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Lie groups, or Carnot groups, are to
sub-Riemannian geometry as Euclidean spaces are to Riemannian
geometry. They are the metric tangent cones for this geometry. Hop-
ing that the analogy between sub-Riemannian and Riemannian geom-
etry is a strong one, one might conjecture that the sub-Riemannian
geodesic flow on any Carnot group is completely integrable. We
prove this conjecture to be false by showing that the sub-Riemannian
geodesic flow is not algebraically completely integrable in the case of
the group whose Lie algebra consists of 4 by 4 upper triangular matri-
ces. As a corollary, we prove that the centralizer for the corresponding
quadratic “quantum” Hamiltonian in the universal enveloping algebra

of this Lie algebra is “as small as possible.”
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1. INTRODUCTION

. Geometry would be in a poor state if Euclidean geodesic flow was not
f completely integrable — in other words, if we did not have an explicit alge-
'} & braic description of straight lines in Euclidean space. Riemannian geometry,
: being infinitesimally Euclidean, makes frequent use of this explicit descrip-
tion. For example, the exponential map takes Euclidean lines through the

origin to geodesics.

Sub-Riemannian geometries,
tries, are not infinitesimally Euclidean. Ra
infinitesimally modelled by Carnot groups. We will review these geometries
and groups, and the relation between them momentarily. The point of this
note is to show that the Carnot geodesic fAows need not be integrable. We do
this by giving an example of a Carnot group of dimension 6 whose geodesic
flow cannot be integrated by rational functions.
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A sub-Riemannian geometry consists of a nonintegrable subbundle (dis-
tribution) V' of the tangent bundle T of a manifold, together with a fiber-
inner product on this bundle. These geometries arise, among other places,
as the limits of Riemannian geometries. In such a limit we penalize curves
for moving transverse to V so that in the limit any curve not tangent to V'
has infinite length. The distance between two points in a sub-Riemannian
manifold is defined as in Riemannian geometry: it is the infimum of the
lengths of all absolutely continuous paths connecting the two points. A
theorem attributed to Rashevskii-Chow asserts that if V' generates T under
repeated Lie brackets, and if the manifold is connected, then this distance
function is everywhere finite. Equivalently, any two points can be connected
by a curve tangent to V. In this manner, every sub-Riemannian manifold
becomes a metric space.

By a Carnot group we mean a simply connected Lie group G whose Lie
algebra G is finite dimensional, nilpotent, and graded with the degree 1 part
generating the algebra and endowed with an inner product. Specifically,

g=VioVa...0V;
as a vector space. The Lie bracket satisfies
Vi, Vil C Vi,
where V; = 0 for s > r. Also,
Vier = [V, V]

and Vi is an inner-product space. We may think of V = V| as a left-
invariant distribution on the group G. Its inner product then gives G a
sub-Riemannian geometry.

Given a distribution V' C T, we can, at typical points q of Q, obtain a
graded nilpotent Lie algebra. In order to do this, let V also stand for the
the sheaf of smooth vector fields whose values lie in V. Form

Vi=[VV],

vi={v,v?,

where the brackets denote Lie brackets of vector fields. (Exercise: Show
that, as sheaves: V7 C VJ*l) We assume that V is bracket generating,
which means that in a neighborhood of any point there is an integer r
such that V™ = T. This is the hypothesis of Rashevskii~-Chow’s theorem,
mentioned above.
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If we evaluate the spaces Vi of vector fields at the point ¢ € Q, we obtain

a lag of subspaces:
v,ovicvic...cVy =10 (1)

of the tangent space at g. If the integers dim(V}) are constant for p in
come neighborhood of g, then g is called a regular point. These integers
are lower semi-continuous functions of the point so that the set of regular
points forms an open dense subset of Q. If these dimensions are in fact con-
stant, then, following Gershkovich and Vershik [21], we call the integer list
(dim Vj, dim V;’, ...,dim V) the growth vector or type of the distribution.
Thus contact distributions are of type (2n,2n + 1).

