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Abstract 

It is well known that the angular momentum of a legged 
robot in the flight phase is conserved. This paper discusses 
the control of the body orientation in flight using the inter- 
nal motion of the leg. First, we use the angular momentum 
constraint (nonholonomic) to recast the problem into a non- 

Theorem to verify that the system is controllable and the con- 
cept of holonomy is introduced for constructing an optimal 
path. Finally, we use linearization control in the internal mo- 

bolonomic motion planning problem. Then we apply Chow's : !  

tion space to realize the planned path. This study provides an 
additional degree of control to dynamically balance a legged 
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robot that run. 

1 Introduction 
Figure 2 

Figure 1 

Consider a model of a legged robot shown in Figure 1. A nominal 
running cycle of the system consists of a compression phase, in which 
the leg touches the ground and the leg spring compresses; a thrusting 
phase, in which the leg spring extends while additional energy is 

A model of a one-legged hopping robot is given in Figure 1. 
The generalized coordinates that describe motion of the system 

injected into the system; and a flight phase, in which the system takes 
off and then undergoes a parabolic trajectory and finally touches 
down again (see [Rai86]). Since the system in general has not been 
equipped with external gas jets and air resistance is negligible, the 
angular momentum of the system when it is in the flight phase is 
conserved. This paper studies the following two problems: 

Problem 1.1 Can the system, by swinging the leg and adjusting the 
leg length (i.e., using the internal motion of the system), rotate itself 
360" (i.e.,  a forward somersault or a backward somersault) while in 
the air, with perhaps zero angular momentum? 

Problem 1.2 Suppose that, the angular momentum at take-off is 
zero, the body is level and the leg is vertical. Can the system position 
its leg at an arbitmry angle relative to the vertical without change the 
levelness of the body at the end of the flight phase? 

Understanding these problems can provide an additional degree 
of freedom for the control of legged robots. Other applications are 
also found in robot gymnastics ([HRss]) and space robotics (e.g., 
repairing a satellite with a redundant robot arm). 

The paper is structured as follows: In Section 2, we define npta- 
tions and preliminary concepts needed; in Section 3, we discuss the 
notion of internal motion and its usage in solving these problems. We 
also show that the angular momentum constraint is nonholonomic, 
and the system is fully controllable. A "closed-loop'' strategy that 
solves these problems is then proposed. In Section 4 we discuss the 
optimal control. 

are ( O b ,  Or, U ,  r ) ,  where O b  E S' is the pitch angle of the body (mea- 
sured counter clockwise relative to the horizontal axis), 01 E S' is the 
leg angle, U E R is the leg length (distance from the hip to the mass 

center of the lower leg) and r E R2 the position vector of the SYS- 

tem's mass center relative to the inertial reference frame. Thus, the 
configuration space, Q, of the system is Q = S' x 5'' x R x 8'. The 
shape space, M ,  consists of the set of hinge angle, = 81 - E s' 
and the leg length U E R. It is also called the control space or the 
internal motion space. Let (mb,Ib) denote the mass and the moment 
of inertia of the body about the mass center. Similarly, ( m 1 , I l )  and 
( m z ,  1 2 )  denote, respectively, the mass, the moment of inertia of the 
upper leg and the lower leg about the mass center. Furthermore, let 
dl denotes the distance from the hip to the mass center of the upper 
leg and dz the distance from the foot to the mass center of the lower 
leg; ml = ml + mz the mass of the leg, and m = (mb + ml + mz)  
the total mass of the system. €1 = mr/m is the mass ratio of the leg, 
and €2 = mZ/m, and il = m l / m l , i z  = m z / m l .  

The total kinetic energy of the system in the flight phase is de- 
rived as ([LMgO]): 

(1) 
1 .  1 1 

2 2 2 
K = -Ibei + ~~~e~ + -ink2 + -mll+112 , . 2 ' - +  

rotation translation 

where 
Z = 11 + (mb.7 + m i ( 1 -  q)'}&, 

is the effective inertia of the leg, 

in = m z ( 1 -  €2); dl = i l d l  + ?*(U - d z ) ,  
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are the effective mass of the lower leg and the the distance from the 
hip to  the mass center of the leg, and 

4 = I1 + Iz + mi(di - di)' + mz(u  - d2 - 4)' 

is the moment of inertia of the leg about its own mass center. 
Note that the total kinetic energy is decoupled into a translational 

component ($mlli.11') of the system's mass center and a rotational 
component ( K ,  = i(Ib$ + fld: + &$)) about the system's mass 
center. This enables us to study the translational motion and the 
rotational motion independently. 

