles. We have just seen that the conformal structure
of the shape sphereisindependent of the mass distribution. It follows that the set of
circles on the shape sphere can be specified in a manner independent of the choice
of masses.

Proposition 3. Every circlein the shape sphere is specified by a linear equation
Ar?y + Bri;+ Cr3 + DA =0

inthevariablesrZ,, r2;, r2), A (see (4.1.1), (4.1.2)). Such a circle passes through
two triangles (points in the shape sphere) which are related by reflection if and
only if D = 0. Such a circle passes through the two Lagrange configurations — the
equilateral triangles Ly, L_ —ifandonlyif D=0and A+ B+ C =0.

Minkowskian model of the conformal sphere. To prove Proposition 3 we will
use the Minkowsian model for the conformal structure of the two-sphere. Let R31
be afour-dimensional real vector space with a Minkowski inner product 8(-, -) of
signature (3, 1). Chooselinear coordinatessothat f(w, w) = —w3+w?+w3-+w3.
The subset {8(w, w) = 0, wg = 0} is called the positive light cone. Itsreal pro-
jectivization PC ¢ P(R31) isthe set of all forward-pointing light rays through the
origin. It istopologically atwo-sphere. The group of al invertible linear transfor-
mations of R31 which map C to itself coincides with the group of time-oriented
conformal Lorentz transformations — the group of linear transformations which
preserve S up to scale and which preserve the “sense of time” (sign of wg). The
identity component of thisgroup will be denoted CSO (3, 1)*. It acts by projective
transformations on the sphere PC. The circles on the sphere are the intersections
of planes in P(R®1) (projectivized three-dimensional linear subspaces) with the
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sphere PC. If xq, x1, x2, x3 are any linear coordinates on R31 then such acircleis
described by alinear equation:

Axo+ Bx1+ Cx2+ Dx3 =0 (4.4.4)

on the projectivized cone.

To see the isomorphism between the Minkowskian and complex Hermitian
points of view regarding the conformal structure of the sphere, it helps to return
to our abstract situation of atwo-dimensional complex vector space V. The group
ST of unit complex numbers acts on V by complex scalar multiplication. We have
seen that the quotient V /St of V by this group corresponds to shape space, and is
homeomorphic to the cone over atwo-sphere. Hereisan alternative way to identify
this same cone. Write P for the space of all real quadratic polynomialson V which
are invariant under the action of S*. This is a four-dimensional vector space. If
71, z2 arelinear coordinates on V, then abasisfor P isformed by the polynomials
wo = 3(1z1/? +|z21%), w1 = 3(|z1/? — |z2|?) w2 = Re(z122), and w3 = IM(2122).
Write P* for thereal linear dual of P. Define the map

ev:V — pP*
(“ev” for “evaluation”) by
(ev)(Q) =QWw)forveV,Q eP.

Since each function Q € P isinvariant under the circle action the map ev descends
to the quotient by S, defining amap Vv /S — P*. This map from the quotient
space is one-to-one and so its image is a faithful realization of the quotient space
V/SL. This image is the “postive light cone” C = ev(V). In terms of our basis
{wo, w1, wa, wa} itisgiven by —w3 + wi + w3 + w3 = 0and wo = 0. The cone
iswell defined independent of the choice of basisfor P, and itself defineson P* a
Lorentzian inner product (8) up to scale, and a time-orientation on P*, where P*
isour R31,

ThemapevisGL(V,C) = GL(2, C) equivariant, where GL(V, C) actsonthe
quadratic polynomialsby pushforward: g(Q)(v) = Q(g~1v) andonP* by thedual
action. By construction, thisactionof G L(V, C) on’P* preservesthequadratic cone
C, and so is an action by conformal Lorentz transformations. Write CSO (3, 1)*
for the group of conformal L orentz transformations which are time-oriented and so
send C to itself. Thus the map ev defines a homomorphism

GL(V,C)=GL(2,C) > CSO3, 1™ .

The kernel of this homomorphism is +1. Dimensional and connectivity consider-
ations show that this homomorphism maps GL(2, C) onto CSO (3, 1) .