Associate to the filtration V C V2 c ... C T of sheaves its corresponding
graded object

Gr(V,T)q=V@V2@...%...@Vr,

where V; = V7 /VI~! is the quotient sheaf. Because the Lie bracket of vector
felds X, Y satisfies [X, fY] = fX,Y] mod X,Y where f is a function, it
induces bilinear maps: V; ® Vi — Vi+k. Putting these maps together
defines, at any regular point, a Lie algebra structure on Gry, = V(g) &
Va(q) & ... Vi(g). The subspace V; = Vi(q) of Gr(V,T), is the original k-
plane field at that point, and Lie-generates Grq. It follows that Gr, is the
Lie algebra of a Carnot group G. If the distribution V comes with an inner
product, then this generating subspace inherits it. Consequently G comes
with a canonical left-invariant sub-Riemannian structure. This G is called
the nilpotentization of the sub-Riemannian structure at the regular point
g, as formalized by Gershkovich and Vershik ( [21] and references therein).

Gromov used the idea of taking limits of a family of metric spaces to
define the tangent space to any point of any metric space. (See Gromov
et al. [10] and [14].) This limiting space, called the metric tangent cone.
often fails to exist. For a Riemannian manifold it exists and equals the usual
tangent space with its Euclidean structure. It also exists for sub-Riemannian
metrics at regular points and it equals the nilpotentization G, according to
a theorem of Mitchell {14]. (See also Gromov [10], [9] and Bellaiche [3].
Bellaiche also describes the tangent cone at nonregular points.)

The nilpotentization is the closest object in sub-Riemannian geometry
to the Euclidean tangent space of Riemannian geometry. The match is not
perfect but it is the best thing we have.

§ 1.1. The geodesic flow. A sub-Riemannian geometry can be encoded
by a fiber-quadratic non-negative form H : T*Q — R on the cotangent
bundle T*Q. The kernel {H = 0} of H is the annihilator of the distribution
V. Upon polarization H becomes & bilinear non-negative form, and thus a
symmetric map g : T*Q — TQ. The image of this map is V. The inner
product on V is recovered through the relation (g(p),v)q = p{v) for any
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peT;Q, v €V, g €Q. The Hamiltonian flow associated to H generates
curves in the cotangent bundle whose projections to @ are sub-Riemannian
geodesics. By a sub-Riemannian geodesic we mean a curve in @ with the
property that the length of any sufficiently short subarc of the curve equals
the sub-Riemannian distance between the endpoints of this arc. Such curves
are necessarily tangent to V.

To write down H explicitly, pick any local orthonormal frame {X|,...,
X} for the distribution V. Think of the X; as fiber-linear functions on the
cotangent bundle T so that their squares X? are fiber-quadratic functions.
The Hamiltonian is then

1
H=§(X12+X§+A..+X,§).

Remark 1. The first reference we know of the sub-Riemannian geodesic
flow is Rayner [18]. This flow was subsequently investigated by Hermann
(11], Brockett (3], Bailleiul [2], Gershkovich and Vershik [21], Strichartz [19],
and a number of others.

Remark 2. Unlike in Riemannian geometry, there are examples of sub-
Riemannian geodesics which are not the projections of these solutions to
Hamilton’s equations in T*Q. See [15]-[17], [12]. But “most” geodesics are
obtained as projections of these solutions.

In view of the analogies between Riemannian and sub-Riemannian geo-
metries, the question naturally arises: Is geodesic flow on a Carnot group
always integrable? The answer is “yes” for two step nilpotent groups. The
flow on the simplest Carnot group, the Heisenberg group, has been inte-
grated in almost every treatise on sub-Riemannian geometry. The purpose
of this note is to provide an example of a three-step Carnot group whose
sub-Riemannian geodesic flow is not integrable in terms of rational func-
tions. Roughly speaking, this means that there is no uniform algebraic
description of its “straight lines.”