Let v,(O) be the vertical take-off velocity. Then, the flight time, 
T ,  is given by 

2vdO) T=-. 

Problem 1.1 amounts to rotating the body through 360° degrees while 
the hinge angle and the leg length have the same value at the end 
of the flight phase as at take-of. Similarly, Problem 1.2 amounts to 
positioning the leg to  a given angle while the body returns to the level 
position at the end of the flight phase. 

We discuss in the following sections how this can be done, in 
perhaps some optimal way. 

9 

3 Control Strategies 

Consider now the rotational motion only. First, let 

Q ,  = {(eb,el,U) E S' X S' X 8) 

be the reduced configuration space of the system. Formally, Q ,  is 
obtained from the original configuration space Q through reduction 
to the mass center of the system. The group action on Q in this 
case is the translation by S2. The subject of reduction and various 
techniques for it have been discussed in ([AM78]), and excellent ap- 
plications of the reduction techniques to coupled rigid body systems 
are in ([Pat88], [GKM88] and [Sre87]). 

The rotational kinetic energy 

(3) 
can be viewed as a metric on the (reduced) configuration space Qn. 
In other words, we can define an inner product, ((VI, v2)), of two 
velocity vectors q ,  v2 E TqQcm by 

( (%,  v2)) = vTJv2. 

(QCm equipped with this metric is an example of a Riemannian man- 
ifold.) 

According to the Conservation Law of Angular Momentum, the 
angular momentum of the system is conserved throughout the flight 
phase. When the system is in a configuration q = (&,Ol,u) E QCm 

with velocity q E TqQ,, the angular momentum, p,  about the sys- 
tem's mass center is calculated as 

f i  = Ibdb +iJdJe(1,1,O)Jd= ((e,d)), (4) 
where 

e =  (1,1,0)'. 

Note that the velocity, ti, of the leg length does not enter the angular 
momentum expression. Rather, the effective moment of inertia of the 
leg, ?I, can be adjusted using U (see Eq. ( 2 )  ). 

Remark S.l Eq. (4) can be thought of as a constraint on the con- 
figuration space. A n  important question to ask is, does this (velocity) 
constraint arise from a position constraint, or equivalently, is the con- 
straint integrable (holonomic)? That is, does there ezist a constmint 
function of the position variables and time, 

( 5 )  f (ebre f ,%t)=O 

such that Eq. (4) is given by the differential of (5), i.e., the following 
eaualities hold, 

Suppose there is. Then from the fact that 

-- a2f azf  
auasf aelau 

- 

we conclude that f, is independent of U as 2 = 0,  which is obvi- 
ously false (see Eq. (2)). In  other words, the angular momentum 
constmint is nonholonomic. 0 

Eq. (4) also shows that if the angular momentum fi  were zero at  
take-off, then the system's velocity Q is constrained to  be orthogonal 
(under the metric) to the vector e.l A vector that is orthogonal to e is 
idled a horizontal vector ([Mon89]) if we let e be the vertical vector. 
A path in Qem is called horizontal (or admissible when p # 0) if each 
of its velocity vectors along the path is horizontal (or satisfies Eq. 

Let qo E Qn be the initial configuration and q j  E Qn the final 
configuration which we want to reach in these two problems. Then, 
in the case p = 0, both problems amount to reaching qf from qo 
along a horizontal path subject to the flight time constraint. More 
generally, when p # 0, we want to reach qf from qo along a path 
q ( t )  E Q,, t E [O,T] such that q(0) = qo,q(T) = qf and Q satisfies 
the angular momentum constmint (4) . 

It is not immediately clear how such a path can be constructed. 
Moreover, it is not obvious how the joints can be servoed to execute 
a given path in Q-. To address these problems, we introduce the 
shape space M, which is parameterized by $q = 0, - o b ,  the hinge 
angle, and U, the leg length. M has 2 dimensions, the same as the 
number of control inputs. The following results will help us with our 
problems. 

(4) ). 

Proposi t ion 3.1 (a) Define the projection P from the configuration 

space to the shape space b y  

Then, two configumtions q1,qz E Q, have the same projections, 

'Viewed from a different angle, the conservation of angular momentum is a 
consequence of the system's rotational symmetry. That is, there exists a group 
action on Qcm by the rotation group SI, and e is the infinitesimal generator of 
the group action, see [AM78]. 
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P(q1) = P(qz), if and only i f  they have the same shapes, i.e., they 
differ from each other by a rigid rotation. (b) Let s ( t )  be a piecewise 
smooth path in M ,  and qo E Qem a configumtion with shape s(O), 
that is, P(qo) = s(0). Then, there is a unique piecewise smooth path 
q( t )  passing through qo at time 0 ,  satisfying the angulur momentum 
constraint (4), and having shape s( t ) ,  that is, 

P(q( t ) )  = 4 t ) .  