To form the shape sphere we must divide by the action of dilations as well as
rotations. These two actions commute. We have identified the quotient by rotations
asthe positivelight cone C c P*. Dilation by A on V acts by dilation by A2 on P*.
Consequently, the shape sphere isidentified with the real projectivized light cone,
PC c P(R31Y). Then by (4.4.4) we know the circles on the shape sphere: they are
given by any linear equation in P* in the w;.
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Proof of Proposition 3. A basisfor P isalinear coordinate system on P*. Instead
of taking wo, w1, wa, w3 as basis we take the quadratic invariants

s1=r2, s2=r3,53=r%, and A. (4.4.6)

A circle on the shape sphere is then described, as in (4.4.4) above, by a linear
equation As1 + Bsz + Cs3 + DA = 0 inthes; and A. This proves the first
statement of the proposition. A triangle and its reflection have the same values
for the invariants s; but their signed areas A are negatives of each other. So if a
circle in the shape sphere passes through both a triangle and its reflection, then
As1+ Bsp +Cs3+ DA =0 = As1 + Bsp + Cs3+ —DA. Thus D = 0. This
provesthe second statement of the proposition. Finally, thetwo equilateral triangles
L, and L_ arerelated by reflection and satisfy s1 = s = s3, which implies that
D =0andthat A + B + C = Ofor any circle passing through both. O

Remark on Heron’s formula. The cone C = ev(V) can aso be expressed in
terms of the invariants s;, A € P. This expression is essentially Heron's formula
for the area of atriangle:

A% = p(p —r12)(p — r23)(p — ra1), With p = 3(r12 + raz + ra1).
After abit of algebra, Heron's formula becomes the quadratic relation
16A% = 25159 + 25351 + 25953 — (s% + S% + sg),

whichisthe expression of the conformal Minkowskian inner product 8 on P* inthe
{s;, A} basis. The time-orientation, or positive half C of thelight cone, is specified
by adding the inequalitiess; > 0,i = 1, 2, 3.

5. Good coordinates

We introduce the coordinates (R, ¢, 0) used for the proof of Theorem 2. Here
R isthe usual sguare-root of the moment of inertial = I, for our massdistribution
m = (m1, m2, m3). Thevariables ¢, 6 then coordinatize the shape sphere, but they
are the metric spherical coordinates appropriate for the equal mass distribution
m' = (1,1, 1) metric. Specifically, define the equal-mass Hopf coordinates

w = H(J 111 x)) (5.1)
(equations (4.3.7a—d)). Then
Wil = 310,11 = 3505 + 35+ r5) (5.2)

(equations (4.2.8) and (4.3.9)). The coordinates ¢, 6 on shape space are defined by

1 . .
Ty = (€OS(@) c0s(©), cos() in(6), sin(@)). (5.3)
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Thevariable z in Theorem 2 is

z = sin(g). (5.4a)
From (4.3.8) we know that
4 A
I=— 5.4b
V31a1 (540

The variables (¢, 0) are the earlier spherical coordinates (x, ¥) of (4.3.10),
(4.3.12) and (4.3.13), except that we have “ artificially” set all massesequal to 1in
the formulae surrounding (4.3.10)—(4.3.13). According to Proposition 2,

d?s1.1,1) = do? + cos(¢p)?dh? (5.5)

while
d%sm = Mg, 0)2(dp? + cos(¢)2do?) (5.6)

3 I
- [ 3mimom3 @iy 5.7)
M 1

Then, the kinetic energy on shape space for the mass distribution m is

with

2
Kewpe = B2 + %A(qx 6)2(¢ + co($)67). )
For future use we set
Kephere = (¢, 6)2($? + cos?(¢)6?). (5.9

We have used the fact that 1, being a homogeneous S E (2)-invariant function of
degree 0 can be expressed as a function of the spherical coordinates alone. The
Lagrangian for the zero-angul ar-momentum three-body problem in our coordinates
is

Lsnape = 3 Ksnape + U(R, ¢, 0). (5.10)

6. Proof of Theorem 2

It follows directly from the definition z = sin(¢), (5.4a), that the normalized
height variable satisfies properties (i) and (iii) of the theorem. When the masses are
all equal, then the north and south poles of the sphere coincide with the Lagrange
points, consequently z satisfies property (ii) as well.

We proceed to derive the differential equation (*) of Theorem 2. We do this by
computing the Euler-Lagrange equation for the evolution of the variable ¢ from
the expression for the Lagrangian in the (R, ¢, 0) variables. The Euler-Lagrange
equation for ¢ is < ?Tﬁ? = %. Referring to (5.7)—~(5.10) we see that

2
oL _ R—xzd} (6.1)
Rl 4
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while

oL RZ[

8¢ 7 x—(qs + cos(¢) 6 ) A< cos(¢) Sin(¢)o }+ % (6.2

a9
so that the Euler-Lagrange equation for ¢ is

d szz' Rka +cos(¢)262 R2 2 cos(¢p) Sin 9+8 6.3
E(T ¢>— 7 £(¢ ($)°0°)— S(¢p) Sin(¢) S (6.3)

Now z = cos(¢)¢, so that

d (R? ;.\ _ d R2 5 R? .\ dcos(@)

R2 . R? . 6.4
= COS(¢) — ( 2¢)—7A2én(¢>¢2.