Let £ = rank(D) and n = dim(Q). We expect the sub-Riemannian
geodesic flow on T*Q to be generically nonintegrable provided k > 3, n > 6,
and the step r of the graded group @ is greater than 3. The case of rank
k = 2 is somewhat special. The geodesic flows for the Carnot groups of type
(2,3,4) (the “Engel group”) and (2, 3, 5) are known to be integrable in terms
of elliptic functions. See Granichina and Vershik [22], and Brockett and
Dai [5]. The Carnot groups of type (2,3,4,... ,n —~ 1,n) (“Goursat normal
form”) are also integrable, apparently in terms of hyperelliptic functions.
Their integrability is a direct consequence of the fact that their generic
coadjoint orbits have dimension 2.

In order to proceed with our nonintegrable example we need to describe
how the geodesic flow for a Lie group can be pushed down to a Hamiltonian
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dow on the dual of its Lie algebra. We will also need to recall the definition
of “complete integrability.”

In the particular case where the sub-Riemannian geometry is that of a
Carnot group G, then the frame X; for V' = V; can be realized by left-
invariant vector flelds. We may identify the space of left-invariant vector
fields with the Lie algebra. Thus X; € G. Then H becomes identified
with a fiber-quadratic function on the dual G* of the Lie algebra of G. We
recall that the dual of any Lie algebra has a Poisson structure, the so-called
“Lie-Poisson structure.” This can be defined by insisting that

{X., X;} = -[X:, Xj],

where we identify elements X; of the Lie algebra G with linear functions on
its dual G*. Alternatively, if F and G are any two smooth functions on G*.
then

{F,G}(z) = —(z,[dF(z),dG(z)]).

The Hamiltonian H induces a Hamiltonian vector-field on G* by Xy (f) =
{f.H).

Geometrically, what we are doing by studying this Hamiltonian flow on
G* is studying the “Poisson reduction” of the sub-Riemannian geodesic flow
on T*G. The function H on T*G is left-invariant, and, hence, so is its sub-
Riemannian geodesic flow. The vector field defining this flow can then be
pushed down to the quotient space (I™*G)/G of the cotangent bundle by the
left G action, thus defining the “Poisson-reduced” flow. Now (T*G)/G = G*
in a natural way and when we push down the Hamiltonian vector field for
H, we obtain the one discussed in the previous paragraph on G*.

We now recall the definition of completely integrable. A Hamiltonian H
(or its flow) on a symplectic manifold of dimension 2n is called completely
integrable if we can find n functions fi,..., f, which are almost every-
where functionally independent (dfy A ...df, # 0), which Poisson-commute
({fi. f;} = 0), and such that H can be expressed as a function of them
(H = h(f1,...,fn)). I the flows of the f; are complete, then their common
level sets {f1 = c1,... fn = ca} are, for typical constants c;, diffeomorphic
to the quotient of R™ by a lattice, and on each such level, the flow of H is
linear up in the covering space R™. The diffeomorphism is provided by the
action angle coordinate.