Proof. (a) follows from the definition. For (b) we shall construct 
q(t)  and use the Fundamental Theorem of ODE to argue that the 
path is unique. 

First, using the definition of hinge angle, we rearrange Eq. (4) 
into the form 

p = I b e b  -k f1 (86  -k $ 1 )  = ( I b  -k f 1 ) e b  -k f1&. (7) 

I, = ( 1 6  + f,) is called the locked-body inertia, i.e., the system’s 
moment of inertia when the hinge angle and the leg length are frozen 
at ( $ 1 , ~ )  and the system is considered as a single rigid body. Eq. 

(7) can be further manipulated into the form 

Combining Eq. (8) with the definition of hinge angle gives [ ;] = [if] + [ 1-,,,I 4p0 $ I +  [ 8 1  c. (9) 

Note that the U in the right hand side of Eq. (9) is considered as a 
variable parameterizing the shape space, while it is a variable param- 
eterizing the configuration space in the left hand side. Eq. (9) is an 
ODE for the lifted path. Thus, for a given path s ( t )  = ($,r(t), u( t ) ) t  E 
M and pre-specified initial condition qo, the Fundamental Theorem 
of ODE guarantees that the lifted path q(t)  = (&,(t),@l(t),u(t))* ex- 
ists and is unique. Moreover, the lifted path satisfies the angular 
momentum constraint. 0 

Part (b) of Proposition 2.1 shows that every horizontal (or ad- 
missible) path through a point qo is in fact the lift of a path in the 
shape space. One can also consider Eq. (9) as a control system of 
the form 

4 = f ( P )  + S l ( Q ) U l  + SZ(Q)UZ, (10) 
where Qm is the state space, f ( q )  = ( p / I o , p / I o , O ) t  the drifting 
vectorfield,gl(q) = ( - f 1 / I ~ , ( l - f 1 / I ~ ~ , O ) ~  andgz(q) = (O,O,l)Tthe 
control vector fields and (u1,uz) = (+lr6) the “control inputs” (see 
[SJ72] and [BroSl]). Note that ( $ 1 ,  ii) are not the real torque inputs 
to the joints. Rather, they are velocities. 

An important question to ask is, is the control system given by 
(9) fully controllable? In other words, given qo, q j  E Qm, does there 
ezist a horizontal path (or an admissible path when p # 0 )  connecting 
them? 

This is a well addressed question in nonlinear control theory (see 
[HK77] and [Bro81]) and the answer is given by the so-called Chow’s 
Theorem as follows: 

Theorem 3.1 (Chow’s Theorem) Consider the control system given 
by Eq. (9) and suppose that p = 0. Then any two points in the 
configuration space can be connected by a horizontal path. 

Proof. According to Chow ([CholO]), we compute the Lie algebra, 
V, generated by the two control vector fields, {g1,92}. First, the Lie 
bracket, [gt, gzl ,  of 91, gz is 

Thus, V = {gl,g2, [g l ,g2]}  has determinant 

I b  df1 -- 
I$ du’  

n which is clearly non-zero (see Eq. (15)). 
Once a horizontal (or an admissible) path that connects qo to 

qj has been found2, we use the control law given by the following 
theorem to realize it. 

Theorem 3.2 Let s d ( t )  E M,t  E [O,T], be a desired path in the 
shape space, T = ( T I ,  ~ 2 ) ~  the torque/force inputs to the two joints, 
and p the angular momentum at take-off. Then, there exists U choice 
of torque inputs T that drives the tmjectory tmcking error 

asymptotically to zero, where s ( t )  is the actual trajectory in the shape 
space. 

Proof. The equations describing motion in the configuration space 

where N = [O,O,%It  and 

Since J is nonsingular, we multiply both sides of Eq. (11) by J-’ 
and then project the resulting equations to the shape space. This 
gives 

Because P has full rank, PJ-’PT = JG1 is invertible. In fact, JIM 
is the inertia matrix in the shape space. Now let sd( t )  be a desired 
trajectory and 

e p ( t )  = s ( t )  - sd( t )  

the trajectory tracking error. Clearly, the following feedback law for 
7- drives ep( t )  asymptotically to zero. 