Substituting (6.3) into the first term of (6.4), using the expression (5.9) for Kgphere,
the definition of z, and multiplying both sides of (6.4) by 4 we obtain:

d ..
(D =z, (652

where
f=R%2%=1% (6.5b)

and

. cos(qb) 1oAY\ 5 B cos(¢) 8_U
N <1 sin(g) » aqs)R Ketee =4 5n0) 09
Thisisthe desired equation (*) of Theorem 2.

Itisclear that f > O everywhere. It remains to establish the claimed positivity
of ¢. Thisfollows immediately from the following lemmas.

(6.5¢)

Lemma 3. The following equality holds:

(1 cos(¢) 1 ax) e/ ©6.6)
sin(¢) A d¢

where ¢ isthe constant %(mlmz +mamy+moms)/ % and where A isthe
conformal factor (5.7).

Lemma 4. The following inequality holds:

cos(¢) oU
— _— >
sin(¢) 9¢
aslongas¢ # +x/2,and U isfinite; i.e., everywhere except at the two Lagrange
points and the three binary collision points of the shape sphere.

(6.7)
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This concludes the proof of Theorem 2, apart from the proofs of these two
lemmas. O

Remark on Lemma 4 at the equator. It is not obvious at first glance that the
functions appearing in lemmas 3 and 4 are smooth and well defined through the
equator ¢ = 0. Any function which isinvariant under thefull isometry group E(2),
including reflections, defines a function on shape space which is invariant under
thereflection ¢ — —¢ about the equator, and consequently is an even function of
¢ when R, 0 arefixed. Thefunctions U and A, being functions of ther;; alone, are
such functions. Being even functions of ¢ their first partial derivative with respect
to ¢ is an odd function of ¢, and these partial derivatives vanish at the equator
¢ = 0. Thefunction cot(¢) = cos(¢)/ sin(¢) isaso an odd function of ¢, so both
cot(¢)ar/d¢ and cot(¢p)alU /d¢ are even functions of ¢. A Taylor series analysis
showstthat at the equator ¢ = 0 we havecot(¢)df /d¢ = 32 f/d¢? for any smooth
function f = f(¢, 6, R) whichisan evenfunction of ¢. ThusLemmad4for¢ =0
saysthat —92U /3¢? > 0.

7. Proof of thefinal lemmas

7.1. Proof of Lemma 3
We introduce some simplifying notation for the purposes of this proof. Set
Ii=1/Ia11: S =r5/lary:  px=mim;/M (7.1.1)

for i jk apermutation of 123. Then

I = Spise, (7.1.2)
while from (5.7)
3
p— | Fmamams 1 (7.1.3)
M ]
Thus 195 5
—= = =4 _—log]. 7.14
% 99 +3¢ g (7.1.4)
In this notation the claimed equality (6.6) is
cos(¢) 0 A A
—logl = I. 7.15
an() 3¢ 9 > il (7.1.5)

We begin the verification of (7.1.5) by using formula (4.3.14):

rizj = I1,1,1(1 — ¥ (0) cos(¢)).

(We have used m; = m; = 1in (4.3.14), so that (m; + m;)/2m;m; = 1 there.
Recall that our ¢, 6 correspondto the x, v of (4.3.10)—«(4.3.14), but with all masses
there set equal to 1.) It follows that

Sk =1 — v (0) cos(¢). (7.1.7)
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From now on, write y; for y4(6). Then, from (7.1.7),

A

a; = sin(@)

which, when substituted into the logarithmic derivative of (7.1.2), yields
— |091 =" pesn@)v/ Y pisi.

Thus
cos(¢) 0

. —lo
sin(¢) 3¢

gl =" prcos@)ye/ Y pr(l— yi cos(@)).
Finally

cos@) 9 -
HETOX
1

= S pr(L— 72 c08(9)) [Z Pk (1 — vy cos()) + Z 12373 COS(¢)} (7.1.8)
=" pe/ Y el — i cos(9))

= Zpk/i.