We are interested in whether the sub-Riemannian geodesic flow on T*G,
G a Carnot group, is completely integrable. In order to proceed we will
assume that if the flow “upstairs” on T*G is completely integrable, then so
is the flow “downstairs” on G*. The converse is certainly true: if the flow
downstairs is integrable, then the flow upstairs is integrable. (See the paper
by Fomenko and Mishchenko [13], or [1].) Our assumption is probably false
in general, but we expect exceptions to be “pathological.”
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We need to say a few words about what we mean by “the flow down-
stairs being integrable.” Any Hamiltonian vector field on G* is necessarily
tangent to the orbits of the coadjoint action of G on G*. The Poisson struc-
ture induces a symplectic structure on these orbits, sometimes called the
Kirillov—-Kostant-Souriau structure. When we say that the flow on G* is
“completely integrable,” what we mean is that the Hamiltonian flows re-
stricted to typical coadjoint orbits are completely integrable in the sense
just described. By a typical orbit we mean one whose dimension is max-
imal, say 2k. Now 2k = n — r where r is the rank of the Lie algebra,
which is the dimension of its maximal Abelian subalgebra. In any case,
complete integrability on the orbit means that there are k functionally in-
dependent functions f1,. .., fr on the typical orbit which Poisson-commute
with each other and such that H can be expressed in terms of them. We
assume that these functions vary smoothly with the orbit. The typical orbit
is defined by the vanishing of » functions Ci,. .., C,, where the C; form a
functional basis for the coadjoint invariant functions on G*. These func-
tions C; are called Casimirs. They Poisson-commute with every function
oh G*. Pulled back to T*G, the Casimirs form a functional basis for the
bi-invariant functions on T*G. In the nilpotent case it is known [5] that
the Casimirs are rational functions. Thus, to say that the reduced system
is integrable means that H = h(fy,..., fx; C1,...,C,) for some smooth
function h. We say it is algebraically completely integrable if the f; and
h are rational functions. (Caveat: The phrase algebraically completely in-
tegrable usually means something else in the literature, having to do with
integrability in terms of Jacobians for Riemann surfaces.)

2. THE EXAMPLE

Take G to be the group of all 4 by 4 lower triangular matrices with 1’s on
the diagonal. Its Lie algebra NV_ is the space of all strictly lower triangular
matrices

0 00O
z 0 0 O
v y 0 0
w v z 0

It is generated by the three-dimensional subspace V; consisting of the sub-
diagonal matrices

0
0
Y
0

N OO O
OO oo

0
z
0
0

The functions z,y, z,u,v,w are linear coordinates on the dual of the Lie
algebra, and, hence, left-invariant fiber linear functions on 7*G. The space
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Ve = [V1, V4] is the uv plane, and V3 = [V1, V2] is the w-axis. For the inner
product on V) we take the standard Euclidean one so that z, y, z correspond
to the standard orthogonal coordinate system.

According to the above discussion, the sub-Riemannian Hamiltonian is
1
H= 5(:1:2 + 12 +22).
The Casimirs for the Lie—Poisson structure on N_" are w and uv — yw.

See [6]. Thus the typical coadjoint orbit is four-dimensional.

Theorem 1. The geodesic flow on N_* generated by H is not alge-
braically completely integrable.

Proof. The Kirillov-Kostant-Souriau Poisson bracket is given by the rela-
tions

{z,u} = w,
{v,2} = w,
{y,:z:} = U,
{z,y}=v

with all the other Poisson brackets of the coordinate functions equalling
- m - v .
zero. We choose z, z, & = —, and ¥ = — as Darboux coordinates on a

w w
generic orbit. “Generic” means that w = wo # 0 and wv —yw = C # 0.
One easily checks that =, z, 4, and © are independent coordinates on a
generic orbit and that

{z,04} =1,
{0,z} =1,
{2,z} = {2,9} = {z, 4} = {,0} = 0.
In these coordinates the Hamiltonian has a form
C

C - uvy 2 N2
H(z,z,ﬂ,f;)=x2+z2+( u) =x2+z2+(———wouv).
wo Wo

Under the following linear symplectic change of coordinates

T = 3\/’!1)012‘,

z=3\/502,
- i
'U.———B wo,
- )

vV =
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the Hamiltonian becomes w§ (#2 + 3% - 2C3/wytd + 4% + K), where
K is some constant depending on wy and C only. This Hamiltonian is
proportional to the famous Yang-Mills Hamiltonian, which Ziglin proved to
be rationally nonintegrable. See Ziglin [23], [24]. O

3. QUANTIZATION: EXTENSION TO THE UNIVERSAL ENVELOPING
ALGEBRA

The nonintegrability in rational functions of the system considered above
has some purely algebraic consequences.