T = J M  { i d ( t )  - K,C, - Kpep}  + JMPJ-’ N (13) 

where K,, K, E 32zxz are velocity and position gains chosen so that 
the solutions ep to the equations are damped exponentials. 0 

It may seem that by combining Proposition 3.1, Theorem 3.1 and 
3.2, a solution to Problem 1.1 and 1.2 can be obtained. That is, the 
following steps may seem to work: 

’According to part (b) of Proposition (3.1),  we really have a path in the shape 

3We assume that the system is driven by ideal actuators, and this assumption 
spare 

may not be satisfied by a physical system. 
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(a) Pick a path in the shape space and lift it to the configuration 
space and see if it connects qo to q j .  

(b)  If it does then let it be the desired path, and use the control law 
specified in Theorem 3.2 to execute it. 

The above strategy will work provided that the actual trajectory 
(in the shape space) agrees with the desired trajectory for all time. 
Since the error between the actual and the desired landing configu- 
rations is the integral of the shape space trajectory tracking error, 
Theorem 3.2 does not guarantee that this error will go to zero. In 
order to  make sure that the system will land properly, knowledge 

of the configuration variables will be needed to  adjust the desired 
shape space trajectory. This also explains that a blindfolded cat can 
not land on her feet (T. Kane, 1989, private communication with the 
second author). 

We thus propose the following "close-loop'' strategy for these 
problems. 

Data: qo, qf and measurement of q(t). 

S t e p  A: Divide the flight phase into n subintervals, 0 = to < t l  < 
... < t ,  = T. 

S t e p  B: At time t i ,  take q(t;)(q(O) = qo) as the initial configuration, 
and plan a desired path s f ( t )  whose lift connects q(t;) to q f .  
(Hope this can be done in zero time.) 

Step C: During the time interval [tj,ti+l], execute the path s f ( t ) .  

R e m a r k  3.2 In  step B, i f  the current configuration q(t;) agrees with 
the expected value (i.e., the lift of sf-l(t;)), then, s f ( t )  remains the 
same as sf-,(t). Otherwise, correction terms will be incorporated 
into the new trajectory, s f ( t ) .  0 

4 Holonomy and Optimal Control 

Consider again Figure 2 and assume that p = 0. Let s( t ) , t  E [O,T], 
be a closed path in the shape space, i.e., s(0) = s(T), and lift it to 
a path q(t)  in the configuration space. From our early discussions 
we know that, (1) q(t)  is horizontal, and (2), q(t)  is in general not 
closed, i.e., q(0)  # q(T). This follows from the constraint being 
nonholonomic. Since q(T) and q(0) project to the same point, they 
must differ by a constant. That is, if q(0) = ( 6 b ( O ) ,  6l(O), U ( O ) ) ~ ,  then 
q(T) = ( 6 b ( O )  + a,  6,(0) + a, U ( O ) ) ~ ,  where a is expressed in radians. 
The value of a depends only on the path in the shape space and is 
called the holonomy of s ( t ) .  It measures the degree of nonholonomy 
of the system. If the system were holonomic, then the holonomy of 
any closed path in the shape space is zero. 

In the famous falling cat problem studied extensively by ([KSGg], 
[Pat881 and [Mon89]), the landing configuration differs from the re- 
leasing configuration by a constant rotation, R radians, and the cat 
is entitled to find a path, perhaps a path of shortest distance that 
gives a holonomy of R radians. One may also take Problem 1.1 as 
two falling-cat problems. First, rotate itself to the upside down con- 
figuration within T/2 and then come to the landing Configuration 
within the remaining half period. 

We now wish to calculate the holonomy of a closed path in M. 
For this let R be the region enclosed by s ( t ) ,  or s be the boundary of 
0. Then, integrating Eq. (8) along s and applying Green's Theorem4 
yields 

The integrand in the second term is given by 

In other words, the holonomy of a closed path is given by the 
area integral of the function &($) over the region enclosed by the 
path. The final destination depends on the history of the path! 

Suppose that the enclosed region is a rectangle with four corner 
points 

{(+f,min, umin), (+!,ma=, umin), (+i,maz. umaz), (+t,min, umaz)}, 

then the holonomy is given by 

To perform a forward somersault, this rectangle must be traversed 
2 ~ / a  times, since each circuit provides a change a of the body ori- 
entation. 

Definition 4.1 Let q(t),t E [O,T], be a path in the configumtion 
space. Then, the integral 

E(q)  = l T G t J 4 d t  (17) 

measures the length, or the energy of the path. 

We finally apply a result of R. Montgomery ([Mon89]) to study 
the following problem: 

Problem 4.1 Consider two configurations qo and qj such that P(qo)  = 
P ( q f ) .  Find a shortest path, q( t )  E Qcmr that joins qo to qj and sat- 
isfies the angular momentum constraint (4). 