O
7.2. Proof of Lemma 4
Set

Sk = rizj (721)

for i jk any permutation of 123. Then
U = mlmg/sé/z+m3m1/s%/2+m2m3/si/2 (7.2.2)

while

I = (mimos3 + mamaso + mom3zs1) /M. (7.2.3)

Fixing the value of R is the same as fixing that of I, since I = R?. According to
Proposition 3, fixing the value of 6 is the same as imposing a linear constraint on
thes;:

As1+ Bsp) +Csz3=0withA+ B+ C =0. (7.2.9)

Thus, freezing R and 6 and varying ¢ is equivalent to imposing the two linear
constraints (7.2.3) and (7.2.4) on the coordinates s; and varying the s; aong the
resultinglineinthethree-dimensional s-space. Since1/s/2isconvex fors > 0,and
sincem; > 0, the potential function U isastrictly convex function when restricted
to the positive coordinate orthant s > 0 of s1s2s3-Space. A strictly convex function
restricted to aline segment remains strictly convex. A strictly convex function hasat
most one local minimum, which isaglobal minimum when it exists. Our function
U has such aminimum when constraint (7.2.3) aloneisimposed, and thisminimum
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is the Lagrange point s1 = s2 = s3, as iswell known. The Lagrange point also
satisfies constraint (7.2.4) according to Proposition 3, and so the Lagrange point
remains the unique global minimum of U when both the constraints (7.2.3) and
(7.2.4) areimposed. Consequently, U is strictly increasing as we move away from
the Lagrange point on any of thecirclesd = const of the shape sphere R = const.
Now ¢ monotonically decreasesaswe move away from the positive L agrange point
toward the equator. This proves that

8_U <0
¢
for al ¢ with0 < ¢ < 7/2. Consequently, inequality of Lemma 3 holds in the
upper hemisphere. It also holdsin the lower hemisphere by reflectional symmetry.
Along the equator, we need a separate argument to establish the inequality. It
israther lengthy and is not used in the proof of Theorem 1, but we have decided to
include it for the sake of completeness.

7.3. Positivity of —3%U /d$? along the equator

According to the remark following the statement of Lemma 4, the positivity
of —92U /d¢? aong the equator ¢ = 0 is equivalent to the claimed positivity
—cot(p)oU/d¢ > 0at ¢ = 0 (excepting the three binary collision points). To
prove this positivity, we continue to use the notation of the proof of Lemma 3.
There we used the notation p; = m;m; so that

Pl P2 P3
U:M{W-FW-FW} (7.3.1)
S1 S2 S3
and
U -M as as as
_z_{fs’_/lz_l b2 Doz %_3}_ (7.3.2)
00— 2 %09 " SP2og T 32og

The functions s; = erk are even in ¢ so that ds1/0¢ = 0 along the equator. It
followsthat, at the equator,

92U M 92 92 92
3 _+ {m s1 p2 9%2  p3 Ss}_ (733)

092 — 2 | ¥ 092 T 3P 0g? T (2 092

We want to show that (7.3.3) is always positive along the equator, except at the
binary collision points s; = 0, the poles of U. We claim that it is enough to show
that

Lemma 5. Along the equator ¢ = 0,

. 9% 82sk
si S 8j < Sk implies — > 0
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We purposely wrotes; < sx andnots; < s;. Forif ij isthelongest side, then, along
the equator where the triangle is collinear, we have r;; = rjx + ry; from which it
followsthat s; := rizj isstrictly greater than both s; and s;.

To see that Lemma 5 yields —92U /9¢2 > 0 along the equator, recall our
coordinates R, ¢, 6. Now

RZ=1= p1S1 + p2s2 + pas3 (7.3.5)

so the partial derivative of I with respect to ¢ is zero, asis its second derivative.
Thus:
82s1 stz 32S3
0= .
p18¢2 +p28¢2 +p38¢2
L et us focus on the middle length which we suppose to be 13 = /s2 without loss
of generality. We will also suppose that the ordering is

(7.3.6)

51 S 5o < s3. (7.3.7)
Then, according to (7.3.4)
32S1 3ZS3

Divide (7.3.6) by s§/2 to obtain:

2 2 2
p1 0%s1  p2 %52 p3 03

0= S —s+ g —— + e ——. (7.3.9)
s§/2 d¢p? sg/z d¢p? sg/z 32

Now, from (7.3.7) we haveg— > ’;— and, since 3¢‘21 is positive, we have
S1 52

P1351>P1381

g 2 30 > 0. (7.3.109)
Again from (7.3.7) we have £ 3/2 > 3> and, since %ng is negative, we have
52 53
32 32
mils_AtS_ (7.3.10b)

£ 70 £l 703
2 0g2 = 32 ag?
Combining (7.3.9), with (7.3.10a,b) we see that indeed,