Lemma 1. Let N_ be the algebra of nilpotent lower triangular 4 X 4
matrices and Pol(N_*) be the algebra of polynomials on its dual space N_".
Let {F,H} = 0, where H = 3(z* +y2 4+ 2%) and F € Pol(N_*). Then
F = P(H,w,uv — yw). Here z,y,z,u,v,w were defined in the previous
section and P is a polynomial.

Proof. Taking into account the fact that the dimension of the generic orbit
of the coadjoint representation in N_* is 4, we see that if F' commuted with
H but were not of the form P(H,w,uv — yw), then the system defined by
H would be completely integrable. But this contradicts Theorem 1. O

Given any function f in Pol(N_"), its centralizer with respect to Poisson
bracket always contains the polynomials F(f, w, uv—yw). For, as mentioned
earlier, w, uv — yw are the Casimirs for N_": they generate the center of
Pol(N_*). Thus the lemma asserts that the centralizer of H is as small as
possible.

We will finish off by proving a similar result for the universal enveloping
algebra U(N_). U(N_) can be thought of as the algebra of left-invariant
differential operators on the Lie group N of upper triangular matrices with
1’s on the diagonal (or on certain homogeneous spaces for V). It is generated
as an algebra over R by N_ (the lst order differential operators) and the
unit 1 (the identity operator). Let E;; be the standard unit matrix with
only nonzero (i,7) entry equal to 1. Set X = Eg;, Y = E3;, Z = Eyg3,
U= E3,V = FEg, W = Egi. Then X,Y,Z,U,V,W together with 1
generate U(N_). Observe that this notation is consistent with that used
for the elements z,y, z,u, v, w for Pol(N_"). Thus w is a linear function on
N_*, which is to say an element of N_.

Let H = 1(X2+Y?+ 2%) € UWN-). It is the “quantization” of our
H e Pol(WN_7).

By a theorem of Hormander, it is a hypoelliptic differential operator.
This is almost as good as being elliptic. It is well known that the center of
U(N-) is generated by W and UV — YW. (See Dixmier [7].) Consequently
if R is any element of U(N_), then its commutator algebra contains the
subalgebra generated by R, W and UV — YW.
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Theorem 2. Any element F in U(N_) which commutes with H is of
the form F = P(H,W,UV — YW) for some polynomial P.

There is no ordering problem in defining the element PH WUV -YW)
since W and UV — YW commute with everything. The theorem asserts that
H commutes only with _those elements which every operator must commute
with. It suggests that H, as an operator, should exhibit “quantum chaos.”

This theorem is a special case of a result which holds for any finite-
dimensional Lie algebra G. The result may be well known to experts, but
we will present it here in any case.

Let U(G) be the universal enveloping algebra of the finite-dimensional
Lie algebra G and Z(G) C U(G) its center. U(G) is filtered by degree.
An element is said to have degree less than or equal to k if it is a sum of
monomials of the form X; X, ... X, with the X; € G and s <k Ifs=kfor
one of these monomial terms, then its degree equals k. The corresponding
graded algebra Gr(U(G)) is canonically isomorphic to the algebra Pol(G*)
of polynomials on G*. The operator bracket respects the filtration so that it
induces a Lie bracket on Pol(G*). This is of course the KKS Poisson bracket
{,~,-} on G*.

Let U(G)r denote the subspace of elements of degree k or less. The
quotient map o : U(G)k — U(G)x/U(G)k-1 = Pol(G*) takes elements of
degree k to homogeneous polynomials of degree k. If an element 7 € U (@)
has degree k, then we call o (F) its principal symbol. If two elements
in U(G) commute, then their principal symbols must Poisson-commute in
Pol(G)*. This follows directly from the relation between the operator and
Poisson brackets.

There is a symmetrization map ¢ : Pol(G*) — U(G) which is a kind of
inverse to the symbol maps. It is a linear isomorphism but of course not an
algebra homomorphism. When restricted to the subspace of homogeneous
polynomials of degree k, it satisfies o 0 ¢ = Id.