R e m a r k  4.1 Problem 1.1 is equivalent to this problem, with a 

In  Problem 1.2, let qo = (0,6[(0), U ( O ) ) ~ ,  q j  = (0,61(0)+6, ~ ( 0 ) ) ~  
be the initial and the final configumtions, and SO = P(qo), s j  = 
P(qj ) .  Then, qj can be reached from qo with first an arbitrary 
path from SO to s j  and then followed b y  a closed path based at 

holonomy angle of 2ir. 

S f .  0 

Theorem 4.1 (Minimal Energy Path, R. Montgomery([Mon89])) 
Let p ,  = (peb,pe,,pu)t be the genemlized momentum conjugate to 
q, i.e., Po6 = 5. Then, a path q( t )  E Qm is an extrema1 of (17) 

@b 

'Green's Theorem says, S,(gi(z,y)dz + gn(z,y)dy) = J S , ( v  - 
%&))dzdV, where gl(z,Y),gz(z,Y) are functions of ( T ,  y) and an is the 
ary of the compact region 0. 

1819 

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on January 29,2023 at 23:06:04 UTC from IEEE Xplore.  Restrictions apply. 



subject to the angular momentum constraint if and only if there exists 
a smooth genemlized momentum vector p ,  conjugate to q( t )  such that 
(q( t ) ,  p g ( t ) )  satisfies Hamilton’s differential equation for the Hamil- 
tonian 

Parameter 
mb 
m2 

(18) 

Values Parameter Values 
11.45 kg ml 2 x 1.055 kg 
2 x 0.608 kg Ib 0.40 kg - m2 

Remark 4.2 The Hamilton’s differential equation of a Hamil- 
tonian H ( q , p ) ,  q = {q’} ,  p = { p i } ,  is given by 

I1 
dl 

(19) 

2 x 0.0204 kg - m2 
0.0838 m d2 0.317 m 

12 2 X 0.0237 kg - m2 

The optimal path in the shape space is obtained from the opti- 
mal path in the configuration space by projection. 

The first component of Eq. (18) is the original kinetic energy, 
and the second component is the vertical kinetic energy. Thus, 
the first two components give the horizontal energy. 0 

Proof. This follows from the Lagrange multiplier tecchnique. See 

According to  the above theorem, the equations of motion for the 
R. Montgomery ([Mon89]). 0 

optimal path are 

It is straightforward to verify that, using the first two equations of 
(201, the angular momentum constraint is not violated, i.e., + 
118, = /I. 

The fourth and the fifth equations of ( 2 0 )  indicate that PObr pel are 
both constants. Combining the equations for the leg length variable 
yields 

Eq. (21) can be numerically integrated to solve for u(t) .  

tions of (20) to get 
To find the optimal hinge motion, we combine the first two equa- 

(22) 
. 1  1 

$1 = -Pe, - -peb. 
11 I b  

Eqs. (21) and (22) determine the optimal shape space trajectory. 
The final question is to choose the constants peb,peI  such that the 
optimal path connects qo to  q f .  In general, one has to do this by 
“shooting”. 

5 Simulations 

The other parameters can be calculated using data from the above 
table. The leg length and the hinge angle are constrained to  the 
following intervals. 

Umin I 21 I Umax, $1,min I $1 I $l,,,,ax. 

For simplicity, we have chosen a rectangular path in the shape space 
with 

$I,max - $l,min = 2.875 = 165’(degrees) 

and 
umax = 0.505m, Umin = 0.075m. 

Thus, from Eq. (16) the holonomy of the path is given by 

(Y = 0.27314; 

and the number of loops that need to be’repeated is 8 (= &). 
Suppose that the take-off velocity is 4.9 mls, which gives 1 second of 

flight time, the machine has to complete one loop within one eighth 
of a second. 

The nominal trajectory of the monoped is a hopping motion, and 
the 2-trajectory is shown in Figure 3, while Figures 4 , s  and 6 display 
the pitch, the hinge and the leg length trajectories. The gravity is 
913. 

6 Conclusion 

This paper studied an important problem related to legged locomo- 
tion system control. The results are appplicable to space robotics 
and satellite control. 
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Using the results of the previous sections, we have simulated a one 
legged model to perform a forward somersault with zero angular mo- 
mentum. The monoped parameters used in the simulation are given 
in the followinE table [from rRai891). 
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Figure 3: Trajectory of the vertical motion 

'"t_* ImO M 20 

lim (a 

Figure 4: Trajectory of the pitch motion 

."L 

Figure 5: Trajectory of the hinge motion 

Figure 6: Trajectory of the leg length 
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