0o Pr%su p2 9%z p3 0%

sA2 02 (Y2 ag? Y2 ag?

which, according to (7.3.3), asserts that —9°U /d¢? > 0 as desired.
It remains to establish Lemma 5.
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Proof of Lemma 5. We continue to use the notation of Lemma 3:

st = Ia,1,1)8
Ia,1,1)

=] —==5
7k

A

217Sk
1

and
Sk=1-— Yk COS(¢h). (7.3.11)

Recall that I = R? and y = yx(6) are constant aswevary ¢, and recall that [ and
s, are even functions of ¢ sothat 91/0¢ = 95,/d¢ = 0 when ¢ = 0. It follows
that along the equator ¢ = 0 we have:

325y 1921 102
— =1 =-=%t=z=
A2 12 9¢? [ 092

I 827 N iasz
== — —=S% — |-
2 092t T 92

(7.3.12)

Since 7 and / are both positive, it follows that the positivity or negativity of
825 /3¢? agrees with that of —(921/3¢2)s, + 1(3°5;/9¢2). Now, from (7.3.11)
we see that
325y
a2
along the equator. Here, and from now on, all partial derivatives are eval uated along
the equator ¢ = 0. Recalling (7.1.2), I = X pySk, we seethat

321
87)2 = ZPjJ/j-

=W (7.3.13)

Thus .
921 . 0%

~5g2 +1 797 = O pivpi+ O pispx.

The terms py. Sk yx cancel, leaving us with

92] Aasz R n n ~
—3752&( + 187>2 = piSivi — viS) + P Sjvk — ViSk) (7.3.14)

for i jk apermutation of 123.
Without loss of generality, we may assume that the ordering is

51 < 5o < s3. (7.3.15)
Then, according to (7.3.4), (7.3.12), and (7.3.14), 8%s1/3¢? > O isequivaent to

P2(S2y1 — y251) + p3(S3y1 — y351) > 0 (7.3.16a)
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Fig. 6. The arrangement of binary collision configurations on the shape equator.

while 82s3/0¢2 < 0is equivalent to

p1(81y3 — y183) + p2(52y3 — y253) < O. (7.3.16b)
Now, at ¢ = O,
st =Ta108% =T, — o),
S0 that
O0<s5s1S8§2<53 and y12y2 > 3. (7.3.17)

Then we see in particular that
yi—y220andy; —y3 > 0. (7.3.18)

We also need to know
y3 <0<y (7.3.19)

This follows directly from (7.3.17) and the fact that

Yi+y2+y3=0. (7.3.20)

To verify (7.3.20) we use the definition of our spherical coordinates in terms of
the vector w = #H(J(1,1,1)(x)). In these coordinates the locations of the binary
collision pointsb; on the shape sphere 1(1,1,1) = 1 arethe vertices of an equilateral
triangle inscribed in the equator. See Fig. 6.
In particular by + b2 4+ bz = 0. Taking dot products with the shape vector w yields
(7.3.20), since cos(¢)y; = W - b;.

Combining (7.3.17) with (7.3.19), we see that

S3y1>Soy1 2511 >0 (7.3.21)

while
§3y3 < S2y3 < 5173 < 0. (7.3.22)
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Combining (7.3.17), (7.3.18), and (7.3.21) we see that

p2(S2y1 — v251) + p3(S3y1 — ¥381) > p2(S1y1 — y251) + p3(S1y1 — v351)
= p251(y1 — v2) + p3si(y1 — ¥3)
>0

which is the desired result, (7.3.16a), implying 82s1/d¢2 > 0. A similar sequence
of manipulations leads to (7.3.16b) and hence to 82s3/d¢2 > 0. (The sign of
92s52/3¢? can be either positive or negative.) 0

8. Conclusion and open problems

We have shown (Theorem 1) that any bounded solution with zero angular mo-
mentum and no triple collision suffersinfinitely many eclipses. But the set of such
solutions may be empty!

Open problem. Show that for any massdistribution there existsabounded solution
with no triple collision and zero angular momentum.

The figure-eight solution ([Che00]) demonstrates that this set of solutions is non-
empty when all three masses are equal.

The computations involved in the proof of Theorem 2 demonstrate that for
certain applications our spherical three-body coordinates R, ¢, 6 areoptimal. They
havealsoillustrated the power of theALBouy & CHENCINER [A1b98] squared length
coordinates s, = rizj for shape space computations. We believe these coordinates
will be of use in obtaining future results, including those with non-zero angular
momentum.
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