The center Z(G) of U(G) is finitely generated by elements fivei i F
These elements may be chosen so that their principal symbols f1,..., f-
generate the center of Pol(G) and so that f; = ¢(f;). (See Dixmier (7],
or Varadarajan [20], Theorem 3.3.8, p. 183.) Elements of either center are
called Casimirs. (If G is semi-simple, then the number r of Casimirs is the
rank of the Lie algebra.)

Proposition 1. Let H be an element of U(G) of degree m and H =
om(H ) its principal symbol. Suppose that the commutator algebra of H in
Pol(G*) is generated by the Casimirs fi1,..., f, together with H. Then the
commutator algebra of H in U(G) is generated by the Casimirs f1,... , fm
together with H.
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In other words, if the commutator of the principal symbol is as small as
possible, then the same is true for its quantization H.

Proof. Suppose F commutes with H. Let k denote the degree of F and
set F = ak(ﬁ‘). As discussed above, F' Poisson-commutes with H. By
hypothesis F' = p(f1,..., f-, H) for some polynomial p. Since the f; are
in the center of U(G), the element p = p(fi,... fr, H) is a well-defined
element of U(G), independent of the ordering of the factors f;, H. Clearly
P commutes with H. Moreover oi(p) = F so that ox(F —p) = 0. It follows
that F'—p = F; is an element whose degree is k — 1 or less which commutes
with H.

Repeating this argument with F5 in place of F, we obtain a polynomial
pz in fi,..., fr, H and a corresponding element 3 in U(G) such that F —
(p + P2) commutes with H and has degree k — 2 or less. Continuing in this
fashion, we eventually descend to degree 0, in which case

F=p+ps+...+ P
is a polynomial in the f;, H as claimed. O '

4. REMAINING PROBLEMS

1. Show that the flow on N_* is not integrable in terms of general smooth
functions. This appears to require one to obtain more detailed knowledge
of the dynamics, as the Ziglin method fails.

2. Show that the full flow on T*(G in not integrable, either rationally or
in the full sense. See the next-to-last paragraph of Subsec. 1.1 for difficulties
involved here.

REFERENCES

1. V.I. Arnold, Mathematical methods in classical mechanics, app. 2.
Springer- Verlag, 1989.

2. J. Baillieul, Some optimization problems in geometric control theory.
Ph. D. Thesis, Harvard U., Cambridge, MA, 1975.

3. A. Bellaiche, The tangent space in sub-Riemannian geometry. In:
Sub-Riemannian Geometry, A. Bellaiche and J.-J. Risler, Eds. Birkhduser,
Basel, Switzerland, 1996.

4. R.W. Brockett, Nonlinear control theory and differential geometry.
Proc. Int. Congress of Mathematicians, Warsaw, 1983.

5. R. Brockett and Liyi Dai, Nonholonomic kinematics and the role of
elliptic functions in constructive controllability. In: Nonholonomic Motion
Planning, Z. Li and J. Canny, Eds. Kluwer Academic Publishers, Boston,
1993, 1-21.

6. P.
orbit is
7. J.
tent, IV
8. L.
and thei
9. M.
Riemam
Switzerl,
10. M

les varie
translati
11. R
Math. S
12. W
ian metr
13. A

of integr
lozh. 12
(1978), 2
14. J.
(1985), N
15. R.
metry. J.
16. _
(1994), 1
17.

A. Bellair
18. C
differenti.
and Phys
19. R
(1983), 2:
20. V.
Secs. 3.2-
21. A.
tems, geo
ematical !
22. A
tional prc
bundles.
23. S.

Hamitoni:




SUB-RIEMANNIAN GEODESIC FLOW ON A CARNOT GROUP 529

6. P. Deift, L. C. Li, T. Nanda, and C. Tomei, The Toda flow on a generic
orbit is integrable. Commun. Pure and Appl. Math. 39 (1986), 183-232.

7. J. Dixmier, Sur les representations unitares des groupes de Lie nilpo-
tent, IV. Can. J. Math. 11 (1959), 321-344.

8. L. Corwin and F. Greenleaf, Representations of nilpotent Lie groups
and their applications. Cambridge University Press, 1990.

9. M. Gromov, Carnot-Caratheodory spaces seen from within. In: Sub-
Riemannian Geometry, A. Bellaiche and J-J Risler, Eds. Birhduser, Basel,
Swritzerland, 1996.

10. M. Gromov, J. Lafontaine, and P. Pansu, Structures metriques pour
les varietes Riemanniennes. Cedic-Fernand Nathan, Paris, 1981. English
translation: by S. Bates, to appear.

11. R. Hermann, Geodesics of singular Riemannian metrics. Bull. Am.
Math. Soc. 79 (1973), No. 4.

12. Wensheng Liu and H. J. Sussmann, Shortest paths for sub-Riemann-
ian metrics on rank two distributions. Mem. Am. Math. Soc. 118 (1995).

13. A.S. Mishchenko and A.T. Fomenko, Generalized Liousville method
of integration of Hamiltonian systems. (Russian) Funkts. Anal. v Ego Pri-
lozh. 12, No. 2, 46-56. English translation: Funct. Anal. and Appl. 12
(1978), No. 2, 113-121.

14. J. Mitchell, On Carnot—Caratheodory spaces. J. Differ. Geom. 21
(1985), No. 9, 35-45. »

15. R. Montgomery, A survey of singular curves in sub-Riemannian geo-
metry. .J. Control and Dynam. Syst. 1 (1995), 49~90.

16. , Abnormal minimizers. SIAM J. Control and Optimiz. 32
(1994), 1-6.
17. , Survey of singular geodesics. In: Sub-Riemannian Geometry,

A. Bellaiche and J.-J. Risler, Eds. Birhduser, Basel, Switzerland, 1996.

18. C.B. Rayner, The exponential map for the Lagrange problem on
differentiable manifolds. Phil. Trans. Royal Soc. London, Ser. A, Math.
and Phys. Sci. 262 (1967), No. 1127, 299-344.

19. R. Strichartz, Sub-Riemannian geometry. J. Differ. Geom. 24
(1983), 221-263.

20. V.S. Varadarajan, Lie groups, Lie algebras, and their representations.
Secs. 3.2-3.5. Prentice-Hall, 1974.

21. A.M. Vershik and V. Ya. Gershkovich, Nonholonomic dynamical sys-
tems, geometry of distributions and variational problems. In: Encyec. Math-
ematical Sciences, Vol. 16; Dynamical Systems VII, Springer-Verlag, 1991.

99. A. Vershik and O. Granichina, Reduction of nonholonomic varia-
tional problems to the isoperimetric problems and connections in principal
bundles. (Russian) Mat. Zametk: 49 (1991), 37-44.

23. S. Ziglin, Solution ramification and nonexistence of first integrals in
Hamitonian mechanics. I. (Russian) Functs. Anal. i Ego Pril. 16 (1982),




530 R. MONTGOMERY, M. SHAPIRO, A. STOLIN

No. 3, 30-41.
24. , Solution ramification and nonexistence of first integrals in

Hamitonian mechanics. II. (Russian) Functs. Anal. i Ego Pril. 17 (1983)
No. 1, 8-23.

)

(Received 12.06.1997)

Authors’ addresses:

R. Montgomery

Mathematics Dept. UCSC,
Santa Cruz, CA 95064, USA
E-mail: rmont@cats.ucsc.edu

M. Shapiro

Dept. of Mathematics,

KTH, 10044, Stockholm, Sweden,
E-mail: mshapiro@math.kth.se
A. Stolin

Dept. of Mathematics,
University of Goteborg,

41296, Goteborg, Sweden.
E-mail: astolin@math.chalmers.se




